
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

145

Manuscript received January 5, 2019

Manuscript revised January 20, 2019

Imposing Software Traceability and Configuration Management

for Change Tolerance in Software Production

Hussain Saleem1, S. M. Aqil Burney2

1Department of Computer Science, UBIT, University of Karachi, Karachi, Pakistan.

2College of Computer Science & Information Systems, Institute of Business Management, IoBM, Karachi, Pakistan.

Abstract
The presence of change in any production process, especially in

software development, is usually intolerant and highly resistive as

it creates confusions among developers and breaks the confidence

of customers resulting in non-reliable production. Change is

inevitable especially while software is built. There could be

several reasons for such confusions likely deployment of the

application on multiple variant platforms or having multiple

releases, or distinct support tools for simultaneous testing, or

developers with deputation over multiple projects at the same time,

or following bad or weak practices of undertaking frequent

modifications over any certified post-release. Such confusions are

indeed needed to be managed in a highly organized manner with

recording the traces in the case for the post inspective

backpropagation for quick determination of any error causing the

software failure. Business ventures are operating in a highly

competitive arena globally, where such practices are extremely

risky and annoying. Software configuration management, SCM

fulfils the objective to avoid such confusions when change is

requested, where keeping maximum trace record of development

i.e. software traceability highly help to determine the timely error

for correction without any hassle. In this paper, we have tried best

to give awareness to all software development stakeholders

understanding trouble of change, maintaining traceability with a

quality focus, where practices of change and configuration

management are explored.

Key words:
business; change; configuration; quality; software; traceability;

Acronyms Used:
CA Computer Associates

CCP Change Control Process

CM Configuration Management / Change Management

CMM Capability Maturity Model

CMM-I Capability Maturity Model - Integration

CSA Configuration Status Accounting

Delta - ∆ Delta - Symbol used for small change with increment or decrement

IEEE Institute of Electrical and Electronics Engineers

ISO International Standards Organization

JCL Job Control Language

MobileApps Mobile Application Software(s)

RCS Revision Control System

RFC Request for Change

RT Requirements Traceability

SCA Software Configuration Audits

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SCB Software Configuration Build(ing)

SCC Software Configuration Control

SCCB Software Change Control Board

SCI Software Configuration Identification

SCM Software Configuration Management

SDLC Software Development Life Cycle

Six-Sigma Six Sigma (Quality Control Standards, with six standard deviations)

SPICE Software Process Improvement & Capability Enhancement

SQA Software Quality Assurance

V&V Verification and Validation

VCS Version Control System

WebApps Web Application Software(s)

1. Introduction

Software production is one of the profitable and demanding
best ventures of business globally since the last five decades.
It has a vast future trend as a key market contributor. During
the software production process, changes and modifications
are requested from various stakeholders being technical or
non-technical. It is well said by the Greek Philosopher
“Heraclitus” that “Nothing endures but change.” (Quote:
544 BC-483 BC). Change creates confusions and it is
inevitable while software is built. Software configuration
management i.e. SCM fulfils the objective to avoid such
confusions when change is requested. According to the
survey conducted by Computer Associates (CA) in order to
know why confusions are raised generally [1]. It is found
that 88% people in software team deploy the application on
multiple platforms including 44% deployment on more than
4 platforms. 61% engineers produce and maintain multiple
releases over multiple platforms. 52% of SQA engineers
acquire support tools for development and testing
simultaneously. 46% engineers work on multiple projects at
the same time that has multiple lifecycles. 39% people make
frequent changes to already released and certified packaged
programs. Table-I expresses the data for software engineer’s
involvement that rise confusion due to change. The same
distribution is shown in Fig.1 as a horizontal bar graph.
Some of the people follow best practices, some follow fluffy
and others follow weak practices while handling software
development and testing. These are some of the negligence
attempts. Enterprises are operating in a highly competitive
arena globally, where such practices are highly risky. Not
managing modification or change in an organised and
trained way is much riskier which destroy the development
efforts. In today’s technological revolution, computer
hardware and software infrastructures are much complex
that covers multiple devices (desktop, laptop, tablet, mobile,
wrist watches etc.), platforms, and programming tools
(languages), not every business is on network or web-based.
Negligence can result in loss of customer confidence,
worsening quality, wastage of resources and effort, and
ultimately diminishes market competency. Therefore, today
every enterprise requires change management support [2] [3]
[4].

This paper portrayed ways to overcome disbalance due to
change entropy with software configuration management
method possessing the future vision of keeping traces for

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

146

record software traceability need. With the introduction
given in Section-I, software technology and business venture
along with software product nature and usage characteristics
with the issues related to software quality and trouble of
change are discussed in Section-II. Section-III elaborated
briefly the concept frame of SCM practice, its activities,
focal and functional areas, along with generic change control
process. The notion of traceability is discussed in Section-
IV with the need and benefit of traceability in Section-V.
The paper is concluded in Section-VI. The list of acronyms
and abbreviations used in text is also presented at the
beginning.

