
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

134

Manuscript received January 5, 2019

Manuscript revised January 20, 2019

Towards an Efficient Topology-Aware Process Mapping for

Exascale Systems

Saad B. Alotaibi1 and Prof. Fathy Elbouraey2

1,2 King Abdulaziz University, Jeddah, KSA

Summary
As we push toward the Exascale time, the quantity of nodes in the

high-performance computing and the quantity of cores in every

node are quickly expanding. Thus, the physical topology of

present day multicore high-performance computing frameworks is

winding up increasingly complex both at the inward and inner

levels regarding the communication inside and among the nodes.

This converts into an expansion in the level of heterogeneity,

which results in different purposes of correspondence execution

inside the correspondence node. Specifically, between node

correspondence is commonly slower than interior node

correspondence utilizing shared memory. In this paper, we depict

a mapping algorithm that matches parallel application processes as

a virtual topology with the physical topology of the target machine

to improve the application performance as well as reducing the

power consumption. It is also a way to integrate triple models of

the parallel programming model as a hybrid tri-model to develop

the performance of parallel applications and that combine

OpenACC, OpenMP and OpenMPI. We actualized these

contributions (the mapping algorithm based on the hybrid model)

and accomplished fantastic outcomes to reduce the power

consumption and improve the performance of the application.

Key words:
HPC; Exascale; Topology-Aware process Mapping; Parallel

Application; Virtual Topology; Physical Topology; OpenACC;

OpenMP; OpenMPI

1. Introduction

As we move toward the Exascale era, the number of nodes

in the system and the number of cores in each node are

rapidly increasing. As a result, the physical topology of

modern HPC systems is becoming more complex both at

the intra and inter levels [1]. The present trend in HPC is to

see a significant upsurge in the consistency of individual

nodes in terms of the number of cores, memories and cache

levels. For that matter, the applications of high-performance

computing need to adapt the heterogeneity platforms to

optimum execution. As an illustration, the topology-aware

process mapping is a way of carrying out a particular task

to enhance parallel application execution by decreasing the

communication cost of processes by matching the virtual

topology of the parallel application to the target underlying

hardware architecture called physical topology. One of the

advantages of the topology-aware process mapping is

matching the application processes to the processors that are

physically close one to the other. In order to do a topology-

aware process mapping, it is necessary to choose the

parallel programming models that help in this matter. To put

it another way, the parallel programming model has a

valuable help in parallel application execution, because

some of the parallel programming models have a

mechanism that helps the application to exploit the

underlying hardware to improve communication and the

locality. Moreover, it will be helpful for virtual topology

management to reorganize the processes according to the

target underlying hardware architecture. Therefore, the

most important parallel programming model is the Message

Passing Interface (MPI) which is the standard model of the

parallel programming models. As illustration in this section,

we implement an efficient algorithm-based technique to

take full advantage of the hardware architecture “Figure 1”

of the target machine called physical topology and map the

processes “Figure 2” of parallel applications to the

hardware which are close to each other physically. This

technique is combination from two algorithms and hybrid

model of parallel programming model as a tri-model. For

the algorithms, the first one is tracing algorithm that can be

analysis the parallel application and detect the number of

transmit messages between the processes. The second

algorithm, it makes the mapping of virtual topology onto the

physical topology based on the results of the first algorithm.

These algorithms integrated with the hybrid model of the

parallel programming model which combine OpenACC,

OpenMP and OpenMPI. The proposed technique handles

large-scale communications (Collective Communications)

rather than peer-to-peer communications including

Broadcast “Figure 3”, AllGather “Figure 4”, Scatter “Figure

5” and Gather “Figure 6”. Finally, the following sections

will explain all the information referred to in this section in

details.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

135

Fig. 1 Hardware information of the target machine

Fig. 2 Virtual topology with 9 processes and has multi direction

Fig. 3 MPI_Broadcast

Fig. 4 MPI_Scatter

Fig. 5 MPI_Gather

Fig. 6 MPI_Allgather

2. Problem statement

Nowadays, we observe the number of nodes and the number

of cores within the node are increasing, as well as the

complexity of the memory hierarchy and the higher

parallelism. This makes the high-performance computing

systems becoming very complex, which leads to the

increasing in the heterogeneity levels in many aspects,

including the number of nodes, cores, memories, NUMAs,

GPUs, CPUs and others. As a consequence, the processes

of the parallel application (communication patterns) need to

adapt and map carefully to this hardware topology for

optimum execution as well as manage the cost of the data

movement. Because the cost of the data movement is the

important factor in modernistic HPC. So that, its necessary

to find an optimal solution for the cost of the data movement

and power consumption. As an illustration, the following

figure “Figure 7” show the processes of the parallel

application that mapped to different processors without

considering the processors affinity that can reduce the

communication costs as well as the power consumption.

