
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

213

Manuscript received January 5, 2019

Manuscript revised January 20, 2019

Predicting Prices of Stock Market using Gated Recurrent Units

(GRUs) Neural Networks

Mohammad Obaidur Rahman, Md. Sabir Hossain*, Ta-Seen Junaid, Md. Shafiul Alam Forhad,

Muhammad Kamal Hossen

Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Bangladesh

*Corresponding Author

Summary
Predicting the stock prices is very much challenging job due to the

volatility of the stock market. In this paper, we have proposed a

model to predict the future prices of the stock market using Gated

Recurrent Units (GRUs) neural networks. We have changed the

internal structure of GRUs in order to remove local minima

problem, reduce time complexity and others problem of stochastic

gradient descent as well as improve the efficiency. We used mini-

batch gradient descent, is a good trade-off between stochastic

gradient descent and batch gradient descent. We evaluated our

result by calculating the root mean square error on the various

dataset. After extensive experiments on the real-time dataset, our

proposed method predicted the future prices successfully with

good accuracy.

Keywords:
Stock Market Prediction, Gated Recurrent Units (GRUS) Neural

Networks, Artificial Neural Network, and Deep Learning

1. Introduction

The stock market prediction has entranced a lot of focus

from business as well as academia. Because of the complex,

volatile and non-linear nature of the market, it's too hard to

predict. As the stock markets grow bigger, additional

people pay surveillance to develop a logical approach for

predicting the stock market.

Stock market prediction is needed for the purpose of

predicting the long-term value of company stock. The stock

market prediction has moved into the technological realm

in this era of the digital computer. By taking advantage of

modern digital computation and public economic database

which permit individuals to discover the hidden info among

these platforms. Artificial intelligence (AI) techniques are

effective for detecting non-linear structures in the data of

the financial market [1]-[2] in the last few years.

We have a tendency to build gated recurrent units (GRU)

neural network [3]. GRU is one of the most advanced

architectures of deep learning. And by using it, predict

future prices. In this paper, our prime concern is to use deep

learning and by using it to predict the longer-term value.

Surprisingly there has been no notable previous works

which used GRU neural networks on a liquid, massive and

survivor bias-free stock universe. We used it to check the

performance in large-scale financial market prediction

tasks. For financial time series prediction, we provide an in

details guide on data processing as well as building, training,

and testing of GRU networks. We have a tendency to use

the root mean square error measurement to evaluate our

proposed model. After preparing the model, we have

trained the model on training dataset collected from Yahoo

Finance [18]. Then, validate the model on a testing dataset

collected from the identical supply.

2. Background

2.1 Gated Recurrent Unit (GRU) Neural Networks

GRU [Fig. 1] is capable of learning some dependencies

which are introduced by Cho [3]. It is a special kind of RNN

(Recurrent Neural Network). They enormously work on a

large type of problems. They are one in every of the most

fashionable, powerful and effective neural networks. This

is expressly designed to avoid the long-term dependency

drawback. GRU has fewer parameters than LSTM and so

may train a bit quicker or needless iteration to generalize

[10]. Rafal et al. showed that the GRU outperformed the

LSTM on most tasks with the exception of language

modeling [9].

Fig. 1 Rolled GRUs

For every element of a sequence, GRU performs a similar

task. That is the reason for which it is called recurrent. And

the result being depended on the calculations of the

previous. Another think about GRUs is that they have a unit

called memory units. The calculated information is

captured by it. In Fig. 2, a network, ‘GRU’ looks at xt input

and outputs ht which is also the input of the next step. So a

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 214

loop permits data to be allowed from one step to the next in

the RNN.

Fig. 2 Unrolled GRUs

Because of the multiple copies of the same network, this

neural network is called recurrent. Here, each passing a

message to the next network. Recurrent neural networks

related to sequences and lists just like stock market data.

And that chain-like nature is the reason behind it. To use

for extracting the hidden pattern of the stock market, these

networks have the natural architecture of the neural

network.

