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Summary 
Predicting the stock prices is very much challenging job due to the 

volatility of the stock market. In this paper, we have proposed a 

model to predict the future prices of the stock market using Gated 

Recurrent Units (GRUs) neural networks. We have changed the 

internal structure of GRUs in order to remove local minima 

problem, reduce time complexity and others problem of stochastic 

gradient descent as well as improve the efficiency. We used mini-

batch gradient descent, is a good trade-off between stochastic 

gradient descent and batch gradient descent. We evaluated our 

result by calculating the root mean square error on the various 

dataset. After extensive experiments on the real-time dataset, our 

proposed method predicted the future prices successfully with 

good accuracy. 
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1. Introduction 

The stock market prediction has entranced a lot of focus 

from business as well as academia. Because of the complex, 

volatile and non-linear nature of the market, it's too hard to 

predict. As the stock markets grow bigger, additional 

people pay surveillance to develop a logical approach for 

predicting the stock market. 

Stock market prediction is needed for the purpose of 

predicting the long-term value of company stock. The stock 

market prediction has moved into the technological realm 

in this era of the digital computer. By taking advantage of 

modern digital computation and public economic database 

which permit individuals to discover the hidden info among 

these platforms. Artificial intelligence (AI) techniques are 

effective for detecting non-linear structures in the data of 

the financial market [1]-[2] in the last few years.  

We have a tendency to build gated recurrent units (GRU) 

neural network [3]. GRU is one of the most advanced 

architectures of deep learning. And by using it, predict 

future prices. In this paper, our prime concern is to use deep 

learning and by using it to predict the longer-term value. 

Surprisingly there has been no notable previous works 

which used GRU neural networks on a liquid, massive and 

survivor bias-free stock universe. We used it to check the 

performance in large-scale financial market prediction 

tasks. For financial time series prediction, we provide an in 

details guide on data processing as well as building, training, 

and testing of GRU networks. We have a tendency to use 

the root mean square error measurement to evaluate our 

proposed model. After preparing the model, we have 

trained the model on training dataset collected from Yahoo 

Finance [18]. Then, validate the model on a testing dataset 

collected from the identical supply. 

2. Background 

2.1 Gated Recurrent Unit (GRU) Neural Networks 

GRU [Fig. 1] is capable of learning some dependencies 

which are introduced by Cho [3]. It is a special kind of RNN 

(Recurrent Neural Network). They enormously work on a 

large type of problems. They are one in every of the most 

fashionable, powerful and effective neural networks. This 

is expressly designed to avoid the long-term dependency 

drawback. GRU has fewer parameters than LSTM and so 

may train a bit quicker or needless iteration to generalize 

[10]. Rafal et al. showed that the GRU outperformed the 

LSTM on most tasks with the exception of language 

modeling [9]. 

 

 

Fig. 1  Rolled GRUs 

For every element of a sequence, GRU performs a similar 

task. That is the reason for which it is called recurrent. And 

the result being depended on the calculations of the 

previous. Another think about GRUs is that they have a unit 

called memory units. The calculated information is 

captured by it. In Fig. 2, a network, ‘GRU’ looks at xt   input 

and outputs ht which is also the input of the next step. So a 
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loop permits data to be allowed from one step to the next in 

the RNN. 

 

 

Fig. 2  Unrolled GRUs 

Because of the multiple copies of the same network, this 

neural network is called recurrent. Here, each passing a 

message to the next network. Recurrent neural networks 

related to sequences and lists just like stock market data. 

And that chain-like nature is the reason behind it. To use 

for extracting the hidden pattern of the stock market, these 

networks have the natural architecture of the neural 

network. 

2.2 Internal Architecture of GRU 

By using reset gate and updates gate t GRU solves a 

problem of a standard RNN called the vanishing gradient 

problem. Actually, the reset gate and update gate are two 

vectors which decide what information should be passed 

and what information should not be passed to the output. 

The most important factor is that those can be trained to 

hold information from long ago. Without remove 

information or washing it through time which is not 

relevant to the prediction. With the help of [12], we explain 

the mathematics behind a single cell of this networks is 

shown in Fig. 3 and 4. 

 

Fig 3. GRUs networks 

2.2.1 Update gate 

To remove the risk of vanishing gradient problem the 

update gate helps the network to control how much of the 

previous information (from past time steps) needs to be 

passed along to the future which is really effective because 

the network can decide to recognize all the information 

from the past [Fig. 5]. 