2. Technological Foundations

2.1 Software Technology and Business Venture

Rapid developments and improvements in software
technology have empowered more and more people and
enterprises to enter in the software export business around
the world [5] [6] [7]. In order to get succeeded by means of
getting projects done with quality results and reduced costs,
they must be vigilant for finding new ways to adopt methods
and to move faster with true vision and wisdom comparing
to the other players of the field. There is no exception of
policies for Software business establishment and export.
Business methods are the same but only thing is that
software has a property of volatility in nature.

2.2 Software Product Nature and Usage

Characteristics

The software has both characteristics according to its usage:
a “product” and a “vehicle to deliver and distribute” the
product. It is constructed step-by-step with engineering
methodology, but could not be factory-made as a
conventional mean. It depreciates but doesn’t vanish [8] [9].
Although the industry has followed the trend of constructing
component-based delivery but software are thorough custom
productions. Millions of developers work together to
produce software applications in various technology
domains. Several application domains have been
categorized in software product line e.g. operating systems,
desktop applications, engineering/computing or scientific
software, embedded systems software, middleware, legacy
software, machine learning software, artificial intelligence

Table 1: Reasons arising confusions during development

Sr.# Involvement Reason for Confusion

1. 88%
People in software team deploy the

application on multiple platforms.

2. 44% Deployment on more than 4 platforms.

3. 61%
Engineers produce and maintain multiple

releases over multiple platforms.

4. 52%
SQA engineers acquire support tools for
development and testing simultaneously.

5. 46%
Engineers work on multiple projects at the

same time that has multiple lifecycles.

6. 39%
People make frequent changes to already
released and certified packaged programs.

Data extracted from [1]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

People make frequent changes to already

released and certified packaged programs.39%6

Engineers work on multiple projects at the

same time that has multiple lifecycles.46%5

SQA engineers acquire support tools for

development and testing simultaneously.
52%4

Engineers produce and maintain multiple releases over

multiple platforms.
61%3

Deployment on more than 4 platforms.44%2

People in software team deploy the application on multiple platforms.88%1

Fig. 1. Bar-Graph describing reasons for confusion due to “Change”

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

147

& expert systems software, product-line and inventory
software, gaming & play-store software, and through the
recent trend of developing WebApps and MobileApps
software [10] [11]. The development ranging from
correcting, adapting and enhancing existing applications; but
in many others, new systems are proposed to build. It is well
said, “Never re-invent the wheel”. Hence, software
engineers have adopted the environment of Open-world
computing, Net-sourcing, Out-sourcing, and Open-source
developments to meet new challenges.

It is very difficult to handle old programs i.e. legacy software
since full documentation is required to know every
whereabouts of them. Aside from above-described
categories of software technology, WebApps or
MobileApps software has a unique nature other than all. It is
network intensive; it requires concurrency and
synchronization at the instant grain of time stamp; it bears
unpredictable load; it requires high performance for fast
access and retrieval; it has availability over 24/7/365 (i.e. 24
hours by a day, or 7 days by a week, or 365 days by a year)
which is highly demanded; it is data-sensitive and content
driven; it bears continuous evolution; it has current/urgent
time for marketing to avoid demand expiry i.e. immediacy;
and more overall access security measures [8] [9].

2.3 Software Quality and Trouble of Change

Globalization and open-world computing innovations are
viable reasons for increased competition in the software
industry [12] [13] [14] [15]. Quality conformance is one of
the success factors of a business venture. Software quality is
no further become an option. It is an immediate necessity
and an un-ignorable user demand [16]. Software users
demand high-performance quality by means of speed, access
and availability since they heavily invest in purchasing
expensive hardware to run their required application. They
demand features e.g. quality, reliability, conformance,
durability, serviceability, appealing aesthetics, and
interoperability. Today software quality remains an issue.
Customers blame developers that their chaotic development
practices are resulting in low-quality software. Developers
blame customers and stakeholders that their demand for
illogical delivery dates and a non-stop stream of changes

pressurize them to release software before it has been fully
tested and validated. Change is one of the most troublesome
characteristics of any software project being built. If it is not
properly handled, it rises severe confusions, and confusions
almost always cause worst quality [8] [9]. Change creates
confusions, which are avoided by change management,
which are then incorporated in software through software
configuration management (SCM) to incorporate hassle-free
peacefully project modifications, bring coordination among
concerned stakeholders, and monitor the impact of change
[17] [18] [19]. Fig.2 shows the confusions avoidance
strategy handled by Change Management (CM) and
Software Configuration Management (SCM). Software
testing and quality assurance certify that acceptable change
management process is adopted.

