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Summary 
The robust automatic ECG classification systems has attracted 

researchers in recent years due to saving time and minimizing 

errors for heart clinical predictions. Inter-patient 

Electrocardiography (ECG) classification has been studied 

extensively and provided promising results, but remains a difficult 

task due to the diversity among patients. Moreover, conventional 

methods relied on feature selection frameworks to select suitable 

feature-sets for inter-patient ECG classification task. However, the 

hand-craft features are specifically designed for different purposes 

and may not characterize the original signal in an optimal way. In 

this paper, a proposed deep learning framework is applied to 

obtain learned patient-invariant features for ECG classification. In 

particular, two constraints are embedded in a unified Siamese 

structure to handle inter-patient diversity and ECG classification 

simultaneously. The first one indicates that if two ECG signals are 

in the same class, the extracted features should be similar even 

these signals are from two different patients. The second one is 

that the learned features should support well for the classification 

task. Experimental results have shown that the accuracy is 

improved significantly even in inter-patient datasets. Moreover, t-

SNE visualization proves that the proposed framework can learn 

the discriminative features. 

Key words: 
ECG classification, Deep learning, Feature Learning, Siamese 

network. 

1. Introduction 

In order to monitor and diagnose cardiovascular diseases, 

electrocardiography is the most popular and broadly used 

method due to its simplicity, the cheapness of process, and 

non-invasive property [1]. Electrocardiogram (ECG) signal 

records the cardiac electrical activity and gives the 

important information about heart’s condition necessitated 

for the treatment of heart patients. Manual analyzing long-

term ECG records are extremely time-consuming and 

difficult because of the morphological variation of ECG 

signal. Besides, human errors might be caused by fatigue 

when analyzing the ECG signal over a long period of time. 

Therefore, improving and developing the automatic ECG 

analysis systems are necessary and they have been got more 

attention in the recent decade. 

The common problem is that all automatic ECG analysis 

systems have the large variation in morphological 

characteristics of ECG signals of different patients [2]. In 

particular, with the same cardiovascular condition, but the 

ECG signals measured in two different patients may be 

completely different. This makes most of previous studies 

focus on patient-specific designs [1-3] or patient adaptation 

techniques [4-8] which have ability to adjust or improve the 

classifier corresponding to patient’s ECG signal 

characteristics. Although these patient-specific methods 

still exist a lot of disadvantages such as: (1) it is time 

consuming to rebuild the classifier for each patient; (2) need 

the help of experts to label data from 2 to 5 minutes per 

patient; (3) the ECG of a healthy person with no history of 

cardiac arrhythmias might only contain normal beats but no 

abnormal beats for training, there are very few studies that 

deal with or successfully construct the generic (inter-

patient) ECG classification system due to the high inter-

patient variations of ECG. 

Therefore, in this research, we would like to build an inter-

patient ECG classification system which use a Siamese 

based deep network to solve the mentioned problems. The 

major contributions of the proposed method can be 

summarized as follows: 

 A Siamese architecture [9] is introduced to guide 

the network to extract the patient-invariant features, 

which is useful for building a generic ECG 

classification system. As far as our knowledge, this 

is the first work proposed to use Siamese 

architecture to handle the inter-patient variation 

problem and build a robust generic ECG 

classification system. 

 By introducing the Siamese structure into the 

learning network, the variety of the training set may 

be expanded and thus it may reduce the required 

amount of labeled data. 

 A multi-task structure, which jointly considers 

classifying and clustering, is designed in our 

framework to extract the features. Therefore, the 

learned features are not only patient-invariant but 

also useful for classifying diseases. 

The rest of this paper is organized as follows: the related 

works for inter-patient ECG classification are discussed in 

Section 2. In Section 3, the proposed network for ECG 

signal classification is described. The experimental results 

and discussions are given in Section 4. Sections 5 concludes 

this paper. 
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2. Related Works 

In order to handle the high inter-patient variation problem 

and build a robust inter-patient ECG classification system, 

extracting and selecting the appropriate features, which can 

characterize pathological signs, will be the key to success. 

Therefore, in this section, we would like to divide the 

previous inter-patient methods into two categories: (a) 

hand-craft based methods and (b) deep learning methods. 

The results on each method are reviewed in section 2.1 and 

section 2.2.  