2.2 Internal Architecture of GRU

By using reset gate and updates gate t GRU solves a

problem of a standard RNN called the vanishing gradient

problem. Actually, the reset gate and update gate are two

vectors which decide what information should be passed

and what information should not be passed to the output.

The most important factor is that those can be trained to

hold information from long ago. Without remove

information or washing it through time which is not

relevant to the prediction. With the help of [12], we explain

the mathematics behind a single cell of this networks is

shown in Fig. 3 and 4.

Fig 3. GRUs networks

2.2.1 Update gate

To remove the risk of vanishing gradient problem the

update gate helps the network to control how much of the

previous information (from past time steps) needs to be

passed along to the future which is really effective because

the network can decide to recognize all the information

from the past [Fig. 5].

Fig. 4 A single GRUs cell

Fig. 5 Update gate

The formula for updating gate is provided in (1).

zt = σ(W(Z)xt + U(z)ht−1) (1)

rt = σ(W(r)xt + U(r)ht−1) (2)

Here xt is the into the network unit, it is multiplied by its

own weight W(Z). The same goes for ht−1 which holds the

information for the previous t-1 units and is multiplied by

its own weight U(z). Both results are added together and a

sigmoid activation function is applied to squash the result

between 0 and 1.

2.2.2 Reset gate

The main purpose of the reset gate in the network is

basically to decide how much of the past information to

forget shown in Fig. 6. We have reset gate using (2).

Fig 6. Reset gate

We plug in previous output as input ht−1 and xt, multiply

them with their corresponding weights, sum the results and

apply the sigmoid function.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 215

2.2.3 Current memory content

This memory content will use the reset gate to store the

relevant information from the past. Here we changed our

activation function from hyperbolic tangent to sigmoid.

Current memory content is calculated using (3).

Fig. 7 Current memory content

ht
’ = σ (Wxt + rt ∙ Uht−1) (3)

ht = zt ∙ ht
’ + (1 − zt) ∙ ht−1 (4)

Here an element-wise multiplication happened

between ht−1 and rt line and then sum the result with the

input xt and finally, σ is used to produce ht
’ .

2.2.4 Final memory at the current time step

Finally, the network needs to determine ht which is the

output of the current unit and passes it down for the next

unit. In order to do that the update gate is needed which

control what to collect from the current memory content  ht
using (4) and what from the previous steps   ht−1 [Fig. 8].

Fig. 8 Final Memory

2.3 Backpropagation

Backpropagation is a backward propagation of errors. It is

a technique which is used in deep learning. It determines a

gradient and is needed in the computation of the weights to

be used in the neural networks. It is generally used by the

gradient descent optimization algorithm for the purpose of

adjusting the weight of neurons. And it is done by

computing the gradient of the cost or loss function.

2.3.1 Loss Function

Here our loss function is a function which is a calculator

measures the mean of the squares of the errors and is called

mean squared error (MSE).

If Yi
’ is n predictions vector and generated from n data

points sample on all variables. And if Yi is an observed

values vector of the variable being anticipated. Then the

within sample MSE of the predictor is computed using (5).

MSE =
1

n
∑ (Yi − Yi

’)2n
i=1 (5)

2.4 Mini-batch Gradient Descent

A new approach like mini-batch gradient descent (6), the

cost function is averaged over a small set of samples,

from around five-five hundred. This is opposed to the size

of all the training samples of the batch and the stochastic

gradient descent batch size of 1 sample.

W = W − α∇J(W, b, x(z:z+bs), y(z:z+bs)) (6)

Where weights are denoted by W , the learning rate is

represented by α and ∇ denotes the gradient of the cost

function J(W, b) in respect of changes in the weights and

bs is the mini-batch size.

2.5 Required Tools and Libraries

The programming language we used here is Python 3.7 [13].

For data analysis and data structures purpose, we use

Pandas which is an open source BSD-licensed library. We

use NumpPy library. And it is used for adding support for

large, multi-dimensional arrays, matrices. And for the

scientific calculation to operate on these arrays [14]. For

collecting historical data at the real-time we use Pandas-

datareader. For feature scaling, we use a machine learning

library called Scikit-learn [15].