Moreover, its very important to develop the parallel

application by choose carefully the parallel programming

model, because that has a vital role in the application

performance. In this paper, we focused on how to build an

algorithm based on processors affinity and the number of

communications between processes to handle the data

movements as well as minimize the power consumption. In

addition, we built a hybrid model of parallel programming

models to support our mapping algorithm in several aspects.

 Fig. 7 Match process on processor

3. Paper focus and key contributions

The research and development activity of this paper is

focused on the parallel application of the high-performance

computing (HPC). Precisely, the topology-aware process

mapping that can maps the virtual topology of the parallel

application (communication patterns) onto the physical

topology of the target machine. Moreover, this paper

focused on the parallel programming models and

constructed a new hybrid model that combines three parallel

programming models including: OpenMPI, OpenMP and

OpenACC. We summarize our key contributions of this

paper in the following points:

 Develop a tracing algorithm which

analyzes the parallel application for identifying

all the messages transferred between the

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

136

processes. The results of this algorithm help us to

know the processes that has a highly

communication to map it on the processors that

physically closely to each other.

 Develop a dynamic physical topology

based on the operating system of the target

machine. The proposed topology constructed

automatically during the runtime. In addition,

this topology has all the necessary information

related to the hardware assets including: CPUs,

GPUs, NUMAs, Cache Levels, Cores, PUs,

…etc.

 Develop a dynamic virtual topology

based on the number of processes of the target

parallel application. This topology constructed

during the runtime. Moreover, the topology has

many processes related to the target application.

The ordering of this processing depends on the

results of the tracing algorithm.

 Develop a topology-aware process

mapping algorithm based on the previous points.

The results of this algorithm as the following:

o Process (Task) mapped with

target Processor (Processing Unit).

o Bind this task until the

processing is finished.

o Asking the operation system

first to check the processors availability

such as: Idle or Busy.

o All tasks are mapped near each

other to avoid the cost of data movement.

 Develop a new hybrid parallel

programming model to improve the performance

of the parallel application that has the two

principal methods of parallel computing:

distributed memory computing and shared

memory computing. This hybrid model

combines the following parallel programming

models:

o We have chosen the OpenMP

for dealing with threads on the shared

memory. Threading is the most popular

shared memory programming technique.

o For the distributed memory, we

use the OpenMPI as a message passing

interface.

o For the accelerator we use the

OpenACC. The basic approach is to insert

special comments (directives) into the

code so as to offload computation onto

GPUs and parallelize the code at the level

of GPU (CUDA) cores.

o This hybrid model integrated

with mapping algorithm to reach our

goals and that are improve the

performance of the parallel application

and reduce the power consumption as

well as reduce the communication costs.

4. Related Work

Mapping the processes of parallel application to target

processors based on physical topology has a critical role in

the performance of the parallel application in current and

future generation of high-performance computing. Because

the current and future generation of high-performance

computing has a very complex hardware topology that

effect on the application performance and that has very

impact on the power consumption. For that matter, much

research has been done to map the processes of the parallel

application based on the virtual topology and the physical

topology. The following studies were reviewed in the

previous paper [2], to begin with, Cyril Bordage et al. [4]

proposed a Netloc tool for collecting the physical topology

that is integrated with a Scotch practitioner for computing

the topology-aware MPI process placement. However, their

experiments were based on the fat tree machine. Guillaume

et al. [5] has modified the function of the MPICH2

implementation of the MPI_Dist_graph_create for

reordering the process ranks of MPI. The objective is to

create a map between the hardware topology and the

application communication pattern. Nonetheless, this

modification is achieved through rank reordering. Bhatele

et al. [6] have proposed various heuristics that are based on

the hop-bytes metrics for mapping the graphs of irregular

communication to the mesh topologies. Mercier et al. [7]

built the topology-aware mapping, based on the Scotch

library. Generally speaking, they used the virtual topology

(The application communication pattern) and the physical

topology as a complete weighted graph. Rashti et al. [8]