3. Configuration Management Practice

3.1 Concept Frame

Managing project is one of the challenging drives of
development from start to finish. Several companion
activities like process management, risk management,
quality management; run in parallel with this development.
Software configuration management (SCM), sometimes
referred to as change management or simply configuration
management is an umbrella within software project which is
executed as a vigilant engineering process to manage
changes. SCM provides a control mechanism for the gradual
advancement of development of a software system by
generating versions, builds, releases and variants of its
artefact and their interrelationships [20]. While maintaining,
the SCM team is assigned to certify that changes and
modifications are incorporated in a controlled manner and
records are maintained with fine details of the changes that
were requested by customers to be implemented [21] [22].
In other words, the modification and change requests that
occur regularly during software development life, and at post
development period i.e. after released to customers are
properly managed by SCM tool by SCM team which ensure
that changes and modifications are incorporated into the
software system with orderly control of record maintenance
with every detailed stamp of the implemented changes or
modifications [8] [9].

CHANGE
CHANGE

MANAGEMENT

SOFTWARE

CONFIGURATION

MANAGEMENT

Creates

CONFUSIONS

RESISTANCE

ANARCHY

ANGER

ANXIETY

STRESS

ESCAPE

IMBALANCE

INTOLERANCE

Coordination

Modifications

Monitor

Creates

TRANSPARENT

ACCEPTANCE

PEACE

CALMNESS

READINESS

RELIEF

WELCOMENESS

BALANCE

TOLERANCE

Fig. 2. Confusions avoidance by Change Management and SCM

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

148

3.2 SCM Activities

SCM identifies and records the software traces and system
configuration. It controls changes systematically, enforces
traceability of the configuration, and maintain integrity
thoroughly in SDLC. Components to be controlled via SCM
activity comprises: program modules including source code
and executable code; system files e.g. data files, build files,
execution scripts, and shell scripts; operating system files
including compilers, loaders and linkers; system and
software specifications containing software architecture
specs, requirements specs, design and interface specs, and
configuration specs etc.; planning documents e.g. software
development plan, configuration management plan, testing
plan, quality plan, risk plan etc.; test stuff (test procedures,
test scripts, test cases, test data sets, and test results);
procedural language descriptions, job control language
(JCL); user and system documentation; Third-party
integrated tools, debuggers, and other support tools; and
development procedures, reports and standards etc. In
addition to this; the development environment used to build
software is also considered under configuration control [2]
[3] [4] [23] [24].

3.3 SCM Focal Areas and their Functions

3.3.1 SCM Six Focal Areas

The SCM process typically consists of six focal areas as
mentioned in Fig.3 such as Software Configuration
Identification (SCI), Software Configuration Control (SCC),
Version Control System (VCS), Software Configuration
Building (SCB), Configuration Status Accounting (CSA),
and Software Configuration Audits (SCA). All SCIs are
deposited to a central repository, where a concrete
mechanism of SCM is developed via policies of
implementation to ensure data integrity; that provides an
integration support platform for other software tools; also
provide a method for information sharing among all
developers, and implement functions in support of version
and change control.

Every artefact or component of software, once developed or
reviewed is marked as “Baseline” object. Modifications to a
baselined-object become handy in the creation of a new
version of that object following pre-defined version
nomenclature. The evolution of SCIs over every mark of
time become traceable using traceability mechanism of
tracker by inspecting the history of revisions and releases
which is usually part of the Revision Control System (RCS).
The mechanism is well elaborated in Fig.4 [17]. Version
control mechanism provides nomenclature with the set of
procedures and tools to create release numbers for every
variant of SCI.

3.3.2 SCM Functional Areas

Software Configuration Control (SCC) is an integral and
procedural activity of SCM that guarantees quality and
consistency for any modification to SCI being requested and
implemented. The small recognizable modification is
usually referred to as “Delta”, usually denoted by a small

SCM
Software

Configuration

Management

SCI
Software

Configuration

Identification

SCB
Software

Configuration

Building

SCC
Software

Configuration

Control

SCA
Software

Configuration

Audits

VCS
Version Control

System

CSA
Configuration

Status

Accounting

Fig. 3. SCM Focus and Functional Areas

BASELINE

BASES

FOR

DEVELOPMENT

Define SPECIFICATIONS

Don t

Change
Inform User/Requester instantly

Incorporate

Change
Through

CCP
Change Control

Process

RCS
Revision Control

System

Traceability

Time Stamping

Trace Recording

Change Update

0 1 92 83 4 5 6 7 Trace Scale

Fig. 4. Traceability from Baseline to Revision Control System (RCS)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

149

triangle shape “∆”, where sometimes “∆i” with subscript “i”
used as identifier; “∆++” for increment or future release; and
“∆--” for decrement or previous release. The SCC process
usually begins with a change or modification request
forwarded to SCCB (Software Change Control Board) to
have a decision to “Approve” or “Reject” the “Request for
Change (RFC)”, and concludes over a new release with
controlled delta update for the SCI submitted to have a
modification. The change control process has further
elaborated the procedure in the upcoming text. The Software
Configuration Audit (SCA) comes under SQA activity that
ensures quality which is maintained with conformity.
Configuration Status Accounting (CSA) or status reporting
share information about each release with the details of the
change to those having criticality of impact projection. SCM
procedures for WebApps and MobileApps are almost
similar as for conventional software except with a need for
implementation with special provisions for content
management.