 

Fig. 4  A single GRUs cell 

 

Fig. 5  Update gate 

The formula for updating gate is provided in (1). 

zt = σ(W(Z)xt + U(z)ht−1)  (1) 

rt = σ(W(r)xt + U(r)ht−1)  (2) 

Here xt is the into the network unit, it is multiplied by its 

own weight W(Z). The same goes for  ht−1 which holds the 

information for the previous t-1 units and is multiplied by 

its own weight U(z). Both results are added together and a 

sigmoid activation function is applied to squash the result 

between 0 and 1.  

2.2.2 Reset gate 

The main purpose of the reset gate in the network is 

basically to decide how much of the past information to 

forget shown in Fig. 6. We have reset gate using (2). 

 

 

Fig 6. Reset gate 

We plug in previous output as input ht−1  and xt, multiply 

them with their corresponding weights, sum the results and 

apply the sigmoid function. 
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2.2.3 Current memory content 

This memory content will use the reset gate to store the 

relevant information from the past. Here we changed our 

activation function from hyperbolic tangent to sigmoid. 

Current memory content is calculated using (3). 

 

 

Fig. 7  Current memory content 

ht
’ = σ (Wxt + rt ∙ Uht−1)  (3) 

ht = zt ∙ ht
’ + (1 − zt) ∙ ht−1  (4) 

Here an element-wise multiplication happened 

between  ht−1  and rt line and then sum the result with the 

input xt and finally, σ is used to produce ht
’ . 

2.2.4 Final memory at the current time step 

Finally, the network needs to determine  ht  which is the 

output of the current unit and passes it down for the next 

unit. In order to do that the update gate is needed which 

control what to collect from the current memory content  ht  
using (4) and what from the previous steps   ht−1  [Fig. 8]. 

 

 

Fig. 8  Final Memory 

2.3 Backpropagation 

Backpropagation is a backward propagation of errors. It is 

a technique which is used in deep learning. It determines a 

gradient and is needed in the computation of the weights to 

be used in the neural networks. It is generally used by the 

gradient descent optimization algorithm for the purpose of 

adjusting the weight of neurons. And it is done by 

computing the gradient of the cost or loss function. 

2.3.1 Loss Function 

Here our loss function is a function which is a calculator 

measures the mean of the squares of the errors and is called 

mean squared error (MSE). 

If  Yi
’   is n  predictions vector and generated from n data 

points sample on all variables. And if   Yi  is an observed 

values vector of the variable being anticipated. Then the 

within sample MSE of the predictor is computed using (5). 

MSE =
1

n
∑ (Yi − Yi

’ )2n
i=1    (5) 

2.4 Mini-batch Gradient Descent 

A new approach like mini-batch gradient descent (6), the 

cost function is averaged over a small set of samples, 

from around five-five hundred.  This is opposed to the size 

of all the training samples of the batch and the stochastic 

gradient descent batch size of 1 sample.  

W = W − α∇J(W, b, x(z:z+bs), y(z:z+bs))  (6) 

Where weights are denoted by  W , the learning rate is 

represented by α and ∇ denotes the gradient of the cost 

function J(W, b) in respect of changes in the weights and 

bs is the mini-batch size. 

2.5 Required Tools and Libraries 

The programming language we used here is Python 3.7 [13]. 

For data analysis and data structures purpose, we use 

Pandas which is an open source BSD-licensed library. We 

use NumpPy library. And it is used for adding support for 

large, multi-dimensional arrays, matrices. And for the 

scientific calculation to operate on these arrays [14]. For 

collecting historical data at the real-time we use Pandas-

datareader. For feature scaling, we use a machine learning 

library called Scikit-learn [15].  

For developing our deep GRU neural networks we used a 

high-level neural networks API [Keras], written in Python. 

It is capable of running on top of TensorFlow [16]. To 

visualize the result we use Matplotlib [17]. 

 3. Related works 

A lot of work has been done for predicting stock market 

trends. Most of those words based on traditional machine 

learning [4]-[6]. But after better computation power and 

with lots of data available, deep learning is outclassed and 

outperformed machine learning in every possible way. 

Deep learning is a sub-portion of machine learning. It’s 
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alike to how an animal would recognize something, think 

about it, and then come to a final decision. A deep learning 

model learns it with its own computing brain by using an 

ANN [7].  

The challenge for time series prediction is also a big factor. 