have extracted the network topologies and intra-node using

the InfiniBand tools and HWLOC library respectively. To

develop the undirected graph with edges that represent the

performance of the communication between cores

depending on their distances. Then, this mapping technique

is executed by the Scotch library. Ito et al. [9] have proposed

a similar mapping technique but using the existing

bandwidth between the nodes measured at the time of

execution for assigning the edge weights in the graph of the

physical topology. Again, the method of this mapping

technique was implemented by the Scotch library. Chung et

al. [10] proposed an efficient technique based on the

hierarchical mapping which partitions the physical topology

graphs and the process into numerous super nodes. Also, the

very first mapping assigns process topology graph super

nodes to the equivalent peers in the graph of the physical

topology. These approaches use a graph partitioning to

solve the matching between the physical and virtual

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

137

topology. Actually, we use in our algorithm a tree method

to map the process to processor during the runtime and no

need to use graph partitioning before the execution.

Moreover, our algorithm is dynamic and it’s work with any

application without any modification. In addition, our

algorithm integrated with hybrid model as a tri-model

which is supportive of the parallel application during

runtime, which led to increase the performance and reduce

the power consumption. There is another approaches of

mapping process such as MPIPP [11] that provides a

method of configuration file guidance that automatically

finds the best match between MPI procedures and resources,

thereby minimizing the cost of peer-to-peer communication

for random message migration requests. MPIPP uses tools

to automate the mapping process to investigate hardware

topology maps, so users can generate optimized maps

without knowing the application or board system. This

study deals only with peer-to-peer communications. Joshua

et al. [12] have proposed a Locality-Aware Mapping

algorithm to distribute the parallel application processes

across processing resources in the high-performance

computing system. This algorithm is capable of dealing

with both, heterogeneous and homogeneous hardware

systems. In the final analysis, they implemented it on the

OpenMPI. K. B. Manwade et al. [13] proposed a novel

technique known as a “ClustMap” for mapping the

application and system topologies. Jingjin Wu et al. [14]

proposed a strategy for the mapping of the hierarchical task

that implements inter and intra node mapping. They

considered supercomputers with torus network and fat-tree

topologies, additionally providing two mapping algorithms.

The first can deal with both inter-node and intranode

mapping. The second can partition the nodes of the

computation regarding its affinity. To compare these studies

with our work, we have implemented our algorithm to deal

with collective communications instead of peer-to-peer

only. Moreover, these studies focus on the MPI only and we

have developed hybrid model to deal with OpenACC,

OpenMP and OpenMPI. In addition, our technique work

with runtime and no need to configure or do specific setups

as a static mapping. Finally, we have developed our

approach as a library that can be used in any application

without code modification.

5. Proposed Technique

Nowadays, we observe the number of nodes and the number

of cores within the node are increasing, as well as the

complexity of the memory hierarchy and the higher

parallelism. This makes the high-performance computing

systems becoming very complex, which leads to the

increasing in the heterogeneity levels in many aspects,

including the number of nodes, cores, memories, NUMAs,

GPUs, CPUs and others. As a consequence, the processes

of the parallel application (communication patterns) need to

adapt and map carefully to this hardware topology for

optimum execution as well as manage the cost of the data

movement. Because the cost of the data movement is the

important factor in modernistic HPC. So that, it’s necessary

to find an optimal solution for reduce the cost of the data

movement and power consumption as well as improve the

parallel application performance. For that reason, we have

developed a new technique combines the hybrid models of

parallel programming models and the mapping technique

that map the process to processors. The following

subsection explain this technique in details with the results

and discussion. The mapping technique is divided into four

main sections, including: tracing algorithm, virtual

topology (Communication Patterns) of the parallel

application, physical topology (Hardware Information) of

the target machine and the mapping algorithm (Matching

virtual topology onto physical topology), the following

sections explain it in details.