3.3.3 Generic Change Control Process

Change is inevitable. And it occurs throughout the life of
software development. Once the need for change is
recognized, a change request is submitted to SCM by the
user in the form of RFC i.e. Request for Change. Fig.5
explains the whole generic change control process (CCP)
which is a part of SCC function discussed in previous
section. Usually, the developers evaluate the RFCs and
generate a report having critical points exploring the
positive, negative, and sensitive impacts. This report is
presented to SCCB (Software Change Control Board) for the

decision of “Approval” or “Rejection”. If “Rejected”, the
user is informed with the reason of denial. If the RFC is
“Approved”, then a formal procedure is followed. The RFC
is queued for modification as suggested by SCCB. A change
“Order” is generated. The developers are assigned and they
perform modification and submit for Review, Audit, and
Inspection; where a “Baseline” for testing is developed by
SQA team where testing activities for quality assurance are
performed, and changes are promoted for inclusion in next
“Release”, “Version”, or “Revision”. SCB re-build
appropriate version, and SCA audits the change to all SCCIs.
The updates are included in new versions and are released
for distribution [8] [9].

4. Notions about Trace Dependency and

Traceability

4.1 Traceability or Trace Dependency

In general, “Traceability” is concerned with finding and
following footprints (i.e. from, and to whereabouts) of any
entity with its size, dimension, sketch, and all maximum
relevant information that could be gathered to know the
“from”, “to”, and “current” or “present” stay of any object
approaching with forward and backward chaining method;
whereas “Trace Dependency” is concerned with determining
the meta information e.g. size, dimension, mass, density etc.
of determined traces upon which that trace is dependent [25].
Technically, “Traceability” provide linkage between project
events i.e. a roadmap of events which help to determine the

Change Recognition

RFC

RFC Approved,

Developers are assigned

Developer s

recommendations to

SCCB

Check-Out SCCI,

Modification Done by Developers,

Check-In SCCI

Approval

or

Rejection

Baseline is developed

for SQA, Testing, Inspection,

and Review under SCA

RFC Rejected,

User is informed

Change is incorporated.

All SCCIs are updated.

New version is released.

Fig. 5. SCM and Generic Change Control Process - CCP

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

150

best way to proceed. Thus traceability provides better
control over changes that occur at any time, wherever in
software life for any reason causing confusions [17]. The
development artefacts i.e. small pieces, components or
information units produced during engineering of software
such as specifications, design elements, model descriptions,
and source code; are critically interconnected and
interrelated as change or modification when requested and
later incorporated in any piece, severely affect other
elements of a software system with some variation leaving
impact. To keep a record of such an association link, the
detailed description is indeed needed to be captured.
“Traceability” or “Trace dependency” describe such
relationships abstractly. This reveals that during the project
life cycle, the development artefact are the living entities that
require careful maintenance [26]. Fig.6 shows “Traceable”
footprints in computers, programs and their inter-
associations with users.

According to [27] [28], Traceability defines a relationship
and bonding maintained between two or multiple nodes of
artefact having successor-predecessor or master-slave
channel, which provide a match to confirm that requirements
are fulfilled to a certain degree or extent in the software
development process. (Extracted from IEEE Std 610.12–
1990).

It is usually emphasized to practice establishing trace links
among every artefact, but as a matter of fact, exhaustive
traceability is not only costly but error-prone as well, while
generating highly detailed traceability links among each
artefact throughout development and production of
software. Furthermore, it put engineers under pressure of
burden to maintain and establish trace links rigorously and
exhaustively. A lot of tools are developed and are available
to integrate traceability infrastructure with the existing
development environment for generating and maintaining
trace links automatically, but having these tools, the
engineers are further burdened to identify semantic traces
and ensure the temporal validity of each link. Traceability
mechanism is therefore barely or less adopted in software
development firms, generally because of complexity and
high costs [29].

4.2 Software Configuration Management and

Traceability Support

Software configuration management (SCM) with
Traceability support are distinct, prominent, and
intermingled practices which are principally in-need to
support quality assurance throughout software development
life cycle (SDLC). Where SCM provide help to manage the
evolution, release, and distribution with a proper record of
versioning of software artefacts, its documentation, and
product line. However, traceability support provides help to
manage the knowledge of each and every whereabouts i.e.
history of the transit of artefact (from and to), usage place,
and record repository information ensuring correctness and
consistency developing the process flow of change
management. Although the overall method to conduct the
SCM process and traceability analysis are inter-related, their
implementation is complex and lengthy [30] [31] [32] [33]
[34].