2.1 Hand-craft Based Methods 

Similar to other classification tasks, the previous automatic 

ECG classification methods combined different 

classification models such as cluster analysis [10], artificial 

neural network [11], naïve Bayes classifier [12], Support 

Vector Machine (SVM) [13], decision tree [14], K-Nearest 

Neighbors (k-NN) [15] with some hand-crafted feature 

extraction methods such as S-transform [16], Discrete 

Wavelet Transform [17-19], Continuous Wavelet 

Transform [18], Discrete Cosine Transform [18], temporal 

vector-cardiogram [19], normalized RR-interval 

morphological features [20], Pan-Tompkins algorithm [21] 

to find optimal algorithms. In addition, to enhance the 

discriminability of feature representation, the feature fusion 

strategy [22] was applied to capture critical attributes from 

multiple aspects and hence it could boost the higher 

performance. However, combining several features may 

significantly increase the computational complexity.  

In order to decrease the size of the feature vector, reduce 

computational cost and increase the generality of the 

method, feature selection and feature dimension reduction 

are employed. Feature selection methods, such as Genetic 

Algorithms (GA) [23], feature selection driven [24], and 

Binary PSO (BPSO) [25] decrease the size of the feature 

vector by selecting the useful features from the original set 

of features. To handle the diversity among patients, G. 

Garcia et al. [26] introduced a PSO framework for inter-

patient ECG heartbeat experiment. On the other hands, 

feature dimension reduction methods such as Principal 

Component Analysis (PCA) [27], Linear Discriminant 

Analysis (LDA) [28], Independent Component Analysis 

(ICA) [29] generate the new compact low-dimensional 

features from the high-dimensional ones. 

2.2 Deep Learning Methods 

The hand-craft-based methods might achieve good 

performance in some specific datasets. However, the hand-

craft features are specifically designed for different 

purposes and may not characterize the original signal in an 

optimal way. Therefore, to improve feature flexibility and 

generalization, researchers have recently come to reply on 

off-the-shelf deep learning methods for feature extraction 

and ECG signal classification simultaneously [30]. In 

supervised deep learning methods, with the supervised 

labels, discriminative deep learning networks would be 

designed to automatically learn appropriate features in 

different levels for the ECG signal classification task. 

However, the biggest weakness of supervised deep learning 

is the need for large amounts of labeled data. Collecting and 

labeling such large amounts of labeled data are extremely 

expensive and time-consuming.  

Therefore, in [31], unsupervised deep learning is combined 

with supervised deep learning to decrease the demand on 

labeled training data. The idea is that, the unsupervised 

networks such as auto-encoder [32], Restricted Boltzmann 

Machine (RBM) [33], etc. are firstly employed to learn 

representations from unlabeled data. Then the fine-tuning 

process is used to improve the model performance by tuning 

the parameters of all layers using labeled data. The results 

have shown that automatic ECG signal classification 

systems founded on deep learning features are able to 

achieve better performance comparing to hand-crafted 

features. 

Besides, in order to extract the more robust features, the 

traditional Siamese structure [9] has been applied for ECG 

signals but for different purposes. In [33], this structure was 

used to build an authentication apparatus based on ECG 

signal. In [34], it was used to build an arousal recognition 

from ECG. To estimate arousal level, it requires the user-

specific template, which represents the user’s neutral 

affective state, to compare with the current user’s ECG. 

These framework uses Siamese structure as a comparison 

method for different purposes instead of handling the inter-

patient variation problem to build the robust ECG 

classification system. With the best of our knowledge, very 

rare research in this field discusses how to design a deep 

network that can solve the common problem faced in the 

automatic ECG analysis systems and the diversity of ECG 

signals of different patients. 

3. Proposed Method 

To compensate for the diversity of ECG signals of different 

patients, the deep learning-based framework has been 

proposed. The ECG beats are firstly extracted from the 

ECG signals; then they are fed into a deep Siamese network 

for the classification task. In detail, properties of heart-beat-

signals in section 3.1 are introduced and the framework is 

in section 3.2. 
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3.1 ECG Signal and Heart Beat Detection 

Electrocardiography is used to record the heart operation 

process using electronic leads. In particular, an ECG signal 

involves several ECG-beats, therefore, in order to analyze 

the ECG signal, the ECG-beats should be extracted in 

advance. As shown in Fig. 1(a), a typical ECG-beat 

includes: one P-wave, one QRS complex, and one T-wave. 

The easiest way to extract the ECG-beats is to firstly detect 

R-peaks in the ECG signal, then to select N points before 

and after each peak to form an ECG-beat. In our experiment, 

the MIT dataset are acquired at 360 Hz, hence 200 sampled 

points is enough to cover a heartbeat [35]. Therefore, we 

select N = 100 as in Fig.1b. Given the ECG-beats, some 

physical attributes in the time domain such as heartbeat 

interval, duration factors (QRS, QT, and PR), amplitude 

factors (QRS, ST), and combined factors (Q/R ratio, S/R 

ratio) [36, 37] could be considered to recognize their status. 