5.1 Tracing Algorithm

Parallel application has two important types of

communication. The first one is peer-to-peer

communication or point-to-point communication which

involves only two different processes at the same time. The

second one is collective communication which refers to a

method involving all processes in a communicator. In

addition, the main model of parallel application is MPI. MPI

doesn’t have a direct way to detect the number of messages

that transmitted between the processes. For that matter, we

have developed a tracing algorithm without editing on the

main code for detecting and counting all the messages that

happened between all the processes whether on peer-to-peer

or collective communication. After that, we used this

number of messages between the processes as a weight for

reordering the processes in the virtual topology to prepare it

for the mapping process. The result of this algorithm as the

following table “table1”: -

Table 1: Final Tracing Algorithm Result

Sender Receiver # of MSGs

P2 P9 120

P4 P1 106

P3 P5 100

P6 P8 98

P8 P7 93

P7 P0 88

P0 P10 85

P11 P10 78

P10 P7 72

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

138

The tracing algorithm deal with collective and point-to-

point communication between the processes of the parallel

application. We have built this algorithm as a library on C

language for easier use in any parallel application without

any configuration or complicated setups. Actually, just need

the name of the library at the top of the program code,

“trace.h”. The main idea of tracing algorithm is work as a

middleware between application execution and call of MPI

communication functions. The following diagram explains

the algorithm's steps “figure 8 and figure 9”.

Fig. 8 Step 1 of Tracing Algorithm

Fig. 9 Step 2 of tracing algorithm

Correspondingly, result of the tracing algorithm is the file

with a new ranks reordering. This new ordering used by

mapping algorithm for map the processes that has high

communication near each other physically.

5.2 Virtual Topology

In reality, most of studies depend on the technology of

graph for creating the virtual topology. We have built our

virtual topology as a grid to facilitate the communication

between processes. So that, the MPI provide two important

types of virtual topology including Graph and Cartesian.

The proposed virtual topology based on the Cartesian

virtual topology. The following section explains the

methodology of the proposed virtual topology.

5.2.1 Methodology

First of all, we detect the processes number of the parallel

application. Depending on the number of processes, the

virtual topology is built with the following feature:

 Periodic = true: A logical matrix of size

ndims that indicates whether the grid is

periodic, to make the grid more flexible

 Reorder = true: ranks can be reordered, to

support the mapping algorithm.

After that, we spilt this virtual topology onto several

groups and each

group has the processes that has the highest

communication. Now, the new groups have a new ordering

of ranks. The following points illustrate the steps of

creating the virtual topology.

 Detect the number of processes (Parallel

Application Processes), EX: 12

 Then, Create the Cartesian Topology as

following:

o MPI_CART_CREATE (comm_old,

ndims, dims, periods, reorder, comm_new)

 comm_old is the input

communicator or the current

communicator.

 Ndims is the dimensions of the

Cartesian grid, based on the

number of processes.

 Dims is an integer matrix of size

ndims, indicating the number of

processes per dimension

 Periods is a logical matrix of

size ndims that indicates whether

the grid is periodic (true) or

aperiodic (false) on each

dimension.

 Reorder is the number of IN

reorder identifiers can be

reordered (true) or not (false)

 Comm_new is the new comm of

the Cartesian virtual topology

o MPI_CART_CREATE, return a new

communicator and that linked with the

information of the cartesian virtual

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

139

topology. If reorder = false, then the

number of IDs for each process in the new

group is the same as the number of IDs in

the old group, otherwise, the function will

renumber the process (perhaps choosing a

good way to embed the virtual topology

into the physical machine). If the total size

of the grid (Cartesian grid) < size of the

COMM group, then some of the processes

will returns MPI_COMM_NULL. If its >

the size of the COMM group, the result of

the call is error.

o After that, we built the following code to

create the Cartesian virtual topology - (Here

we take 12 processes as an example),

“figure 20” show the virtual topology of 12

processes.

Fig. 10 Virtual topology with 12 processes

 Now, we have a virtual topology with 12

processes, after that we read the file of the ranks

reordering, because this file contains the processes

that have highest communication between each

other’s.

o Based on the result of tracing algorithm,

we divide the virtual topology onto several

groups. Each group contains the processes

that have highest communication. The

following figure “figure 21” explain exactly

the method mentioned above after reorder the

processes based on tracing algorithm result:

Fig. 11 Subgroups

o After that, this groups will be ready to

map it onto physical topology based on

mapping algorithm (Explained in next section).

This groups have a new communicator.

 Now, we need to explain the hardware

topology to prepare it for mapping with this

virtual topology.

5.3 Physical Topology

Actually, gathering the information of target hardware not

easy task. We have tried a lot of methods and technique to

get the hardware information but we can’t do it as a dynamic

hardware topology. With HWLOC [3], we can gather all the

necessary information of the target hardware and we have

developed our physical topology as a dynamic physical

topology based on HWLOC library. The proposed topology,

depends on the operation system of the target machine to

detect the processors are Idle or Busy. The following

section explains the methodology.