5. Need for SCM and Traceability

5.1 The Goal of SCM and Traceability

The main goal of SCM is controlling changes and carefully
maintaining traceability, especially in development of high
assurance and critical computing i.e. complex and large
systems. It avoids anarchy triggered by numerous
corrections, replacements, modifications, revisions, and
additions incorporated into any of the enormous software
projects, servicing its lifetime. Another goal of SCM is to
care a “complex software system” to stay in a well-defined
state with accurate specifications and verified quality
attributes at all times with guaranteed traceable and
systematic development process [35]. The main and viable
necessity of SCM for a large software project is simply
establishing a way to keep track of distinct items that
compose the system [31].

The utter necessity of SCM is to design a framework that
smoothly serves and organize the lifecycle work-tasks as a
“process” to produce quality oriented systems which is quite
difficult [2] [3] [4]. Manual, automated, or semi-automated
mechanism for generation and validation of trace
dependencies are indeed needed throughout the software
development lifecycle.

5.2 Benefits of SCM and Traceability

It is usually a general thought that SCM is an activity for
simple versioning or control of change. Practically, it is
spread beyond the horizon providing service and
maintenance to establish quality. Traceability provides a
method to process change requested and manage it from
project inception to product release ensuring quality
performance. SCM is a blessing in disguise for all engineers

User

User

User

Fig. 6. Traceable footprints in computers, programs and inter

association with users

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

151

developing the quality software. Also, it well serves supplier
and customer. Further, it prevents lawlessness and technical
anarchy. It avoids shames and embarrassments and
strengthens customer satisfaction while eliminates customer
dissatisfaction. Traceability mechanism maintains the
transparency and consistency between product and relative
meta-knowledge about the product [36]. There are many
benefits to be gained by an organization that practices SCM.
It provides visibility and transparency to the status of the
evolving software product. Software developers, testers,
project managers, quality assurance personnel, and the
customer may benefit from SCM.

There is a large range of some other benefits as well. It
reduces maintenance cost by following the notion of
“prevention is better than cure”. It limits legal liability and
records all data and meta-data including meeting minutes,
memos, decisions, changes to the technical artefact, and
providing a complete paper trail. It allows and provides
medium to trace the source of every data and happenings. It
organizes activity frameworks that reflect the integrity of the
product and the team. It maintains track of changes in
artefact over single platform but over pair-programming
paradigm or distributed computing environment. It
maintains the traceability process from beginning until the
end of the project. It ensures that correct “Baseline” is
referenced for change with “Delta ∆” increment (∆+) or
decrement (∆-) to produce new version or variant of
software. It ensures compatible, correct, and interpretable
configurations of software. It helps to manage software
assets. It maintains the conformance of requirements of the
customer and provides satisfiability. It provides a stable and
reliable development environment integrity to developers
that reduce the burden of mistakes and embarrassments. It
improves the methodology of the system in a quite
disciplined way. It provides a metric approach with
meaningful measures of the artefact, code etc. It suggests
and follows compliance with standards defined. It provides
data to compile reports with various views. It updates every
status instantly with the people who want to know. It
provides a quick and comfortable environment for auditing.
It provides a way to restore versions at certain restore points
i.e. baseline ± delta (increment/decrement) for recovery. It
provides a communication medium for all concern

stakeholders, developers, testers, project managers, and
others who want to know about updates of changes. It
provides the best assistance in producing error-free quality
software. It creates a decision point of when to release the
product mentioning the appropriate estimate after all
changes to get incorporated [2] [3] [4]. Fig.7 shows some of
the benefits of SCM and Traceability.

Besides the above-mentioned benefits, there exists one more
thought among large customers. The word “Traceability” is
used widely across many consumer industries within Supply
Chain Management where visibility of process and presence
of a feature of tracking changes accurately is vital. In the
software development medium, “traceability” mainly
referred to the traceability of requirements throughout
application development, till the time ensuring that the
distributed software satisfies all requirements, and therefore
provide a way to prevent failures [37]. Software product
always contains bugs. These bugs need to be fixed
ultimately. Traceability prevents the production of failures
and hence helps to reduce bugs and delivers the defect-free
software. Requirements Traceability (RT) is critically
significant assuring successful product development if
followed properly. RT is beneficial as it provides a
framework to the development team for implementation
with the specification that clearly describes the true
expectation of SQA team. It plays important role in
verification and validation (V&V) process as RT enhances
the team motivation by providing the feeling that every
member of the team contributing their right effort, doing
things right in development (Verification). This maintains
quality and it affects customer satisfaction that they got right
product as they were expecting before (Validation).

