
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

259

Manuscript received December 5, 2018
Manuscript revised December 20, 2018

An Improvement of Round Robin Scheduling Algorithm

Md. Shafiul Alam Forhad1, Mrinmoy Das2, Md. Monowar Hossain3
1Department of Computer Science & Engineering, Chittagong University of Engineering & Technology, Bangladesh
2Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Bangladesh

3Department of Computer Science & Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology
University ,Gopalganj, Bangladesh

Summary
The processor is one among the foremost imperative parts of
computer system. CPU scheduling regulates foremost powerful
way to serve the pending appeals of the processes. The maximum
algorithm of CPU scheduling emphasis on supreme CPU usage
and diminishing waiting time, turnaround time and throughput
for a gang of requests. In the time measured scheme, the Round
Robin algorithm is the appropriate selection. It is inappropriate
for actual time schemes because of higher WT(Waiting Time),
higher TT(Turnaround Time) and a large amount of NCS(No. of
Context Switches. Selection of TQ (Time Quantum) is incredibly
vital. Time quantum influences algorithm’s performance. The
effectiveness of the algorithm totally relies on the selection of
time quantum. Here, an improved version of the Round
Robin(RR) algorithm, FMMRR (Forhad Mrinmoy Monowar
Round Robin) has been proposed. It needs dynamic TQ rather
than static TQ needed in RR. The behavior of our recommended
FMMRR algorithm is experimentally distinguished with RR and
a few other improved versions of RR. The experimental output of
our method demonstrates improved performance in terms of
some scheduling criteria such as average TT, average WT,
throughput etc. Once enhancement in RR, it's been initiated that
WT and TT have been shortened remarkably.
Key words:
Average Turnaround Time, RR Scheduling, Operating System,
Context Switching, Average Waiting Time.

1. Introduction

An operating system is an enlarged machine from user’s
perspective and a resource manager from system’s
perspective. It is a software that supports the basic
functions of a computer, scheduling tasks, etc. to abet
programmers in improving system competence and
stability. In multiprogramming and multitasking
environments, it is essential to accept the process among
the number of processes exist in the job pool according to
their demand. Distribution of CPU to the processes is
completed by the scheduler, which is conducted by some
scheduling algorithms such as FCFS, SJF, Priority & RR.
In which RR is the most popular preemptive scheduling
algorithm. In non-preemption, CPU is allowed to do a task
until its processing is finished. On the other hand, the
functioning task is compelled to free CPU by the recently
appeared process in preemption. Every scheduling
algorithm has its own benefits and drawbacks. Similarly,

RR has a drawback which increases average turnaround
time, waiting time and minimizes throughput known as a
context switch. The processes in RR are assigned with a
TQ which is static by nature.
In RR scheduling, processes acquire an equitable share of
CPU because of static time quantum allocated to every
process and also context switch is inversely proportional
to the selection of static TQ and it degrades the overall
performance of the system. All performance includes high
average TT and WT. This kind of factor provokes us to
plan a refined algorithm. By diminishing the number of
context switches, average TT and WT utilizing perception
of dynamic time TQ, it is qualified to enhance the system
execution. In our task, we improved the RR algorithm by
utilizing dynamic TQ wisely and we also use sorting for
the sequencing of processes. This approach drastically
diminishes average WT (AWT), average TT(ATT) and
context switching.

2. Background

RR algorithm acts on time allocating aspect. A time
portion is appointed to all processes. Each process will be
beheaded for specific time portion. In the RQ(Ready
Queue), the processes which are ready for execution is
placed. If any process arrives, then they are added in the
tail of the RQ. From that the processes are selected by the
CPU scheduler and then fix the timer to a specific time
period. If that process still unfinished its entire execution
within a specific time period, then it will be occupied after
completion of TQ and included at the tail of RQ [1]. Then
the upcoming process in the front of the RQ is assigned to
the CPU. All the process completes their execution in this
manner.
RR CPU scheduling algorithm is given below:
Step-1: START
Step-2: Build a RQ of the processes like READYQ.
Step-3. Take the no. of processes, execution time and
other parameters as inputs.
Step-4: Ready processes will put into READYQ
Step-5: Then REPEAT step no 6, 7 and 8 respectively till
READYQ becomes empty.
Step-6: Choose the first process from READYQ and
assign CPU for the given TQ for executing that process.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