5.3.1 Methodology

We develop the physical topology as a tree where the

processing unit in the leave. The benefit of a tree approach

over a topology matrix is that there is no need for

considering the aspects of the latency and speed of the cache

hierarchy. In the algorithm, upward processing is carried

out for the topology tree. The processes are grouped

recursively based on the next level's arity. We have

detected and developed the tree by HWLOC, “figure 12”

show the tree structure

Fig. 12 Physical Topology – Tree

Finally, the mapping algorithm selects the leaves of the

physical topology for mapping processes to these leaves.

The mapping algorithm is described in the following section.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

140

5.4 Mapping Algorithm

In this paper we present algorithm and practical techniques

to accomplish the topologies mapping. In our approach, the

first step is to obtain data regarding hardware and the

communication pattern of the parallel application and then

calculating and creating the matching between the

topologies. The above objective can be accomplished by

two different methods known as core binding and rank

reordering. The algorithm of core binding decides on the

physical core where a given MPI process is to be located.

Rank reordering algorithm creates a new communicator in

which the information specific to the application is attached

to the communicator. In the proposed method, we creating

a new communicator by reordering the process and

mapping these processes to the processors. The function in

this approach receives three arguments that make the

mapping. These include target, destination, and weight. The

objective function and the optimization goal in the study

was the reduction in communication costs and power

consumption. The following flowchart explains the

proposed algorithm “figure 13”.

Fig. 13 Mapping Algorithm Flowchart

5.4.1 Methodology

We have developed process-to-processor mapping

algorithm as a library based on C language, to facilitate its

use in any parallel application without modification or

special configuration. Just need to add name of the library

in top of the application and use one function as well as one

argument to do the mapping process (Function: Mapping()

– Argument: Ranks or Process IDs). The proposed mapping

algorithm has two important inputs including Process IDs

and Processors index. Process IDs will be ready after

tracing algorithm that detect the IDs which have a highest

communication. Processors will be gathered based on

HWLOC and based on its location in the physical topology

as a physical ordering or logical distance. The mapping

algorithm deals with the physical topology as a tree and

leaves are the processing units and their parents are cores

which is used by the algorithm for mapping. In addition,

deals with the virtual topology as groups like a tree and each

group has rank IDs which is used by the algorithm for

mapping. The pseudocode of the algorithm as follows:

Finally, the proposed algorithm was tested many times and

we obtain a good result in both reduce the power

consumption and improve the performance of parallel

application. In this proposed technique, we also develop a

technique that supporting the application performance

which is a hybrid models of the parallel programming

models including: OpenMPI, OpenMP and OpenACC. the

following subsection explains this technique in details.

5.5 Tri-Model

The development of science and technology has greatly

promoted the progress of computational science. A new

generation of computers is superior in computing power and

computing speed than previous computers, but human

requirements for computing are constantly increasing. In

practice, some single processors do not meet the

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

141

requirements of some engineering calculations well, so in

addition to increasing the computational performance of the

processor itself, parallel computing is an effective way to

improve computing power. Computer clusters provide a

good platform for such parallel computing. A computer

cluster system is a cluster computing system that combines

multiple computers to work together to provide powerful

parallel computing capabilities. It uses existing computer

resources to allocate heavy tasks to various computing

nodes for processing. The current mainstream cluster

system is the SMP (Symmetric Multiprocessor) cluster

system. They are multi-level architectures consisting of

SMP nodes with multiple processors and a fast network

connecting the nodes. However, at present, the parallelism

between SMP nodes and the parallelism between SMP

Cluster nodes and the influence of hyperthreading on SMP

Cluster system parallel programming should not be very

thorough, and this is precisely It is the basis for us to

effectively parallel programming and effectively improve

the efficiency of parallel program execution. The hybrid

programming is considered to be the most suitable

programming model for most types of high-performance

computing in terms of increasing performance. In this paper,

we have integrated and configured three types of parallel

programming models to support the mapping algorithm in

terms of increasing the performance and reduce the power

consumption. So that, to better utilize the hardware

performance of multi-core processors, the (tri-model)

hybrid parallel programming model is proposed in terms of

distributed and shared memory computing. We have chosen

the OpenMP for dealing with threads on the shared memory.

Threading is the most popular shared memory

programming technique. In the threading model, all the

resources belong to the same process. Threads, they share a

common address space and system resources. The common

shared memory access makes it easy for a developer to

divide up work, tasks, and data. The following figure

“figure 14” explain the threading with shared memory by

OpenMP.