For developing our deep GRU neural networks we used a

high-level neural networks API [Keras], written in Python.

It is capable of running on top of TensorFlow [16]. To

visualize the result we use Matplotlib [17].

 3. Related works

A lot of work has been done for predicting stock market

trends. Most of those words based on traditional machine

learning [4]-[6]. But after better computation power and

with lots of data available, deep learning is outclassed and

outperformed machine learning in every possible way.

Deep learning is a sub-portion of machine learning. It’s

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 216

alike to how an animal would recognize something, think

about it, and then come to a final decision. A deep learning

model learns it with its own computing brain by using an

ANN [7].

The challenge for time series prediction is also a big factor.

There are some researches by using feedforward neural

networks like multilayer perception [1] but those networks

are not time series model. Feedforward neural networks

have done well in classification tasks, however, in a

dynamic environment, it needs techniques that account for

history. In order to find meaningful statistics and other

characteristics of the data, time series analysis is used. Time

series model is totally based on the idea which predicts

future price behavior.

In [5], authors use the standard RNN to predict the future

price. RNN can be used to map input data sequences to

output data sequences but practical problems have been

detected in training RNN like vanishing gradient problem

[11]. Vanishing Gradient Problem occurs when we try to

train a Neural Network model using Gradient-based

optimization techniques.

Long short-term memory (LSTM) is an excellent neural

network to remove the Vanishing Gradient Problem and

there are some excellent researches to predict future prices

using LSTM like deep learning with long short-term

memory networks for financial market predictions [8]. But

compare to GRU, LSTM has some redundant information.

GRU has fewer parameter than LSTM and thus may train a

bit faster or needless iterations to generalize. Writers of the

paper ‘An Empirical Exploration of Recurrent Network

Architectures' showed that the GRU outperformed the

LSTM on most tasks with the exception of language

modeling [9].

4. Proposed System Architecture

In this Section, we focus on the overall system architecture

of the proposed system [Fig. 9] to predict the future prices

of the stock market based on an advanced deep neural

networks system at real time.

Learning from past history and predict the future is a

fundamentally tough challenge. A model may well fit for

historical data. But when presented with new inputs,

performance is not satisfactory. With gated recurrent neural

networks (GRUs), we boost the modeling abilities of

artificial neural networks for time series forecasting. With

this networks, we also overcome the vanishing gradient

problems of recurrent neural networks. When training, we

also overcome the local minimum problem of gradient

descent by using stochastic gradient descent.

Fig. 9 Overview of Proposed System Architecture

Steps of the proposed encryption algorithm are described in

the following:

1) We have to collect data from the web at the real

time.

2) We have to select a training set and a testing set.

3) We have to prepare inputs at time t and outputs at

time t+1.

4) We have to apply feature scaling on our data so

that our data will stay between a range and also

between the threshold.

5) After that, we reshape our data so that it has to be

into proper form and can be used as the inputs of the

networks.

6) Initializes the neural network.

7) Creates the input and hidden layers.

8) Creates the output layer.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 217

9) Compiles the proposed neural networks.

10) Fits our training data into the networks to extract

the hidden features.

11) We get the predicted results from the test set.

12) We compare the values with real values.

13) We visualize our data and evaluate the predicted

results.

4.1 Web Data Source

The data are collected from Yahoo! Finance at the real-time

[Fig. 10]. Yahoo! Finance is a media property that is the

part of Yahoo! Network [18].

Fig 10. Web data source

Here every company has a ticker name like ‘INTL' for the

company name Intel. For every date, that website has

opening, highest, lowest, closing, adjusted closing and

volume values.

4.2 Real-Time Data Collection

Python’s wealthy online connectivity power provide a

proper way to fetch data from the Internet, and its capability

to save those into CSV files bring a medium for sharing

collected data. We use the

pandas_datareader library to collect data at real time.