260

Step-7: After completing the execution of the ongoing
process, took away it from READYQ and move to step no
5 again.
Step-8: Then eliminate the ongoing executing process
from the READYQ and set down it at the tail of
READYQ.
Step-9: Calculate AWT, ATT, and NCS.
Step-10: Exit

3. Related works

In [2], they arrange the processes as specified by their
burst time and allocating them with optimal TQ. It is able
to reduce the drawbacks of the existing algorithms by
taking dynamic TQ. The ATT, AWT & NCS are greatly
shortened by this idea.
In [3], they proposed an approach for RR scheduling. It
helps to enhance the effectiveness of CPU in both
real-time and time-sharing OS (Operating System). A
comparative study of the presented methodology with
traditional one is shown. The authors feel that the
proposed algorithm takes care of all the issue experienced
in simple RR algorithm by diminishing the performance
parameters. The drawbacks of traditional RR algorithm
eliminated by their proposed algorithm and also increasing
the system throughput.
In [4], an improved version of the RR scheduling
algorithm, IRRVQ is proposed. The outputs of this
algorithm show that TT(Turnaround Time) and
WT(Waiting Time) have been decreased. The presented
algorithm is experimentally justified better than typical
RR and giving better performance than conventional RR
algorithm.
In [5], they proposed a dynamic TQ-based algorithm of
RR scheduling to improve the functioning of CPU and the
results display that presented algorithm is more suitable
than RR, IRR & IRRVQ in respect of different parameters.
And that parameters are the AWT, NCS, and ATT.
In [6], they proposed an algorithm called Revamped Mean
Round Robin (RMRR). Their algorithm is based on
improvement and revised on the simple RR algorithm and
it was compared with other algorithms. RMRR together
with the RR algorithm was implemented in python and
results show that the proposed technique has minimal
AWT, ATT and therefore the Numbers of Context
Switches.
In [7], DABRR (Dynamic Average Burst Round Robin)
has been proposed which utilizes dynamic TQ within the
place of static TQ needed in Round Robin. The DABRR
algorithm’s performance is contrasted with RR and a few
other prevailing variants of Round Robin. They show
DABRR improves performance in respect of NCS, AWT,
and ATT.

In [8], a newly suggested variant of this algorithm
submitted, analyzed in details, checked and proved. The
newly suggested algorithm known as Self-Adjustment-RR
(SARR) in view of dynamic TQ. This method’s concept is
to create TQ frequently adapted as stated by the execution
time of current working processes in view of the research
and computations they have constructed. New moderated
algorithm profoundly finds an answer to the problem of
fixed TQ that is treated as a threat to the RR algorithm.
Dynamic scheduling algorithm implementation expanded
execution & steadiness of OS and comfort making of an
OS that is self-adjusted.
In [9], CPU scheduling algorithm with increased
performance has been proposed. Pipelining method is
employed for speed up issue. That method may be applied
to some algorithms of CPU scheduling to enhance
execution. The testing demonstrates that the suggested
algorithm is better than the existing planning algorithms.
The performance is increased by 40-50%.
Babu.B et al. proposed an efficient RR algorithm[10] for
the multi-programmed OS. With regard to some usual
scheduling algorithms like First Come First Served, Round
Robin etc., they initiated a tool which delivers output
according to experimental results.
In [11], they have developed an RR algorithm.Their
algorithm is based on dynamic time slice. They tried to
lessen running time of an algorithm and also minimizing
the NCS, AWT and ATT.
In [12], they have implemented a genetic approach based
RR algorithm. Static, Dynamic TQ and Genetic
algorithm-based RR with dynamic time quantum are
compared with the proposed method. The quantum can be
dynamically selected for all iterations. Instead of keeping
it static, it can also enhance the performance.
In [13], they proposed an algorithm that categorizes the
processes as high and low priority processes. The
proposed method decreases the AWT time of high priority
process regardless of the low priority process. The overall
AWT will adjust according to the considered set of
processes. Based on the AWT, it is justified that the
proposed scheme gives shortened AWT of the process set
than previously proposed schemes.
In [14], they proposed an improvement of RR CPU
scheduling algorithm. This proposed algorithm reduces the
AWT, ATT and the number of context switches. The RR
algorithm with non-preemptive SJF method is applied for
getting better performance.
In [15], OMDRRS algorithm is developed. Better
improvement is seen in WT, TT and context switching.
This algorithm provides less WT, less TT and context
switching. It leads to save plenty of memory space and
thus reducing the overhead. It boosts the performance of
traditional RR and some other algorithms.
Parashar, Mayank, and Amit Chugh. proposed an
algorithm [16] which is compared against the outputs of