However, as presented in Fig. 1(b), a particular ECG beat 

is affected seriously by noise or patient motion during data 

collection process and it is intractable to extract the 

attributes in the time domain. For instance, the Q point of 

the Supraventricular ectopic beat does not follow the 

standard of a formal beat in Fig.1a; and the T point may not 

be recognized in the example. Therefore, in order to remove 

noise, it is better to represent the heart-beat signal in the 

frequency domain [35]. Unlike conventional methods 

where many feature extraction methods and preprocessing 

methods are often applied, in this paper, a deep network is 

aimed to learn the useful features of ECG signals. Therefore, 

a 4-level discrete wavelet transform (DWT) is simply 

utilized to represent an ECG-beat in the frequency domain 

without any pre-processing. In addition, a PCA algorithm 

[27] is applied to remove unnecessary information in the 

frequency domain. Following the experiment in this paper, 

with 40 dimensions, the compressed data could recover 

99% of the original information. Therefore, the PCA is 

applied to project the ECG data into the 40-dimension 

vectors which are connected into the inputs of the proposed 

network.  

3.2 The Siamese-based Multi-Task Network 
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Fig. 2  The proposed Siamese-based multi-task network 

for heart beat classification 

In the feature extraction part, we aim to overcome the 

diversity among patients. In [26], the authors have pointed 

out that with the same diseases, the extracted features of 

ECG signals collected from two different patients may 

follow different distributions as shown in Fig. 3(a). With 

these kinds of features, no matter how good the classifier is, 

 

Fig. 1(a)  The typical ECG-beat 

 

Fig. 1(b)  Particular ECG-beat for Normal beats (N), Supraventricular 
ectopic beats (S), and Ventricular ectopic beats (V) 
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the performance is difficult to improve. Therefore, in order 

to achieve a robust automatic ECG analysis system, 

extracting the good features should be a critical issue. In 

this paper, a feature extraction function 𝐺𝑊𝐹
(𝑋), which is 

firstly introduced, can be applied to extract the patient-

invariant features as shown in Fig. 3(b). It means that the 

similar diseases could be grouped together and the different 

diseases are separated in the learned feature domain. 

In this research, the proposed framework is introduced for 

inter-patient ECG classification and it includes two main 

parts: feature extraction and classification. The first one is 

employed to learn robust features, whereas the second is to 

learn a model for classification task. Unlike conventional 

methods, where feature extraction and classification are 

designed independently, this paper represents the 

combination of these tasks into a unified framework and 

training them in an end-to-end fashion. In particular, Fig. 2 

introduces the overall structure of the proposed framework 

using the network for heart beat classification. 

 

 

Fig. 3(a)  Diversity among patient 

 
Fig. 3(b)  Expected feature distribution 

To realize the idea, the Siamese architecture [25] to learn 

the patient-invariant features is proposed as shown in Fig. 

2. In particular, the Siamese architecture has two input 

sources Xl and Xr, which are randomly sampled from the 

training dataset XR40 with the set of 40-dimensional 

vectors, in which the vectors are achieved using the DWT 

and PCA on training ECG beats as mentioned in the sub-

section II.A. Moreover, each input is projected into a 15-

dimensional feature vector using a neural network (NN), 

which contains three fully connected layers of size 30, 25 

and 15, each layer is followed by one sigmoid function. To 

identically ensure the feature extraction function 𝐺𝑊𝐹
 of 

both input sources, two feature extraction NNs are forced to 

share their weights WF. Therefore, the distance between two 

extracted features 𝐺𝑊𝐹
(𝑋𝑙)  and 𝐺𝑊𝐹

(𝑋𝑟)   can be 

measured as follows: 

2
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As shown in Fig. 3(b), in order to achieve the patient-

invariant features, the parameters WF are determined such 

that the distance D is small, if Xl and Xr belong to the same 

class, Yl = Yr. In contrast, it should be large, if the classes Xl 

and Xr are different, (that is Yl ≠ Yr). The idea can be realized 

by the contrastive loss LF. In detail, given a set of training 

data pairs Xl, Xr} and their corresponding labels Xl, Xr}, the 

goal is to learn the feature extraction parameters WF in order 

to minimize the contrastive loss function LF defined in the 

following equation: 
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where N is the number of training pairs and 𝐷𝑊𝐹
𝑛  is the 

feature distance of nth training pair Xl, Xr}. Moreover, m is 

the margin value which is chosen to be constant and greater 

than 0. The margin helps to control the minimum distance 

among classes and its visual meaning is expressed in Fig. 4. 