Traceability under SDLC framework ensures the monitoring
and control that all requirements are properly captured and
frozen. All specifications are moved forward to development
and testing benches using V-Process. The review and
inspection mechanism become easy for developers and
testers. Traceability provides a way to review source-code as
per in accordance with acceptance criteria. The coordination,
communication, cooperation, and collaboration among
members of the team became easy and comfortable.
Changes and modifications that occur at any instance of time

User

User

User

Low efforts on SQA & Testing

Managed Project & Teams

Reduced maintenance cost

High profitability on Software

Software evolution made easy

Fig. 7. Benefits of SCM and Traceability

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

152

during SDLC are traced. Software becomes testable and
ready to be deployed on schedule [37]. Fig.8 shows the
V-Process model for verification and validation of various
project stages. The quality of project is assured from sign-on
till sign-off, i.e. from birth of project till death of project i.e.
conception till launch or release. The project finish is
validated after assured verification of audit trail generated
for every module or stage from project start using trace
record. Acceptance testing validates that all user
requirements are fulfilled after verification through
inspection and audit using trace-tables. System testing
validates that all approved architectural designs are
implemented after verification through inspection, audit, and
review of design specs. Integration testing validates that all
modules are properly linked after verification of flow-
oriented design specs through inspection and audit. Unit
testing validates that all components are properly built as per
compliance after verification of component design specs
through inspection and audit of design sheets. Thus.
“Traceability” as an umbrella of audit, inspection, and
review provides evolution of highly assured and reliable
systems, especially safety critical systems.

The businesses are also benefitted through traceability
implementation. All goals are traced deploying integrity and
completeness of requirements without any lapse. SCM with
traceability ensures easier impact analysis and reduces
uncertainty with improved risk management. It avoids
quality and acceptance problems and enables maintenance
and product improvement. The product becomes fit for all
business needs. Traceability saves time, curtail the
considerable cost of debugging, and require reduction of
efforts i.e. reducing wastage of time to be spent for over-
coming failures, and controls cost deviations. It provides
compliance with all industry business standards e.g. CMM,
CMM-I, ISO, Six-Sigma, SPICE, SCAMPI etc. [37].

6. Conclusion

Change is actually a disbalance or a source of disbalance

appeared in normal situation which require the system to be

balanced with rythm. There is a scientific concept of

“Entropy” i.e. coming to an equilibrium state from an

imbalance state. The abrupt and unexpected change or

modification in any medium creates anarchy, anger,

anxiety, stress and high tendency to quit or escape from the

situation, which is a normal psychological reflective in-

tolerant behaviour. In software production setup, following

the SCM i.e. software configuration management practices,

provide the only and highly organized solution to cope up

with the change creating change tolerance throughout the

life-cycle if properly understood and managed. Traceability

is one of the necessity of SCM process that enable to move

frequently throughout in any past or future state as per

operating environment following the trace records, time

stamping, and change updates in the form of versions and

variants. This paper has provided a detailed concept of SCM

focus and functions with strategic “Traceability” support

for the production of high quality and reliable software suite

with having durable usability life. It is highly advisable for

developers to follow best practices and standard procedures

of software production while learning and utilizing the

power of configuration management methodology with

formal method model of software traceability. It will surely

reduce the time and effort of SQA team over the execution

of corrective action to produce the error free software. The

reliable and highly assured critical computing systems will

therefore reduce the human life hazards caused due to

software malfunction resulting high risks.

Project Finish

Acceptance Testing

System Testing

Integration Testing

Unit TestingComponent Design

Project Start

User Requirements

Architectural Design

Modules Design

Verification

&

Validation

Fig. 8. V-Process Model for Verification & Validation of various project stages

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

153

References

[1] A. Cooper, Change Management: Quality and Quantity, Computer

Associates, 2003.

[2] J. Keyes, Software Configuration Management, Florida, USA:

AUERBACH Publications, CRC Press LLC., 2004.

[3] T. Ursula and B. Lea, "State of the Art of Open Innovation and
Design for Sustainability," in Renewable Energy Policy Efficacy

and Sustainability: The role of equity in improving energy policy

outcomes, Singapore, Springer, 2017, pp. 705-717.

[4] F. Schwägerl, Version Control and Product Lines in Model-Driven

Software Engineering, Germany: Doctoral dissertation, Universität

Bayreuth, 2018.

[5] D. Burdick, "Celestica Transforms Competitiveness With C-

Commerce," Gartner, Inc., 2000.

[6] C. Debabroto, G. Rajdeep and V. Sambamurthy, "Shaping up for E-

Commerce: Institutional Enablers of the Organizational

Assimilation of Web Technologies," MIS Quarterly, vol. 26, no. 2,
pp. 65-89, 2002.

[7] T. L. Friedman, The World is Flat: A Brief History of the Twenty-

First Century, Macmillan, 2005.

[8] R. S. Pressman, Software Engineering: A Practitioner's Approach,

7/e, New York: The McGraw-Hill Companies, Inc., 2010.