4.3 Training and Testing Dataset

In deep learning, the models work by developing data-

driven decisions. And it is done by using input data to build

a mathematical model. We use Pandas library to import

training set and testing set.

4.3.1 Training Set

A training data set is a data set of samples used for leaning

which means to fit the weights or parameters. Ten years

data have been used to train our model.

4.3.2 Testing Set

A test data set is a set of examples used only to evaluate the

performance. And the performance is independent of the

training dataset. If a model fits the training dataset, it also

fits the test data set.

4.4 Preparing the inputs and outputs

Our first task is to prepare the inputs and outputs. Our

inputs are opening price, closing price, highest value, and

lowest value at time t and output is opening/closing values

at time t+1. To do that we shifted our output one timestamp

and remove the row containing NAN value. If we have two

thousand one rows in our data set that means we have two

thousand input vectors each containing the opening price,

closing price, highest value, and lowest value at time t. We

have output vectors at next time step that means at time t+1

which is basically the opening/closing price of that time.

4.5 Feature Scaling

During the data preprocessing step, feature scaling is

generally performed. The main benefit of feature scaling is

to avoid dominating attributes greater over smaller numeric

ranges. To apply the gradient descent algorithms properly

there are some techniques that can be applied to both

training set and testing set. If the features applied on input

vectors are out of scale then loss space will be somehow

stretched and this will make the gradient descent

convergence harder or at least slower.

4.6 Method for Feature Scaling

The main adhere are four common methods to perform

Feature Scaling.

4.6.1 Min-max normalization

To scale the values between [0, 1], we use min-max

normalization (7).

x’ =
x−min (x)

max(x)−min (x)
 (7)

4.6.2 Mean normalization

To scale the values between [-1, 1], we use mean

normalization (8).

x’ =
x−mean(x)

max(x)−min (x)
 (8)

4.6.3 Standardization

After applying those data will have zero mean and unit

variance using (9).

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 218

x’ =
x−x̅

σ
 (9)

4.6.4 Scaling to unit length

Scaling is done using (10) considering the whole feature

vector to be of unit length.

x’ =
x̅

||x||
 (10)

4.7 Implementation on collected Dataset

Min-max normalization is used on our data to scale the

values between [0, 1]. The formula is given in (11).

x’ =
x−min (x)

max(x)−min (x)
 (11)

As our neural networks need sigmoid activation functions

and it scales the values between [0, 1] that is the main

reason to scale our data with min-max normalization.

4.8 Reshaping the Inputs

Reshaping is about changing the format of inputs. Before

reshaping our input was a two-dimensional array

containing the number of observations and features and we

have four features. After reshaping our input data is a three-

dimensional array as a time step is also included. We

implemented this by using the NumpPy library.

4.9 Initializing the GRU Neural Networks

Our data has a continuous sequence. As we are predicting

the continuous outcome so we make a regression model.

Regression is used when we have continuous outcome and

classification is used when we have a categorical outcome.

So we called our object regressor and use a sequential class

as our data has a continuous sequence.

4.10 Creating the Inputs and Hidden Layers

We changed our hidden layers from traditional GRUs by

using sigmoid activation function (12) instead of the

hyperbolic tangent (13).

A =
1

1+e−x (12)

A = tanh(x) =
2

1+e−2x − 1 (13)

As our stock price values never are less than zero and that

is the main reason for using sigmoid instead of the

hyperbolic tangent. That is why we changed the activation

functions. We use Keras to create this model with four input

features and one time step using sigmoid activation

function.

4.11 Creating the Outputs Layers

We used Keras, Densed class to create the output layers

which is opening/closing prices at the next time step.

4.12 Compiling GRU Neural Networks

To compile the GRU neural networks, we first need to

know how we train our neural networks. We use BPTT

(Backpropagation through Time). And it is used for training

our neural networks. In replace of the classical stochastic

gradient descent algorithm, adaptive moment estimation

algorithm can be used which was presented first by

Diederik Kingma. Our loss function is MSE.