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

261

the existing RR algorithm. By modifying the value of the
TQ for some processes, it boosts it further. In this case,
they only consider the above TQ for the processes that
need a little greater TQ than the assigned TQ cycles.
During this proposed approach, it doesn't aim to alter the
philosophy of the conventional RR algorithm. However,
within the conventional RR manner, the remaining
processes are executed
In [17], they proposed a technique which improves the OS
scheduling. It improves, particularly within the time
measuring system. By using the geometric mean, the value
of the TQ is calculated. Their proposed technique applies
the Shortest Job First algorithm and adopts a proper
process to be scheduled and executed. They wanted to
execute the presented method on TT & response time.
That proposed method will enhance the TT, response time
in their upcoming work.
In [18], a new RR scheduling, IMRRSJF proposed. If no.
of process is high, then IMRRSJF gives a better result. It
offers a better result compared to RR, ERR, IRR etc.
In [19], they proposed a new scheduling algorithm better
than the variants of RR and a further Improvement
RR(AAIRR) algorithms in terms of minimizing the NCS,
AWT and ATT.

4. The Proposed Method

In this section, our proposed FMMRR(Forhad Mrinmoy
Monowar Round Robin) algorithm are described in
details.

4.1 FMMRR Algorithm

TQ: Time Quantum
RQ: Ready Queue
n: No. of processes in the RQ
Pi: Process at ith index
i, j: Used as an index of the ready queue
AT: Arrival Time
WT: Waiting Time
TT: Turnaround Time
BT: Burst Time
TBT: Total BT
AWT: Average WT
ATT: Average TT
[1] Start
[2] Sort the processes in RQ according to their BT in
ascending order
[3] i=1, TBT=0
[4] Repeat steps 5 and 6 till i <= n
[5] TBT += burst time of process Pi
[6] i++
[7] TQ = Time Quantum
[8] Calculate the median of BT of all RQ processes
[9] If the number of process less than or equals to three

[10] Then TQ= Largest CPU burst among all processes
[11] Otherwise TQ= Median
[12] j = 0
[13] Repeat from step 14 to 26 till j<n
[14] If (burst time of Pi) <= TQ
[15] Then execute the process
[16] Take the process out of the ready queue
[17] n--
[18] Else
[19] Execute Pi for a time period up to 1 TQ
[20] BT of Pi = BT of Pi – TQ
[21] Add the process to the RQ for next round of
execution
[22] j++
[23] If a new process arrives
[24] goto [2]
[25] If RQ is not empty
[26] goto [3]
[27] Calculate the number of context switches
[28] Calculate AWT
[29] Calculate ATAT
[30] End

Forhad Mrinmoy Monowar Round Robin (FMMRR)
algorithm is preemptive in nature. At first, the proposed
method takes the no. of processes, their arrival time and
also their CPU execution time as inputs. Then the
processes which are in the RQ and waiting for execution
are organized ascending order of their CPU execution time.
After that, total burst time and median are calculated. The
processes are executed according to a TQ, which is
allocated to each process. If the TQ of a process expires
before completion, then the next incoming process is
assigned and before that at the tail of the RQ, the currently
running process is placed. The first process from the RQ is
picked by the CPU scheduler. If a new process arrives,
then RQ processes are again sorted. If the no. of processes
less than or equals to three, then the value of the TQ is the
largest CPU burst time among all the remaining processes
in the RQ. In other respects, the value of the TQ is set to
the median of CPU burst among all the remaining
processes. Then the process executes if the remaining BT
of the process is less than or equals to the TQ and after
execution, it removes from the RQ. The number of RQ
processes decreased. Otherwise, the process executed for a
time interval. Then include it to the end of the RQ. This
process repeats until RQ is not empty.