Fig. 14 OpenMP threading with shared memory

For the distributed memory, we use the implementation of

the standard MPI which is OpenMPI. MPI is the common

messaging programming standard. It is not a programming

language. It is a messaging library and API interface bound

to Fortran or C language. Its purpose is to serve interprocess

communication. The more details in the methodology in the

following section. The following figure “figure 15” explain

the message passing between machines or nodes by

OpenMPI.

Fig. 15 exchange messages between nodes

For the accelerator we use the OpenACC. The OpenACC

interface offloads code from the host CPU to an accelerator

device. The programming model presented here are

portable for a variety of operating systems, various types of

host CPUs, and various types of accelerators. In other words,

OpenACC is a set of compiler directives that specify the

portion of the C/C++ or Fortran code that is accelerated by

the connected accelerator as GPU. It follows the same

philosophy as OpenMP and creates an advanced host +

accelerator program without managing the accelerator

programming language. The following figure “figure 16”

explain the OpenACC directive that we used.

Fig. 16 OpenACC execution model

5.5.1 Methodology

A hybrid MPI+OpenMP+OpenACC parallel programming

model for supporting mapping algorithm in heterogeneous

high-performance computing hardware architecture is

proposed. The model combines the advantages of three

programming models of messaging, shared memory and the

compiler directives that deals with a specific hardware to

achieve better performance. The main step in the integration

phase is the configuration of the OpenACC with MPI and

OpenMP through the terminal of the Linux OS. These three

parallel programming models working together based on

the GCC and PGI compilers. The MPI is the standard code

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

142

for any parallel application, for that matter we have

integrated the OpenACC and the OpenMP inside the

OpenMPI code. In addition, any repeat operations such as:

While, For, ...etc. will be performed by OpenACC

directives, also any threads operations will be performed by

OpenMP. For exchanges messages will be performed by

OpenMPI. The following pseudocode explains the steps of

work for hybrid model.

Finally, we have obtained a good result after combining the

previous hybrid programming model (Tri-model) and

mapping algorithm in terms of improve the performance

and reduce the power consumption, and we explain the

results in the following section.

6. Experimental Results and Discussion

The experiments in this paper were performed on a cluster

with multicores platform (12 processors). We have tested

the proposed algorithms and the hybrid model more than 50

times, and the algorithms demonstrated impressive

performance when there was a higher level of irregularity

in the communication pattern. Gains shown in some cases

were even up to the extent of 70 percent. All the parallel

programming was tested with 12 and 6 processes. We

observed big reduction in the power consumption as well as

time and that refer to four reasons. The first one, the

processes of the parallel application were executed near

together because the mapping algorithm maps the processes

physically close to each other. The second reason, the

volume of exchange data between the processors is huge

and that need to map the processes physically close to others

to make the processing nearby from others to reduce the

time as well as the traffic of exchange the data. The third

reason, the powerful that coming from the hybrid model

after integrate the three parallel programming models which

combine: OpenMPI, OpenMP and OpenACC. The last

reason, the algorithm ensures the processing of the parallel

application process was bound on the specific processor

until the processing accomplished. The following tables and

graphs shows the experimental results with six different

tests “table2” and “figure 17”.

Table 2: Experiments Results
Testing Number Parallel

Programming

Technique Based

of Processes 12 12

Testing #1

Execution Time 92.55 s 14.02 s

Power

Consumption

31 w 6 w

Testing #2

Execution Time 95.29s 13.7s

Power

Consumption

32 w 9 w

Testing #3

Execution Time 96.85 s 14.20 s

Power

Consumption

34 w 8w

Testing #4

Execution Time 95.51 s 14.03 s

Power

Consumption

37 w 8 w

Testing #5

Execution Time 95.28 s 13.96 s

Power

Consumption

35 w 7 w

Testing #6

Execution Time 95.53 s 13.87 s

Power

Consumption

34 w 8 w

Fig. 17 Results

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

143

We have developed another parallel application and we

have checked the execution time with mapping algorithm

only, and second time with hybrid-model only, and third

without any technique the pure parallel application, and the

last time with the proposed technique (mapping algorithm

based on the tri-model) and we have got excellent results.

The following figures shows the parallel application

execution with the four previous tests “figure 18”, “figure

19” and “figure 20”.