Finally, Sn is the similar indicator of the nth pair and it is 

described as follow: 
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In order to obtain the category of a given heart-beat, a 

classification model on the top of feature extraction 

network is built as shown in Fig. 2. The input of the network 

model is the extracted contrastive features. Therefore, in the 

feature domain, data is ideally grouped into distinct 

categories and then a simple model is created for the 

classification task. In this work, the model is defined as a 

one-hidden-layer neural network with the size of 10 nodes, 

followed by a sigmoid function and moreover, its output has 

three nodes indicating the probabilities of three classes: 

normal beat (N), supraventricular ectopic beat (S), and 

ventricular ectopic beat (V) given a heart-beat. It is denoted 

that the network parameters for the classification function 

𝐺𝑊𝐶
(. ) as WC. Given the training set X, Y}, the optimizing 

parameters WF, WC} is focused to minimize the multi-class 

cross entropy loss function LC which is expressed by the 

following equation: 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 

 

78 

 


 


N

n i

y

i

y

iCFC yy
N

YWWWL
1

3

1

ˆlog
1

},{,(

 (4) 

 

where 𝑦𝑖
𝑛 and �̂�𝑖

𝑛 are the label and predicted probabilities 

of the ith class of the given nth sample Xn; yn can be directly 

obtained from Y}; and N is the number of training samples. 

Therefore, �̂�𝑖
𝑛 can be estimated by the following equation: 
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In Eq. (5), σ(.) denotes the sigmoid function. 

 

 

Fig. 4  Visual meaning of contrastive loss LC. 

It is denoted that the classification losses for the left half 

and right half of the proposed network are 𝐿𝐶
𝑙  and 𝐿𝐶

𝑟  

correspondingly and the multi-task objective function for 

the whole network as shown in Fig. 2 can finally be 

expressed as follows: 
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In Eq. (6), to avoid overfitting problem, we introduce L2-

norm ‖𝑊‖2
2 as a regularization term, where W denotes all 

of the weights of the network. The hyper parameter λ1 and 

λ2 are used to control the balance between the terms of the 

final loss function L. The whole network is employed to 

train data using the back-propagation method [38] to 

determine the feature extraction parameters (WF), and the 

classification parameters (WC) simultaneously. It should be 

noted that WF and WC are shared between the left-half and 

right-half of the framework. And the framework shown in 

Fig. 2 is used in training phase, for testing phase, only a half 

of the framework is used. 

4. Experimental Results and Discussion 

4.1 Datasets and Evaluation Methods 

To demonstrate benefits of the proposed method, a popular 

dataset, named MIT-BIH [39], is used. The dataset consists 

of records from 48 patients and each record was acquired at 

the 360 Hz sampling frequency over 30 minutes. In addition, 

the paper aims to show the patient diversity, so training and 

testing data should be collected from patients. Therefore, 

based on the settings in [26], records from 22 patients to 

form the training data and other 22 patients to form the 

testing data are selected in this research. It should be noted 

that four records related to patients wearing an electronic 

pacemaker are ignored. The details of the dataset are given 

in Table I and particularly three categories to test the system 

include: Normal beats (N), Supraventricular ectopic beats 

(S), and Ventricular ectopic beats (V). It means that the 

training sample pairs used in the network are to train. If 

there are M samples in training set, one can achieve 𝐶2
𝑀 

training sample pairs. This expands the variety of the 

training dataset in this research and thus it may reduce the 

required amount of labeled data. 

Table 1: Training set and testing set for intra experiment 

 
Patient ID 

#samples in each class 

N S V 

Training 

Set 

101, 106, 108, 109, 112, 

114, 115, 116, 118, 119, 

122, 124, 201, 203, 205, 
207, 208, 209, 215, 220, 

223, 230 

45543 782 3469 

Testing 

Set 

100, 103, 105, 111, 113, 
117, 121, 123, 200, 202, 

210, 212, 213, 214, 219, 

221, 222, 228, 231, 232, 
233, 234 

44049 1808 3143 

Table 2: Confusion matrix for a three-class classifier 

 Ground Truth 

N S V 

Prediction 

n 𝑛𝑁 𝑛𝑆 𝑛𝑉 

s 𝑠𝑁 𝑠𝑆 𝑠𝑉 

v 𝑣𝑁 𝑣𝑆 𝑣𝑉 

To evaluate the proposed method, four metrics are utilized 

as follows: Sensitivity (Se), Positive Predictive (Pp), False 

Positive Rate (FPR), and Accuracy (ACC). In particular, Se 

is to measure the proportion of actual classes for correctly 

recognizing; Pp shows how many percent of predictions 

one class is correct; ACC is the percentage of beats 

classified correctly over all categories. Therefore, there 

metrics are expected to get the high values for a good 

classifier. In contrast, FPR is to calculate the probability of 

false alarm within a class which should be small for a good 

classifier. Given a confusion matrix for three classes as 
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shown in Table II, the evaluation metrics are defined by 