5. Experimental Findings

This section provides the comparative analysis of RR,
IRRVQ, DABRR, SARR and Forhad Mrinmoy Monowar
Round Robin algorithms on the basis of their resulted
context switches, WT and TT.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

262

Let us consider five processes Pr1, Pr2, Pr3, Pr4 and Pr5
respectively. Their AT, execution time is shown in Table 1.
Gantt chart for this set of processes is shown in Figure 2.
The burst time median of all processes is 55. So, this value
is chosen as the value of the TQ. After 1st iteration, the
number of currently remaining processes in the RQ is less
than 3. The remaining highest BT of the RQ processes is
chosen as the new value of the TQ. So, 50 is the new value
of the TQ. And if the number of remaining processes in
the RQ is greater than three, then again the median of BT
of the remaining processes is chosen as TQ.

Table 1: Processes with Zero AT and BT in decreasing order [7]
Processes AT BT

Pr1 0 105
Pr2 0 85
Pr3 0 55
Pr4 0 43
Pr5 0 35

55 50

Pr5 Pr4 Pr3 Pr2 Pr1 Pr2 Pr1
0 35 78 133 188 243 273 323

Fig. 1 Gantt chart of each RR algorithm for Table 1

Again, consider five processes Pr1, Pr2, Pr3, Pr4 and Pr5
respectively. Their AT and CPU BT are shown in Table 2.
Gantt chart for this set of processes is shown in Figure 5.
The median value is calculated and it is 75. So 75 is
chosen as the new value of the TQ. After 1st iteration, the
number of currently remaining processes in the RQ is less
than 3. A new value of the TQ is chosen from the
remaining highest processes in the RQ. So, 60 is the new
value of TQ.
For illustration, let us again consider five processes Pr1,
Pr2, Pr3, Pr4, and Pr5 respectively. Their arrival time and
CPU BT is shown in Table 3. Gantt chart for this set of
processes is shown in Figure 9. As there is no process
except Pr1 in the RQ queue at zero AT. So the TQ is set to
the value of the largest TQ and it is 45. Then after 1st
iteration, the value BT of the processes in the RQ. The
value is 62. Then after the 2nd iteration, only two process
exists in the RQ. So, the TQ is the largest BT of the
remaining processes and it is 28.
Figure 2, 3 and 4 shows the graphical analysis of the
context switch, WT and TT respectively of RR, IRRVQ[4],
DABRR[7], SARR[8] and Forhad Mrinmoy Monowar
Round Robin algorithms for the set of processes shown in
Table 1. By evaluating these three graphs we conclude that
Forhad Mrinmoy Monowar Round Robin algorithm
executes far better than four other algorithms in case of
processes arrived at zero AT with descending order of BT.
Figure 6, 7 and 8 shows the graphical analysis of the
context switch, WT and TT respectively of RR, IRRVQ[4],
DABRR[7], SARR[8], and Forhad Mrinmoy Monowar
Round Robin algorithms for the set of processes shown in

Table 2. By evaluating these three graphs we conclude that
Forhad Mrinmoy Monowar Round Robin algorithm
executes far better than the four other algorithms in case of
processes arrived at zero arrival time with random BT.

Fig. 2 Context switch of each RR algorithm for Table 1

Fig. 3 AWT of each RR algorithm for Table 1

Figure 10, 11 and 12 shows the graphical analysis of the
context switch, WT and TT respectively of RR, IRRVQ[4],
DABRR[7], SARR[8], and Forhad Mrinmoy Monowar
Round Robin algorithms for the set of processes shown in
Table 3. By evaluating these three graphs we conclude that
Forhad Mrinmoy Monowar Round Robin algorithm
executes far better than four other algorithms in case of
processes arrived with different arrival times with random
BT.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

263

Fig. 4 ATT of each RR algorithm for Table 1

Table 2: Processes with Zero AT and BT in random order [7]
Processes AT BT

Pr1 0 105
Pr2 0 60
Pr3 0 120
Pr4 0 48
Pr5 0 75

75 60

Pr4 Pr2 Pr5 Pr1 Pr3 Pr1 Pr3
0 48 108 183 258 333 363 408

Fig. 5 Gantt chart of each RR algorithm for Table 2

Fig. 6 Context switch of each RR algorithm for Table 2

Fig. 7 AWT of each RR algorithm for Table 2

Fig. 8 ATT of each RR algorithm for Table 2

Table 3: Processes without Zero AT and BT in random order. [7]
Processes AT BT

Pr1 0 45
Pr2 5 90
Pr3 8 70
Pr4 15 38
Pr5 20 55

45 62 28
Pr1 Pr4 Pr5 Pr3 Pr2 Pr3 Pr2

0 45 83 138 200 262 270 298

Fig. 9 Gantt chart of each RR algorithm for Table 3

6. Results and Discussion

Forhad-Mrinmoy-Monowar-Round-Robin algorithm was
developed to resolve all earlier revealed problems by using
dynamic-time-quantum in a simple, feasible and significant