4.13 Fitting the GRU to the Training Set

Here we import our inputs and outputs at the neural

networks. As we use mini-batch gradient descent, we tested

our neural networks on several batch size and find the best

result at batch size 32. For good result and good fitting, we

iterated our networks 200 times and find a very low lost

function which is better for testing.

4.14 Getting the Predicted Result from Test Set

After completing the training, our neural networks learn the

hidden patterns of our data, so we test our model at test set.

A test data set is a set of samples used only to evaluate the

performance that is independent of training dataset but that

maintains the same probability distribution as the training

dataset. If a model fits the training data set also fits the test

data set. We also applied feature scaling at our inputs. Our

predicted results are the opening/closing prices of the next

day.

4.15 Comparing the Results with Real Values

First, we applied inverse feature scaling on our predicted

results. After that, we compare our results with real values.

4.16 Visualizing the Results

We use the pyplot module from matplotlib to plot the real

socks price and predicted stocks and visualize the results.

4.17 Evaluating the Results

We have evaluated our proposed model using RMSE (14).

RMSE = √MSE = √(
1

n
∑ (Yi − Yi

’)2n
i=1) (14)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 219

5. Experimental Results and Analysis

In this section, the result obtained from the implementation

of the proposed model is analyzed from different

perspectives.

5.1 Effect of Epochs to Learn the Patterns

An epoch or iteration is when an entire dataset is passed

forward and backward through the neural network only

once. Training a deep neural network involves optimizing

a large set of parameters which are heavily interdependent.

As for this, it can take a lot of scaled training examples

before the network even settles into an area of the solution

space which is close to the optimal solution or at least, the

optimal solution for this training data set. This is

exacerbated by the stochastic nature of batch gradient

descent as the optimization algorithm is very data-hungry.

To summarize, batch gradient descent requires more

iterations to converge than one pass over the data set will

allow.

To learn the pattern our loss function is mean squared error

(MSE) which is an estimator measure the average of the

squares of the errors. The less the value of the loss functions,

the better our data will fit onto the model and the better our

model will learn the patterns.

From Fig. 11, we can see that at fewer epochs we have more

loss. But after 150 epochs our loss functions get saturated.

We have a pretty low loss function values approximately

1.66E-04. From this, we can conclude that our model will

predict the outputs perfectly.

Fig. 11 Loss function values

5.2 Effect of Mini-batch Gradient Descent

In case of complex structure, gradient descent can detect a

gradient which might be the gradient of a smaller subpart

but that is not the optimal gradient which is known as local

minima problem.

At first, recalculating the cost function after each sample.

Then, the stochastic gradient descent updates the weight

matrix. It can solve the local minimum problem but it takes

much computation time.

Fig. 12 Effect of batch size

It responds to the effects of each and every sample. And the

samples themselves will contain a portion of noisiness. And

it will make the result noisy moreover it takes much

computation time.

A new approach mini-batch gradient descent technique, the

loss function is averaged over a small number of samples,

from around five-five hundred.

From Fig. 12, we can see when our batch size is one which

is basically stochastic gradient descent, is taking lots of

time to compute the networks. And the value mini batch

gradient descent which is 30.

5.3 Effect of Training Periods

When the training data set is small, deep neural networks

do not perform well. Algorithms of statistical learning

cannot learn well from a few examples because of the

fundamental principles of their design. From the Fig. 13,

we can see when we have 1 year of training data, our model

cannot learn properly. The predicted values curve cannot

follow the real values curve. From Fig. 13, we can see when

we have 5 years of training data, our model can learn

properly. The predicted values curve follow the real values

curve.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 220

Fig. 13 Effect of training periods

 5.4 Efficiency for several companies

Our model is a regression model and regression model is

generally evaluated by calculating the root mean square

error (RMSE). The comparison of real stock prices and

predicted stock prices for Lowe's Companies, Inc. (LOW)

is given where the percentage of root mean square error is

0.0127464 [Fig. 14].