Fig. 17 Test 1 for each type

Fig. 19 Test 2 for each type

Fig. 20 Test 3 for each type

As a matter of fact, we have got valuable results after

include the proposed technique in the parallel application in

terms of reduce the power consumption and increase the

application performance.

7. Conclusion

The continuous increase of the scale of high-performance

computer systems has made the problem of parallel

application adaptation very difficult in terms of processes

communications. The mapping optimization method

between virtual topology of the parallel application and

physical topology of the target machine can improve the

communication efficiency of applications, and has become

one of the research hot topics of high-performance

computing. The traditional process mapping optimization

model has low mapping efficiency, and it is easy to destroy

the integrity of communication-intensive process clusters.

To this end, a mapping technique model is proposed in this

paper. Based on this model, a novel process mapping

algorithm based on tri-model is proposed. Firstly, the

tracing algorithm is used to analysis the process

communications, then the virtual topology and the physical

topology is created. Finally, the mapping algorithm make

the process-to-processors matching. this mapping algorithm

works with the tri-model to reach our goals which are

reduce the power consumption and improve the parallel

application performance. We have implemented this

technique and we got very impressive results.

References
[1] S. H. Mirsadeghi and A. Afsahi, "Topology-Aware Rank

Reordering for MPI Collectives," 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops

(IPDPSW), Chicago, IL, 2016, pp. 1759-1768.

[2] Saad B. Alotaibi and Fathy Alboraei, (2018) Topology-

Aware Mapping Techniques for Heterogeneous HPC

Systems: A Systematic Survey, International Journal of

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

144

Advanced Computer Science and Applications, Vol. 9, No.

10.

[3] F. Broquedis et al., "hwloc: A Generic Framework for

Managing Hardware Affinities in HPC Applications," 2010

18th Euromicro Conference on Parallel, Distributed and

Network-based Processing, Pisa, 2010, pp. 180-186.

[4] Cyril Bordage, Clément Foyer, Brice Goglin. Netloc: a Tool

for Topology-Aware Process Mapping. Euro-Par 2017:

Parallel Processing Workshops, Aug 2017, Santiago de

Compostela, Spain.

[5] G. Mercier and E. Jeannot, Improving MPI Applications

Performance on Multicore Clusters with Rank Reordering,

EuroMPI, p.3949, 2011.

[6] Bhatel é and L. V. Kal é. Heuristic-based techniques for

mapping irregular communication graphs to mesh topologies.

In International Conference on High Performance Computing

and Communications (HPCC),pages.765–771,2011.

[7] G. Mercier and J. Clet-Ortega. Towards an efficient process

placement policy for MPI applications in multicore

environments. In Recent Advances in Parallel Virtual

Machine and Message Passing Interface (EuroPVM/MPI),

pages 104–115. 2009.

[8] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp.

Multi-core and network aware MPI topology functions. In

Proc. European MPI Users’ Group Meeting (EuroMPI),

pages 50–60, 2011.

[9] S. Ito, K. Goto, and K. Ono. Automatically optimized core

mapping to subdomains of domain decomposition method on

multicore parallel environments. Computers & Fluids,

80(0):88–93, 2013.

[10] H. Chung, C.-R. Lee, J. Zhou, and Y.-C. Chung,

“Hierarchical mapping for HPC applications,” in Proc

Workshop Large-Scale Parallel Processing, 2011, pp. 1810–

1818.

[11] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn,

“MPIPP: an automatic profile-guided parallel process

placement toolset for SMP clusters and multiclusters,” in

Proceedings of the 20th annual international conference on

Supercomputing, ser. ICS ’06. New York, NY, USA: ACM,

2006, pp. 353–360.

[12] J. Hursey , J. M. Squyres , T. Dontje, Locality-Aware Parallel

Process Mapping for Multi-core HPC Systems, Proceedings

of the 2011 IEEE International Conference on Cluster

Computing, p.527- 531, September 26-30, 2011

[13] K. B. Manwade and D. B. Kulkarni, “ClustMap: A Topology-

Aware MPI Process Placement Algorithm for Multi-core

Clusters”, in Intelligent Computing and Information and

Communication, Jan 2018, pp. 67-76

[14] Wu, Jingjin and Xiong, Xuanxing and Lan, Zhiling

“Hierarchical Task Mapping for Parallel Applications on

Supercomputers”, in J. Supercomput, 2015, pp. 1776-1802