Fig. 10 Context switch of each RR algorithm for Table 3

manner. The contrasts shown in the above figures proved
that the presented algorithm FMMRR gives much better
results than other in some scheduling criteria. We can
conclude from the above experimental results that the
presented FMMRR algorithm functions far better than RR,
IRRVQ[4], DABRR[7] and SARR[8] in respect of AWT
and ATT. In Fig.13, the output of the FMMRR algorithm
for descending order of burst time with zero AT is shown.
The pictorial representation of the execution of the

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

264

processes in the CPU using Gantt chart, AWT and ATT is
shown in the Fig.13. In the Fig. 14, the output is shown for
random order of burst time with zero AT is shown. The
result shows that the algorithm works good and
satisfactorily for a large number of processes and is able to
give better AWT and ATT for the majority of processes.

Fig. 11 AWT of each RR algorithm for Table 3

7. Conclusion

In this paper, Forhad Mrinmoy Monowar Round Robin
algorithm, which is an improved version of the RR

Fig. 12 ATT of each RR algorithm for Table 3

algorithm is proposed. There are some changes here in this
algorithm like the value of the TQ. Forhad Mrinmoy
Monowar Round Robin provides better performance than
the mentioned variants of RR algorithms. This can be
achieved by minimizing the AWT, ATT, etc. The AWT,
ATT has been computed and then the results were
compared and have appeared that the presented algorithm

Fig. 13 Experimental results of FMMRR algorithm for Table 1

offers far better results than RR, DABRR, IRRVQ, SARR
in respect of above parameters. It's quite easy to
implement in a practical situation. In the future, we want
to improve a better version of this algorithm.

Fig. 14 Experimental results of FMMRR algorithm for Table 2

References
[1] Amit, Narendra and Dinesh Goyal. "Review of Round

Robin (RR) CPU Scheduling Algorithm on Varying Time

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

265

Quantum." International Journal of Engineering Science
Invention, vol. 6, no. 8, August 2017, pp 68-72.

[2] Nayak, Debashree, et al. "Improved Round Robin
Scheduling using Dynamic Time Quantum." International
Journal of Computer Applications, vol. 38, no. 5, 2012,
pp. 34-38.

[3] Singh, Ajit, et al. "An Optimized Round Robin Scheduling
Algorithm for CPU Scheduling." (IJCSE) International
Journal on Computer Science and Engineering, vol. 02,
7 Nov. 2010.

[4] Kumar Mishra, Manish, and Faizur Rashid. "An Improved
Round Robin CPU Scheduling Algorithm with Varying
Time Quantum." International Journal of Computer Science,
Engineering and Applications, vol. 4, no. 4, 2014, pp. 1-8.

[5] Berhanu, Yosef. "Dynamic Time Quantum based Round
Robin CPU Scheduling Algorithm." International Journal of
Computer Applications, vol. 167, no. 13, 2017, pp. 48-55.

[6] Kathuria, Sachin, et al. "A Revamped Mean Round Robin
(RMRR) CPU Scheduling Algorithm." International Journal
of Innovative Research in Computer and Communication
Engineering, vol. 4, no. 4, Apr. 2016.

[7] Dash, Amar R., et al. "An Optimized Round Robin CPU
Scheduling Algorithm with Dynamic Time Quantum."
International Journal of Computer Science, Engineering and
Information Technology, vol. 5, no. 1, 2015, pp. 07-26.

[8] Matarneh, Rami J. "Self-Adjustment Time Quantum in
Round Robin Algorithm Depending on Burst Time of the
Now Running Processes." American Journal of Applied
Sciences, vol. 6, no. 10, 2009, pp. 1831-1837.

[9] Arora, Himanshi, et al. "An Improved CPU Scheduling
Algorithm." International Journal of Applied Information
Systems, vol. 6, no. 6, 2013, pp. 7-9.