Fig. 14 Predicted prices of Lowe's Companies, Inc.

The comparison of real stock prices and predicted stock

prices for The Coca-Cola Company (KO) is given where

the percentage of root mean square error is 0.0144508 [Fig.

15].

Fig. 15 Predicted prices of The Coca-Cola Company

The comparison of real stock prices and predicted stock

prices for Apple Inc. (AAPL) is given where the percentage

of root mean square error is 0.013996 [Fig. 16].

6. Conclusion and Future Recommendations

In this paper, we predicted the future prices of the stock

market using Gated Recurrent Units (GRUs) neural

networks. We predicted the future prices successfully with

very good accuracy. The traditional recurrent neural

networks have vanishing

Fig. 16 Predicted prices of Apple Inc.

gradient problems. We overcome those problems by using

Gated Recurrent Units (GRUs) neural networks. We also

make some small changes inside our Gated Recurrent Units

(GRUs) neural networks for more efficiency. We also

remove the local minima problem of gradient descent and

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 221

time complexity and other problems of stochastic gradient

descent. We use mini-batch gradient descent which is a

good trade-off between stochastic gradient descent and

batch gradient descent.

One of the future implementations of this research will be

making smart artificial trading agent. The artificial agent

will guide us about when to buy or sell or hold for gaining

more profit. Moreover, an automated trading BOTS can

save peoples' time and can guide for smart decisions. The

proposed system works well for most of the cases but still,

it gave bad predictions on some cases. This work may

extend to predict far future prices.

References
[1] Guresen, Erkam, et al. “Using Artificial Neural Network

Models in Stock Market Index Prediction.” Expert Systems

with Applications, vol. 38, no. 8, 2011, pp. 10389–10397.,

doi:10.1016/j.eswa.2011.02.068.

[2] Dixon, Matthew, et al. “Implementing Deep Neural

Networks for Financial Market Prediction on the Intel Xeon

Phi.” Proceedings of the 8th Workshop on High Performance

Computational Finance - WHPCF '15, 2015,

doi:10.1145/2830556.2830562.

[3] Cho, et al. “Learning Phrase Representations Using

[4] RNN Encoder-Decoder for Statistical Machine

[5] Translation.” Learning Phrase Representations Using RNN

Encoder-Decoder for Statistical Machine Translation, 3 Sept.

2014, arxiv.org/abs/1406.1078.

[6] Kazem, Ahmad, et al. “Support Vector Regression with

Chaos-Based Firefly Algorithm for Stock Market Price

Forecasting.” Applied Soft Computing, vol. 13, no. 2, 2013,

pp. 947–958., doi:10.1016/j.asoc.2012.09.024.

[7] Bernal, Armando, et al. “Financial Market Time Series

Prediction with Recurrent Neural Networks.” Stanford

University, 14

Dec.2012,cs229.stanford.edu/proj2012/BernalFokPidaparthi

[8] Chen, Yingjun, and Yongtao Hao. “A Feature Weighted

Support Vector Machine and K-Nearest Neighbor Algorithm

for Stock Market Indices Prediction.” Expert Systems with

Applications, vol. 80, 2017, pp. 340–355.,

doi:10.1016/j.eswa.2017.02.044.

[9] Lecun, Yann, et al. “Deep Learning.” Nature, vol. 521, no.

7553, 2015, pp. 436–444., doi:10.1038/nature14539.

[10] Fischer, Thomas, and Christopher Krauss. “Deep Learning

with Long Short-Term Memory Networks for Financial

Market Predictions.” European Journal of Operational

Research, vol. 270, no. 2, 2018, pp. 654–669.,

doi:10.1016/j.ejor.2017.11.054.

[11] Józefowicz, Rafal et al. “An Empirical Exploration of

Recurrent Network Architectures.” ICML, 2015.

[12] Olah,.Christopher..“Understanding.LSTM.Networks.”.Cola

h's.Blog,.colah.github.io/posts/2015-08-Understanding-

LSTMs/.