equations (7) - (16). 
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The proposed method is evaluated based on three following 

aspects: the influence of hyper-parameters; the system 

performance; and the discrimination of learned features. 

Firstly, the effect of the hyper-parameters is discussed: λ1, 

λ2 and the margin m  on the final result in Section 4. 2 are 

chosen to be suitable for experiments in this research. 

Therefore, in Section 4. 3, the results with other methods 

based on the selected hyper-parameters are compared 

together. The learned features are visualized by t-SNE [39] 

to understand the capabilities of the proposed framework in 

the intuitive way in Section 4. 4. In Section 4.5 we justify 

the need of using DWT and PCA in our proposed method. 

Finally, the computational complexity and the robustness in 

parameter setting are discussed in Section 4.6. 

4.2 Hyper-parameters Influence 

To evaluate the effect of hyper parameter m on accuracy, 

firstly λ1 = 0.001, λ2 = 0.001 are fixed and the m is varied 

using Eq. (2). Therefore, the change of performance on 

training dataset is represented in Table 3. The result points 

out that the system tends to ignore the class S when m = 0. 

Setting m = 0, it means that the minimum distance among 

the classes is equal to zero. This eliminates the thrust 

between the different classes and thus it reduces the ability 

to separate the classes. Therefore, with these cases, it is too 

difficult to separate and to account for only a small 

proportion of the training data and the model is allowed to 

ignore them. In practical experiment, it is the class S with 

45543 samples in the class N, 3469 samples in the class V 

and only 782 samples (1.57% of the total training data) 

during training process. Therefore, it could lead to the 

model directly ignoring samples in the class S and only 

focusing on two other classes. In contrast, the higher 𝑚 

will make the thrust stronger to separate the different 

classes, but at the same time it will make the model more 

sensitive as shown in Table 3. To get the balance in the 

system performance, m = 0.5 is chosen so that the accuracy 

is highest. 

Table 3: Effect of the parameter m where λ1 = 0.001, λ2 = 0.001 on 

training dataset (unit is %) 

𝑚  0 0.1 0.5 1 5 
ACC  95.3 93.92 95.77 93.74 93.53 

 Se 98.35 96.93 97.95 95.16 95.26 
CLASS N Pp 96.71 96.91 97.78 98.18 97.86 
 FPR 35.8 33.1 23.32 18.94 22.28 
 Se 0 48.34 24.64 55.88 51.53 
CLASS S Pp 0 31.06 32.74 33.03 34.68 
 FPR 0 1.71 1.08 1.81 1.55 
 Se 76.74 64.6 88.1 83.66 80.25 
CLASS V Pp 76.52 74.13 83.48 67.07 64.74 
 FPR 1.76 1.69 1.23 3.08 3.27 

Table 4: Effect of the parameter λ1 where m = 0.5, λ2 = 0.001 on training 

dataset (unit is %) 

𝜆1  0 0.001 0.005 0.01 0.05 
ACC  95.5 95.77 97.07 97.42 96.35 

 Se 98.58 97.95 99.03 98.96 99.03 
CLASS N Pp 96.67 97.78 97.99 98.59 97.2 
 FPR 29.51 23.32 19.37 14.57 25.07 
 Se 38.21 24.64 51.31 60.72 43.1 
CLASS S Pp 59.08 32.74 69.95 53.96 72.25 
 FPR 0.66 1.08 0.48 0.73 0.45 
 Se 78.08 88.1 86.26 85.51 83.21 
CLASS V Pp 88.33 83.48 91.18 91.84 90.72 
 FPR 0.88 1.23 0.66 0.61 0.7 

 

When the parameter 𝑚 is selected, the value λ1 is found to 

be suitable  using Eq. (6) and λ1 is to control the 

contribution of contractive loss LF in the total loss of the 

system. If λ1 is small, for instance, λ1 = 0 as described in the 

first column of the Table 4, the proposed framework 

becomes the traditional NN-based classifier with the raw 

feature input. Without the feature constraint and Siamese 

structure, the model tends to ignore the class S due to the 

lacking of training data. In addition, the performance on the 

class V is not good because of the diversity of ECG signals. 