There are some researches by using feedforward neural 

networks like multilayer perception [1] but those networks 

are not time series model. Feedforward neural networks 

have done well in classification tasks, however, in a 

dynamic environment, it needs techniques that account for 

history. In order to find meaningful statistics and other 

characteristics of the data, time series analysis is used. Time 

series model is totally based on the idea which predicts 

future price behavior. 

In [5], authors use the standard RNN to predict the future 

price. RNN can be used to map input data sequences to 

output data sequences but practical problems have been 

detected in training RNN like vanishing gradient problem 

[11]. Vanishing Gradient Problem occurs when we try to 

train a Neural Network model using Gradient-based 

optimization techniques.  

Long short-term memory (LSTM) is an excellent neural 

network to remove the Vanishing Gradient Problem and 

there are some excellent researches to predict future prices 

using LSTM like deep learning with long short-term 

memory networks for financial market predictions [8]. But 

compare to GRU, LSTM has some redundant information. 

GRU has fewer parameter than LSTM and thus may train a 

bit faster or needless iterations to generalize. Writers of the 

paper ‘An Empirical Exploration of Recurrent Network 

Architectures' showed that the GRU outperformed the 

LSTM on most tasks with the exception of language 

modeling [9].   

4. Proposed System Architecture 

In this Section, we focus on the overall system architecture 

of the proposed system [Fig. 9] to predict the future prices 

of the stock market based on an advanced deep neural 

networks system at real time.  

Learning from past history and predict the future is a 

fundamentally tough challenge. A model may well fit for 

historical data. But when presented with new inputs, 

performance is not satisfactory. With gated recurrent neural 

networks (GRUs), we boost the modeling abilities of 

artificial neural networks for time series forecasting. With 

this networks, we also overcome the vanishing gradient 

problems of recurrent neural networks. When training, we 

also overcome the local minimum problem of gradient 

descent by using stochastic gradient descent. 

 

Fig. 9  Overview of Proposed System Architecture 

Steps of the proposed encryption algorithm are described in 

the following: 

1) We have to collect data from the web at the real 

time.  

2) We have to select a training set and a testing set. 

3) We have to prepare inputs at time t and outputs at 

time t+1. 

4) We have to apply feature scaling on our data so 

that our data will stay between a range and also 

between the threshold. 

5) After that, we reshape our data so that it has to be 

into proper form and can be used as the inputs of the 

networks. 

6) Initializes the neural network. 

7) Creates the input and hidden layers. 

8) Creates the output layer. 
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9) Compiles the proposed neural networks. 

10) Fits our training data into the networks to extract 

the hidden features. 

11) We get the predicted results from the test set. 

12) We compare the values with real values.  

13) We visualize our data and evaluate the predicted 

results. 

4.1 Web Data Source 

The data are collected from Yahoo! Finance at the real-time 

[Fig. 10]. Yahoo! Finance is a media property that is the 

part of Yahoo! Network [18]. 

 

 

Fig 10. Web data source 

Here every company has a ticker name like ‘INTL' for the 

company name Intel. For every date, that website has 

opening, highest, lowest, closing, adjusted closing and 

volume values. 

4.2 Real-Time Data Collection 

Python’s wealthy online connectivity power provide a 

proper way to fetch data from the Internet, and its capability 

to save those into CSV files bring a medium for sharing 

collected data. We use the  

pandas_datareader library to collect data at real time. 

4.3 Training and Testing Dataset 

In deep learning, the models work by developing data-

driven decisions. And it is done by using input data to build 

a mathematical model. We use Pandas library to import 

training set and testing set. 

4.3.1 Training Set 

A training data set is a data set of samples used for leaning 

which means to fit the weights or parameters. Ten years 

data have been used to train our model. 

4.3.2 Testing Set 

A test data set is a set of examples used only to evaluate the 

performance. And the performance is independent of the 

training dataset. If a model fits the training dataset, it also 

fits the test data set. 

4.4 Preparing the inputs and outputs 

Our first task is to prepare the inputs and outputs. Our 

inputs are opening price, closing price, highest value, and 

lowest value at time t and output is opening/closing values 

at time t+1. To do that we shifted our output one timestamp 

and remove the row containing NAN value. If we have two 

thousand one rows in our data set that means we have two 

thousand input vectors each containing the opening price, 

closing price, highest value, and lowest value at time t. We 

have output vectors at next time step that means at time t+1 

which is basically the opening/closing price of that time. 