[9] R. S. Pressman and B. R. Maxim, Software Engineering: A
Practitioner's Approach, 8/e, New York: McGraw-Hill Inc., 2015.

[10] S. Hussain, "Mobile Agents: An Intelligent Multi-Agent System for

Mobile Phones," International Organization for Scientific Research
- Journal of Computer Engineering (IOSR-JCE), vol. 6, no. 2, pp.

26-34, 2012.

[11] R. Atiya Masood and S. Hussain, "Novel Integrated Sensor based
Sleep Apnea Monitoring and Tracking System using Soft

Computing and Persuasive Technology for Healthcare Support," in

9th International Conference on Innovative Trends in Management,
Information, Technologies, Computing and Engineering (ITMITCE

– 2014), Istanbul, Turkey, 2014.

[12] K. J. Stewart and S. Gosain, "The Impact of Ideology on
Effectiveness in Open Source Software Development Teams," MIS

Quarterly, vol. 30, no. 2, pp. 291-314, 2006.

[13] B. Fitzgerald, "The Transformation of Open Source Software," MIS
Quarterly, vol. 30, no. 3, pp. 587-598, 2006.

[14] N. Levina and J. Ross, "From the Vendor’s Perspective: Exploring

the Value Proposition in Information Technology Outsourcing,"
MIS Quarterly, vol. 27, no. 3, pp. 331-364, 2003.

[15] B. Ives and S. L. Jarvenpaa, "Applications of Global Information

Technology: Key Issues for Management," MIS Quarterly, vol. 15,
no. 1, pp. 33-50, 1991.

[16] S. Hussain, Interviewee, Software Has Become A Driving Force.

[Interview]. 2004.

[17] S. M. A. Burney and H. Saleem, Software Configuration

Management: A Comprehensive Review, Karachi: University of

Karachi, 2003, p. 128.

[18] S. Hussain and Z. Faraz Ahmed, "Identification and Realization of

Trace Relationships within Requirements," in International

Conference on Software Engineering (ICSE'06), Pakistan, 2006.

[19] B. S. M. Aqil, S. Hussain, M. Nadeem and J. Tahseen A.,

"Traceability Management Framework for Patient Data in

Healthcare Environment," in 3rd IEEE International Conference on
Computer Science and Information Technology (ICCSIT), Chengdu,

China, 2010.

[20] W. E. Lewis and G. Veerapillai, Software Testing and Continuous
Quality Improvement, 2nd ed., Auerbach Publications, TEAM

LinG, 2004.

[21] I. Sommerville, Software Engineering, 9th ed., USA: Pearson
Education, Inc., Addison-Wesley, 2011.

[22] I. Sommerville, Software Engineering, 10th ed., USA: Pearson
Education, Inc., Addison-Wesley, 2016.

[23] T. Kesse, "Software Configuration Management for Project

Leaders," in Proceedings of Software Technology Conference,
1997.

[24] T. Kesse and M. Patricia A., "Software Configuration Management

for Project Leaders," Software Quality Professional, vol. 2, pp. 8-
19, 2000.

[25] S. Hussain, "Towards Identification and Recognition of Trace

Associations in Software Requirements Traceability," International
Journal of Computer Science Issues (IJCSI), vol. 9, no. 5(2), pp.

257-263, 2012.

[26] A. Egyed, "A Scenario-Driven Approach to Trace Dependency
Analysis," IEEE Transactions on Software Engineering, vol. 29, no.

2, pp. 116-132, 2003.

[27] IEEE, "IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990)," Institute of Electrical and

Electronics Engineering, Inc., 1990.

[28] P. Parviainen, H. Hulkko, J. Kääriäinen, J. Takalo and M. Tihinen,
"Requirements Engineering - Inventory of Technologies," VTT

Technical Research Centre of Finland, 2003.

[29] A. Egyed, S. Biffl, M. Heindl and P. Grünbacher, "A Value-Based
Approach for Understanding Cost-Benefit Trade-Offs During

Automated Software Traceability," in TEFSE: 3rd International

Workshop on Traceability in Emerging Forms of Software
Engineering, Long Beach, California, USA, 2005.

[30] K. Mohan, X. Peng, C. Lan and R. Balasubramaniam, "Improving

Change Management in Software Development: Integrating
Traceability and Software Configuration Management," Elsevier:

Decision Support Systems, vol. 45, no. 4, pp. 922-936, 2008.

[31] R. Conradi and B. Westfechtel, "Version Models for Software
Configuration Management," ACM Computing Surveys, vol. 30, no.

2, 1998.

[32] J. Estublier, D. Leblang, A. v. d. Hoek, R. Conradi, G. Clemm, W.
Tichy and D. Wiborg-Weber, "Impact of Software Engineering

Research on the Practice of Software Configuration Management,"

ACM Transactions on Software Engineering and Methodology, vol.
14, no. 4, 2005.