With the bigger λ1, the model focuses more on learning the 

invariant features and then it reduces the attention on 

classification task. Hence, the overall accuracy tends to 

reduce, when λ1 increases as shown in Table 4. For that 
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reason, the trade-off λ1 should be chosen to balance these 

two tasks. Based on the results as shown in Table 4, λ1 = 

0.01 is chosen in this experiment. 

Table 5: Effect of the parameter λ2 where m = 0.5, λ2 = 0.01 on training 

dataset (unit is %) 

𝜆2  0 0.001 0.005 0.01 0.05 
ACC  97.53 97.42 97.14 95.31 91.46 

 Se 99 98.96 99.09 97.62 91.46 
CLASS N Pp 98.41 98.59 97.96 97.93 100 
 FPR 16.04 14.57 19.48 22.93 0 
 Se 58.46 60.72 43.26 29.2 0 
CLASS S Pp 67.14 53.96 71.87 32.23 0 
 FPR 0.53 0.73 0.45 1.08 1.57 
 Se 88.78 85.51 92.08 84.41 0 
CLASS V Pp 92.82 91.84 92.13 75.12 0 
 FPR 0.54 0.61 0.59 1.83 6.97 

Table 6: Effect of the parameter λ2 where m = 0.5, λ2 = 0.01 on testing 
dataset (unit is %) 

𝜆2  0 0.001 0.005 0.01 0.05 
ACC  96.79 96.82 96.3 95.27 89.9 

 Se 99.05 99.06 99.17 96.37 89.9 
CLASS N Pp 97.46 97.57 96.87 99.25 100 
 FPR 19.76 19.07 23.1 9.06 0 
 Se 61.37 64.34 54.96 0 0 
CLASS S Pp 83.46 82.25 86.45 0 0 
 FPR 0.64 0.69 0.53 3.69 3.69 
 Se 93.41 90.09 94.35 81.61 0 
CLASS V Pp 95.1 94.62 93.95 94.3 0 
 FPR 0.34 0.37 0.41 0.39 6.41 

 

In this paper, the suitable m and λ1, have been already 

selected and the effect of λ2 on the system performance 

needs to be explored. Moreover, the parameter λ2 is used to 

control the flexibility of the proposed model and 

particularly it can be varied from 0 to 0.05 and the report of 

the results is described in Table 5 and Table 6 for training 

and testing datasets respectively. Usually, the lower λ2 

might allow for the more flexible model, therefore it might 

handle the bias in data and make the model to achieve the 

good result in training data. In return, the risk of overfitting 

might increase due to the noise in training data and the 

model may result in reducing performance with testing data. 

However, in the experiments, the model works well with 

the low λ2 (0.001 and 0.005) for both training and testing 

datasets as shown in Table 5 and 6. In this case, the 

overfitting problem does not seem to be happening, because 

the PCA is applied to compress the data into a minimum 

size so that the noise and redundancy can be dropped before 

training. With the higher λ2 the regularization term comes 

in to shrink the learned weights towards zero, and hence it 

discourages learning a more complex model to avoid the 

risk of overfitting. However, if the λ2 parameter is too high, 

for example, λ2 = 0.05, the model seems to try to be as 

simple as possible. Therefore, it leads to ignore the classes 

occupying small amounts in training datasets such as the 

classes S and V, as shown in the final column of Table VI. 

Supported by the results in Table 6, λ2 = 0.001 is chosen in 

this experiment because it not only provides a high accuracy 

but also has the ability to adapt with the bias problem. 

4.3 Performance Comparison 

Based on the selected hyper-parameters, the proposed 

method is compared with state-of-art methods within three 

following approaches: hand-craft feature based methods 

[19, 20]; feature selection-based methods [23, 26]; and deep 

learning-based method [30]. Finally, the results are 

presented in Table 7. 