4.5 Feature Scaling 

During the data preprocessing step, feature scaling is 

generally performed. The main benefit of feature scaling is 

to avoid dominating attributes greater over smaller numeric 

ranges. To apply the gradient descent algorithms properly 

there are some techniques that can be applied to both 

training set and testing set. If the features applied on input 

vectors are out of scale then loss space will be somehow 

stretched and this will make the gradient descent 

convergence harder or at least slower. 

4.6 Method for Feature Scaling 

The main adhere are four common methods to perform 

Feature Scaling. 

4.6.1 Min-max normalization 

To scale the values between [0, 1], we use min-max 

normalization (7). 

x’ =
x−min (x)

max(x)−min (x)
               (7) 

4.6.2 Mean normalization 

To scale the values between [-1, 1], we use mean 

normalization (8). 

x’ =
x−mean(x)

max(x)−min (x)
   (8) 

4.6.3 Standardization 

After applying those data will have zero mean and unit 

variance using (9). 
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x’ =
x−x̅

σ
             (9) 

4.6.4 Scaling to unit length 

Scaling is done using (10) considering the whole feature 

vector to be of unit length. 

x’ =
x̅

||x||
        (10) 

4.7 Implementation on collected Dataset 

Min-max normalization is used on our data to scale the 

values between [0, 1]. The formula is given in (11).  

x’ =
x−min (x)

max(x)−min (x)
            (11) 

As our neural networks need sigmoid activation functions 

and it scales the values between [0, 1] that is the main 

reason to scale our data with min-max normalization.  

4.8 Reshaping the Inputs 

Reshaping is about changing the format of inputs. Before 

reshaping our input was a two-dimensional array 

containing the number of observations and features and we 

have four features. After reshaping our input data is a three-

dimensional array as a time step is also included. We 

implemented this by using the NumpPy library. 

4.9 Initializing the GRU Neural Networks 

Our data has a continuous sequence. As we are predicting 

the continuous outcome so we make a regression model. 

Regression is used when we have continuous outcome and 

classification is used when we have a categorical outcome. 

So we called our object regressor and use a sequential class 

as our data has a continuous sequence. 

4.10 Creating the Inputs and Hidden Layers 

We changed our hidden layers from traditional GRUs by 

using sigmoid activation function (12) instead of the 

hyperbolic tangent (13). 

A =
1

1+e−x                      (12) 

A = tanh(x) =
2

1+e−2x − 1   (13) 

As our stock price values never are less than zero and that 

is the main reason for using sigmoid instead of the 

hyperbolic tangent. That is why we changed the activation 

functions. We use Keras to create this model with four input 

features and one time step using sigmoid activation 

function. 

4.11 Creating the Outputs Layers 

We used Keras, Densed class to create the output layers 

which is opening/closing prices at the next time step. 

4.12 Compiling GRU Neural Networks 

To compile the GRU neural networks, we first need to 

know how we train our neural networks. We use BPTT 

(Backpropagation through Time). And it is used for training 

our neural networks. In replace of the classical stochastic 

gradient descent algorithm, adaptive moment estimation 

algorithm can be used which was presented first by 

Diederik Kingma. Our loss function is MSE. 

4.13 Fitting the GRU to the Training Set 

Here we import our inputs and outputs at the neural 

networks. As we use mini-batch gradient descent, we tested 

our neural networks on several batch size and find the best 

result at batch size 32. For good result and good fitting, we 

iterated our networks 200 times and find a very low lost 

function which is better for testing. 

4.14 Getting the Predicted Result from Test Set 

After completing the training, our neural networks learn the 

hidden patterns of our data, so we test our model at test set. 

A test data set is a set of samples used only to evaluate the 

performance that is independent of training dataset but that 

maintains the same probability distribution as the training 

dataset. If a model fits the training data set also fits the test 

data set.  We also applied feature scaling at our inputs. Our 

predicted results are the opening/closing prices of the next 

day. 

4.15 Comparing the Results with Real Values 

First, we applied inverse feature scaling on our predicted 

results. After that, we compare our results with real values. 

4.16 Visualizing the Results 

We use the pyplot module from matplotlib to plot the real 

socks price and predicted stocks and visualize the results. 

4.17 Evaluating the Results 

We have evaluated our proposed model using RMSE (14). 

RMSE = √MSE = √(
1

n
∑ (Yi − Yi

’ )2n
i=1 )  (14) 
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5. Experimental Results and Analysis 

In this section, the result obtained from the implementation 

of the proposed model is analyzed from different 

perspectives.  