[33] C. Gunter, "Abstracting Dependencies between Software

Configuration Items," ACM Transactions on Software Engineering
and Methodology, vol. 9, no. 1, 2000.

[34] B. Aqil, M. Nadeem, J. Tahseen and S. Hussain, "Conceptual Fuzzy

Temporal Relational Model (FTRM) for Patient Data," WSEAS
Transactions on Information Science and Applications (Journal),

vol. 7, no. 5, pp. 725-734, 2010.

[35] W. F. Tichy, Software Configuration Management; Encyclopedia of
Computer Science, 4th ed., vol. 4th, A. Ralston, E. D. Reilly and D.

Hemmendinger, Eds., Chichester: John Wiley and Sons Ltd., 2003,

pp. 1601-1604.

[36] A. E. Lager, "The Evolution of Configuration Management

Standards," Logistics Spectrum, 2002.

[37] I. Software, "The Benefits of Traceability Within the Application

Development Lifecycle," Intland Software Inc. (Offices: Germany,

Silicon Valley, Korea), 2017. [Online]. Available:
https://intland.com/blog/alm/the-benefits-of-traceability-within-

the-application-development-lifecycle/. [Accessed 2017].

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

154

Hussain Saleem is presently Assistant

Professor at Department of Computer Science,
University of Karachi, Pakistan serving since

2002 and was Faculty Member at Sir Syed

University of Engineering & Technology,
Karachi during 2001-2002. He has completed

Ph.D. (Computer Science), MCS (Computer

Science), B.S. (Electronics Engineering), and
PGD (Statistics). He bears vast experience of

more than 21 years of University Teaching, Administration and Research

in various dimensions of Computer Science at University of Karachi. He
has also professionally worked at Science Labs (Physics & Chemistry) at

Aga Khan Ex. Students Association Karachi since 1992-2005, served as

Bio-Medical Engineer at Aga Khan University in 1999-2000, remained
Project Manager (IT) at Unilever Pakistan in 2000-2001, and Electronic

Design Engineer at Pakistan Steel Mills in 1998. Hussain has authored and

co-authored more than 40 International Journal publications. He is serving
as Scientific & Technical Reviewer of various International Journals and

Conferences globally and among top Reviewers from his parent University

at Publons (Web of Science/Clarivate Analytics) where reviewed more
than 300 Research Papers since 2013. His field of interest is Software

Science, System Automation, Hardware Design & Engineering, Data

Analysis, Simulation & Modelling, Bio-Medical Science and Healthcare.
Hussain is a good speaker and has been invited as a guest in TV programs

and disseminated knowledge over the latest technology trends that got high

appreciation among young generation. He is a senior and Life member of
PEC (Pakistan Engineering Council), IACSIT, URENG, URST, EACEEE,

IEEE, ACM and SDIWC.

Dr. S. M. Aqil Burney is presently Professor

& HOD leading the Department of Actuarial
Science & Risk Management, at College of

Computer Science & Information Systems,

Institute of Business Management (IoBM),
Karachi since 2013. He hold Ph.D.

(Mathematics) from Strathclyde University,

Glasgow-UK, along with M.Phil., M.Sc. and
B.Sc. in Statistics from University of Karachi.

Before joining IoBM, Dr. Burney was Meritorious Professor & Chairman

at Department of Computer Science, University of Karachi. He bears
extensive experience of Academics Management, remained Provost,

Registrar of University of Karachi, and Project Director for Development

of Department of Computer Science, Institute of Information Technology,
and Founding Director of Main Communication Network, at University of

Karachi. He has taught for more than 45 years at University of Karachi,

and other Degree awarding institutions of Pakistan and abroad. He has
published more than 150 research papers, and 07 Books in the field of

Computer Science, ICT, Mathematics, and Statistics nationally and

internationally. He has supervised more than 15 Ph.D. and 10 M.S./M.Phil.
Scholars in Mathematics, Computer Science, and Statistics as an approved

HEC Supervisor. Dr. Burney is Chairman (elected) National ICT

Committee for Standards PSQCA - Ministry of Science & Technology,

Govt. of Pakistan, and member National Computing Education

Accreditation Council (NCEAC), Member IEEE (USA), Member ACM

(USA), and Former Fellow of Royal Statistical Society (UK) for 30 years.
His fields of interests are Algorithmic Analysis & Design of Multivariate

Time Series, Stochastic Simulation & Modeling, Software Engineering,

Computer Science, Soft Computing, Risk Theory & Insurance, e-Health
Management, Data Sciences, Fuzzy and other logic systems. He is the

Editor and Member Editorial Board for Pakistan Journal of Engineering &

Technology, International Journal of Information Systems, University of
Sindh Journal of Information & Communication Technology, and

Reviewer of Journal of Neural Computing & Applications.