Table 7: Comparison results – unit is % 

Method 

Hand-

craft 
Feature Selection Deep Learning 

[20] [19] [23] PSO 

on 

VCG 
[26] 

PSO 

[26] 

DRBM 

[30] 

(training) 

DRBM 

[30] 

(testing) 

Proposed 

method 

(testing) 

ACC  90.8 91.2 93 78 92.4 98.85 70.91 96.82 

Class N 

Se 91.6 95 95 79.1 94 98.74 93.36 99.06 
Pp 99.3 96.5 98 96.3 98 98.11 72.14 97.57 
FPR - 27.9 - 27 17.4 0.97 80.02 19.07 

Class S 

Se 81.4 29.6 77 31.2 62 98.14 3.47 64.34 
Pp 31.6 26.4 39 8.4 53 99.18 11.89 82.25 
FPR -  3.1 -  13 2.1 0.4 4.45 0.69 

Class V 

Se 86.2 85.1 81 89.5 87.3 99.66 30.79 90.09 
Pp 73.7 66.3 87 46.1 59.4 99.28 87.66 94.62 
FPR -  3.0 - 7.2 4.1 0.37 1.22 0.37 

Supported by the results in Table 7, it means that the simply 

applying deep learning does not always get the good result, 

especially in the inter-patient case as discussed in this paper. 

In particular, the Restricted Boltzmann Machine (DRBM) 

[30] can learn the good features that perform well on 

training dataset, where the accuracy is up to 98.85%. 

However, when applied to testing data, they do not perform 

well, the ACC drops dramatically to 70.91% due to the 

inter-patient problem. In comparison, the accuracy is 93% 

given by the feature selection-based method [23] or 91.2 % 

given by the hand-craft feature-based method in [19], the 

conventional deep learning framework’s result may not be 

a promising result due to the lack of training data. This is a 

big weakness of deep learning based methods, if the 

training data is not large and generalized enough, the 

trained model is also not generalized. Therefore, in order to 

apply deep learning for ECG classification, the framework 

should be designed carefully, this is one of the major 

contributions in this paper. 

Unlike the DRBM method that relies only on data to 

approximate a classification model, the proposed 

framework is designed to handle the practical challenges for 

ECG classification such as inter-patient problem, bias and 

lack of training data issues. Therefore, we achieve not only 

the higher ACC but also better results in each particular 

class. In overall, the accuracy of 96.82% is achieved on the 

inter-patient dataset as shown in Table 7. In addition to the 

inter-patient problem, the dataset has serious bias problem, 
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where the class N covers 91.5% of training data while the 

classes S and V only occupy 1.5% and 7%, respectively. 

Even so, in the class V, the proposed method has the 

smallest FPR and the highest Se and Pp metrics compared 

to others. With the most challenging case, the class S in this 

method could also achieve 64.34% on sensitivity and 

82.25% on the positive rate, while the best reports of the 

previous works are just 81% in [20] and 53% in [26], 

correspondingly. 

4.4 Feature Visualization 

In order to inspect the learned features for the proposed 

network, t-SNE [40] is used for feature visualization and the 

learned features are analysed following three modes: input 

features, learned features without contrastive loss LF, and 

learned features with contrastive loss LF; with two aspects: 

the centrality of features extracted from the same class, and 

the separation of features extracted from different classes. 

Due to the imbalance in the data, to easily see the difference, 

two challenging cases of the classes S and V are 

investigated. 

(a) 

 

(b) 

 

(c) 

 

Fig. 5. The t-SNE visualizations of features extracted from the same 
class. (Left) Class S. (Right) Class V. (a) Input features, (b) Learned 

features without LF, (c) Learned features with LF. 

As shown in Fig. 5(a), without learning procedure, the input 

features are quite dispersed even they are extracted from the 

same class due to the inter-patient problem. This 

phenomenon explains why the previous methods failed to 

achieve the good results with these two classes. By simply 

applying the traditional NN-based classification, the 

learned features seem to have only a little improvement as 

shown in Fig. 5(b). The feature distribution still shows the 

complex feature variations, therefore the complexity of 

learned classification model needs to be increased and it 

also means that its generality will be reduced. This results 

in the model performing well in training data, but it is not 

in the testing data. With the help of contrastive loss LF, the 

compact features can be applied to learn as shown in Fig. 

5(c), thereby it may reduce the workload of the 

classification model, make it more general and boost the 

performance in both training and testing datasets. 

(a)  

 

(b) 

 

(c) 

 

Fig. 6. The t-SNE visualizations of features extracted from the 
different classes. (Blue) Class S. (Green) Class V. (a) Input features, 

(b) learned features without LF, (c) learned features with LF.. 
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To evaluate the separation of features extracted from 

different classes, the extracted features from the classes S 

and V are visualized as shown in Fig. 6. Without training 

process or with the traditional NN training, the extracted 

features from the classes S and V tend to be tied together 

with the complex variations. This makes the classification 

even more difficult. By proposing the joint objective 

function covering contrastive loss and classification loss, 

the proposed deep network could learn discriminative 

features as shown in Fig. 6(c). In particular, ignoring a small 

amount of confused samples, the learned features of the 

same class certainly form a cluster and the learned features 

of different classes are far apart. This explains why the 

performance in this experiment is significantly improved as 

compared to the previous works. Besides, it proves that the 

proposed framework can allow to learn the patient-invariant 

features for ECG classification. 