5.1 Effect of Epochs to Learn the Patterns 

An epoch or iteration is when an entire dataset is passed 

forward and backward through the neural network only 

once. Training a deep neural network involves optimizing 

a large set of parameters which are heavily interdependent. 

As for this, it can take a lot of scaled training examples 

before the network even settles into an area of the solution 

space which is close to the optimal solution or at least, the 

optimal solution for this training data set. This is 

exacerbated by the stochastic nature of batch gradient 

descent as the optimization algorithm is very data-hungry. 

To summarize, batch gradient descent requires more 

iterations to converge than one pass over the data set will 

allow. 

To learn the pattern our loss function is mean squared error 

(MSE) which is an estimator measure the average of the 

squares of the errors. The less the value of the loss functions, 

the better our data will fit onto the model and the better our 

model will learn the patterns. 

From Fig. 11, we can see that at fewer epochs we have more 

loss. But after 150 epochs our loss functions get saturated. 

We have a pretty low loss function values approximately 

1.66E-04. From this, we can conclude that our model will 

predict the outputs perfectly. 

 

 

Fig. 11  Loss function values 

5.2 Effect of Mini-batch Gradient Descent 

In case of complex structure, gradient descent can detect a 

gradient which might be the gradient of a smaller subpart 

but that is not the optimal gradient which is known as local 

minima problem. 

At first, recalculating the cost function after each sample. 

Then, the stochastic gradient descent updates the weight 

matrix.  It can solve the local minimum problem but it takes 

much computation time. 

 

 

Fig. 12  Effect of batch size 

It responds to the effects of each and every sample. And the 

samples themselves will contain a portion of noisiness. And 

it will make the result noisy moreover it takes much 

computation time. 

A new approach mini-batch gradient descent technique, the 

loss function is averaged over a small number of samples, 

from around five-five hundred.  

From Fig. 12, we can see when our batch size is one which 

is basically stochastic gradient descent, is taking lots of 

time to compute the networks. And the value mini batch 

gradient descent which is 30. 

5.3 Effect of Training Periods 

When the training data set is small, deep neural networks 

do not perform well. Algorithms of statistical learning 

cannot learn well from a few examples because of the 

fundamental principles of their design. From the Fig. 13, 

we can see when we have 1 year of training data, our model 

cannot learn properly. The predicted values curve cannot 

follow the real values curve. From Fig. 13, we can see when 

we have 5 years of training data, our model can learn 

properly. The predicted values curve follow the real values 

curve. 
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Fig. 13  Effect of training periods 

 5.4 Efficiency for several companies 

Our model is a regression model and regression model is 

generally evaluated by calculating the root mean square 

error (RMSE).  The comparison of real stock prices and 

predicted stock prices for Lowe's Companies, Inc. (LOW) 

is given where the percentage of root mean square error is 

0.0127464 [Fig. 14]. 

 

 

Fig. 14  Predicted prices of Lowe's Companies, Inc. 

The comparison of real stock prices and predicted stock 

prices for The Coca-Cola Company (KO) is given where 

the percentage of root mean square error is 0.0144508 [Fig. 

15]. 

 

Fig. 15  Predicted prices of The Coca-Cola Company 

The comparison of real stock prices and predicted stock 

prices for Apple Inc. (AAPL) is given where the percentage 

of root mean square error is 0.013996 [Fig. 16]. 

6. Conclusion and Future Recommendations 

In this paper, we predicted the future prices of the stock 

market using Gated Recurrent Units (GRUs) neural 

networks. We predicted the future prices successfully with 

very good accuracy. The traditional recurrent neural 

networks have vanishing 

 

 

Fig. 16  Predicted prices of Apple Inc. 

gradient problems. We overcome those problems by using 

Gated Recurrent Units (GRUs) neural networks. We also 

make some small changes inside our Gated Recurrent Units 

(GRUs) neural networks for more efficiency. We also 

remove the local minima problem of gradient descent and 
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time complexity and other problems of stochastic gradient 

descent. We use mini-batch gradient descent which is a 

good trade-off between stochastic gradient descent and 

batch gradient descent. 

One of the future implementations of this research will be 

making smart artificial trading agent. The artificial agent 

will guide us about when to buy or sell or hold for gaining 

more profit. Moreover, an automated trading BOTS can 

save peoples' time and can guide for smart decisions. The 

proposed system works well for most of the cases but still, 

it gave bad predictions on some cases. This work may 

extend to predict far future prices.  
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