[10] Babu.B, Sukumar, et al. "Efficient Round Robin CPU
Scheduling Algorithm." International Journal of
Engineering Research and Development, vol. 4,
no. 9, Nov. 2012, pp. 36-42.

[11] Farooq, Muhammad U., et al. "An Efficient Dynamic
Round Robin algorithm for CPU scheduling." 2017
International Conference on Communication, Computing
and Digital Systems (C-CODE), 2017.

[12] Dhumal, Ms. Rashmi A., et al. "Dynamic Quantum based
Genetic Round Robin Algorithm." International Journal of
Advanced Research in Computer and Communication
Engineering, vol. 3, no. 3, Mar. 2014.

[13] Belwal, Monika, and Sanjay Kumar. "A Priority Based
Round Robin CPU Scheduling Algorithm." International
Journal of Computer Science and Information Technologies,
vol. 8, no. 4, 2017.

[14] Asif, Md. R., et al. "Improved Performance of Round Robin
CPU Scheduling Algorithm Using Non-preemptive SJF."
International Journal of Scientific & Engineering Research,
vol. 8, no. 12, 2017, pp. 1734-1738.

[15] Goel, Neetu, and Dr. R. "Performance Analysis of CPU
Scheduling Algorithms with Novel OMDRRS Algorithm."
International Journal of Advanced Computer Science and
Applications, vol. 7, no. 1, 2016.

[16] Parashar, Mayank, and Amit Chugh. "Time Quantum based
CPU Scheduling Algorithm." International Journal of
Computer Applications, vol. 98, no. 3, 2014, pp. 45-48.

[17] Mohammad Dorgham, Omar H., and Dr. Mohammad O.
Nassar. "Improved Round Robin Algorithm: Proposed

Method to Apply SJF using Geometric Mean."
INTERNATIONAL JOURNAL OF ADVANCED
STUDIES IN COMPUTER SCIENCE AND
ENGINEERING, vol. 05, no. 11, 2016.

[18] Shyam, Radhe, and Sunil K. Nandal. "Improved Mean
Round Robin with Shortest Job First Scheduling."
International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 4, no. 7, July 2014.

[19] Joshi, Rahul, and 2Shashi B. Tyagi. "Smart Optimized
Round Robin (SORR) CPU Scheduling Algorithm."
International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 5, no. 7, July 2015.

Md. Shafiul Alam Forhad completed
B.Sc. Engg. degree in Computer Science
and Engineering from Chittagong
University of Engineering & Technology
(CUET) in 2014 with outstanding result.
He is now pursuing his M.Sc. Engg. degree
in Computer Science and Engineering
from the same university. His current
research interests are Data Mining,
Operating Systems, Cryptography, and

Machine Learning. He was a lecturer in the Department of
Computer Science and Information Technology of Patuakhali
Science & Technology University. Now, he has been serving as a
faculty member in the Department of Computer Science &
Engineering (CSE), Chittagong University of Engineering &
Technology (CUET), Bangladesh.

Md. Monowar Hossain completed B.Sc.
Engg. degree in Computer Science and
Engineering from Chittagong University of
Engineering & Technology (CUET) in
2014 with outstanding result. He is
now pursuing his M.Sc. Engg. degree in
Computer Science and Engineering from
Khulna University of Engineering &
Technology (KUET). His current research
interests are Natural Language Processing,

Data Mining, Cryptography and Machine Learning. He was a
solution delivery engineer at Systems Solutions & Development
Technologies Ltd. Now, he has been serving as a faculty member
in the Department of Computer Science & Engineering (CSE),
Bangabandhu Sheikh Mujibur Rahman Science and Technology
University (BSMRSTU), Gopalganj, Bangladesh.

Mrinmoy Das completed B.Sc. Engg.
degree in Computer Science and
Engineering from Chittagong University of
Engineering & Technology (CUET) in
2014 with an excellent result. He is now
obtaining his M.Sc. Engg. Degree in
Computer Science and Engineering from
Bangladesh University of Engineering and
Technology (BUET). His current
research interests are Machine Learning,

Security & Cryptography, Human Computer Interaction, and
Data Mining. He is currently serving as a faculty member in the
department of Computer Science and Engineering of Bangladesh
University of Business and Technology (BUBT).