4.5 The Contribution of DWT and PCA 

In this section, we evaluated the effect of DWT and PCA 

on the ECG classification system by various experiments. 

In the first experiment, we use directly the original ECG 

signals as the inputs of our network. For the second 

experiment, we apply Fast Fourier Transform (FFT) to 

convert the data to frequency domain instead of DWT; here 

we use a similar PCA for dimensional reduction to evaluate 

the effect of frequency transform methods. Third, we use 

our proposed method without using PCA to evaluate the 

effect of dimensional reduction process. The training and 

testing set are similar to the setting in the Table I. Among 

many hyper-parameter options, the highest accuracy is 

reported in Table 8. 

Table 8: The performance among various features 

METHOD 

Original 

ECG 

signal 

FFT 

with 

PCA 

DWT 

without 

PCA 

DWT 

with 

PCA 

ACC  85.99 87.8 97.18 96.82 

 Se 85.5 88.88 99.37 99.06 

CLASS N Pp 97.33 93.41 97.55 97.57 

 FPR 1.19 3.41 16.7 19.07 

 Se 91.51 94.75 67.49 64.34 

CLASS S Pp 89.35 86.62 90.8 82.25 

 FPR 15.8 21.2 0.28 0.69 

 Se 42.53 23.71 89.04 90.09 

CLASS V Pp 30.96 52.57 95.54 94.62 

 FPR 7.29 1.64 0.22 0.37 

The results point out that with the original signals in time 

domain which are affected seriously by noise and patient 

motion, the overall accuracy is only 85.99% (reduced 

nearly 11% compared to our method). When FFT is applied 

to transform the original signals into frequency domain, the 

noises are removed so the performance is increased nearly 

2%. However, by using FFT, we will lose all the temporal 

information, which is also important for ECG classification 

purpose, the improvement is still limited. With DWT, both 

temporal and frequency information are captured so the 

performance is significantly improved (increased around 

9% compared to FFT). Without using PCA to reduce 

feature dimension, the performance is slightly better 

compared to PCA version. Because without feature 

reduction, the classifier has more information to learn and 

make the decision. However, more features mean that more 

parameters need to be learned and more time need to be 

used for training and testing. In detail, without using PCA 

the training time is 3824,16 seconds; with the help of PCA, 

the training time reduced significantly to 310.22 seconds. 

4.6 The Computational Complexity and The 

Robustness Against Noise Setting 

We implemented our framework in a PC equipped an i7-

5820k CPU and 16GB RAM using Tensorflow library [41]. 

It takes around 0.0252 seconds to process 49,000 ECG 

samples in the testing set. It means that the processing time 

is very fast and our framework can be used for the real-time 

application. 

To evaluate the robustness of the proposed technique 

against the noise and variations of the parameters of the 

proposed classifier, we evaluate the accuracy variation 

under various network settings. Except the input and output 

layers which have the fix number of nodes (nfeature and nclass), 

we randomly change the number of nodes in the other four 

hidden layers. Denote ni|i=1~4 is the number of nodes in ith 

hidden layer, the selection for n_i will be randomly but need 

to satisfy the constraint nfeature > n1 > n2 > n3 > n4 > nclass. 

The Fig. 8 demonstrates the histogram of accuracy over 200 

randomly settings. The results point out that in most cases, 

the accuracy is 96% which similar to our original setting. In 

overall, 75% of settings achieve the accuracy higher than 

95%. It means that our proposed method is quite robust to 

the change of number of parameters. 

 

Fig. 7. Histogram of the system accuracy over various settings. 
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5. Conclusion 

In this paper, the multi-task based deep learning framework 

was introduced for ECG heartbeat classification. In 

particular, the framework was designed to address the 

practical challenges in ECG heartbeat classification such as 

inter-patient ECG heartbeat, bias and lack of training data 

issues. In the proposed network, the Siamese architecture 

and contrastive loss were introduced to learn patient-

invariant features. Therefore, the classification network was 

mounted on the top of the Siamese architecture to classify 

the ECG heartbeats. By considering both classification and 

clustering tasks in the end-to-end training process, the 

promising results are achieved while reducing the demand 

for the amount of training data. In addition, the feature 

visualization proves that the learned features from the 

proposed framework are not only patient-invariant but also 

useful for classifying diseases. 
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