[13] Bengio, Y., et al. “Learning Long-Term Dependencies with

Gradient Descent Is Difficult.” IEEE Transactions on Neural

Networks, vol. 5, no. 2, 1994, pp. 157–166.,

doi:10.1109/72.279181.

[14] Kostadinov, Simeon. “Understanding GRU Networks –

Towards Data Science.” Towards Data Science, Towards

Data Science, 16 Dec. 2017,

towardsdatascience.com/understanding-gru-networks-

2ef37df6c9be.

[15] “Welcome to Python.org.” Python.org, www.python.org/.

[16] “NumPy.” NumPy - NumPy,.www.numpy.org/.

[17] “Scikit-Learn.” Scikit-Learn: Machine Learning in Python -

Scikit-Learn 0.20.0 Documentation, scikit-learn.org/stable/.

[18] “Keras: The Python Deep Learning Library.” Keras

Documentation, keras.io/.

[19] “Installation.” Matplotlib: Python Plotting - Matplotlib 3.0.0

Documentation, matplotlib.org/.

[20] “Yahoo Finance - Business Finance, Stock Market, Quotes,

News.” Yahoo! Finance, Yahoo!, finance.yahoo.com/.

Mohammad Obaidur Rahman received

the B. Sc. Engineering Degree in Electrical

and Electronic Engineering from

Bangladesh University of Engineering and

Technology (BUET), Bangladesh in 1998.

He has currently received M. Engineering

degree from the Department of CSE,

Chittagong University of Engineering and

Technology (CUET). From September

2001 to onwards, he has been serving as a faculty member in the

Department of CSE, CUET, Bangladesh. He is currently working

toward the Ph.D. degree as a part-time basis in the Department of

CSE, CUET, Bangladesh. His major research interests include

cognitive radio networks, game theory, neural networks, Internet

security, and cryptography, etc.

Md. Sabir Hossain received Bachelor

degree in Computer Science and

Engineering from Chittagong University of

Engineering & Technology (2015) with

outstanding result. He is now pursuing his

M.Sc. degree in Computer Science and

Engineering from the same university. His

current research interests are Machine

Learning, Data Mining, Big data, and

Software Engineering. Now, he has been serving as a faculty

member in the Department of Computer Science & Engineering

(CSE), Chittagong University of Engineering & Technology

(CUET), Bangladesh.

Ta-Seen Junaid recently completed his

graduation in Computer Science and

Engineering from Chittagong University of

Engineering and Technology. He is

working as “Software Engineer” in BJIT

Limited from January 01, 2019. His works

focuses specially on Artificial Intelligence.

His field of interests are Data Science,

Computer Vision, Natural Language

Processing, Deep Learning, Artificial Neural Networks, Data

Structure and Algorithms.

http://www.numpy.org/

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 222

Md. Shafiul Alam Forhad completed B.Sc.

Engg. degree in Computer Science and

Engineering from Chittagong University of

Engineering & Technology (CUET) in

2014 with outstanding result. He is now

pursuing his M.Sc. Engg. degree in

Computer Science and Engineering from

the same university. His current research

concerns are Cryptography, Machine

Learning, and Data Mining. He was a lecturer in the Department

of Computer Science and Information Technology of Patuakhali

Science & Technology University. Now, he has been serving as a

faculty member in the Department of Computer Science &

Engineering (CSE), Chittagong University of Engineering &

Technology (CUET), Bangladesh.

Muhammad Kamal Hossen has received

his B. Sc. and M. Sc. in Computer Science

& Engineering (CSE) degrees from the

department of Computer Science &

Engineering of Chittagong University of

Engineering & Technology (CUET),

Bangladesh in 2005 and 2015, respectively.

He is now pursuing his Ph. D. degree in

CSE from the same university. Since 2006,

he has been serving as a faculty member in the Department of CSE,

CUET. His research interests include digital image processing,

cryptography, steganography, pattern recognition, and data

mining, etc.

