
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019

223

Manuscript received January 5, 2019

Manuscript revised January 20, 2019

An Interactive Code Generator and Profiler System

Muhammad Azeem1, Munir Ahmed2, Ahthasham Sajid3, Tahir Iqbal4,

Asif Farooq5, Prajoona Valsalan6
1, 2Barani Institute of Information Technology, PMAS- AAUR, Rawalpindi. Pakistan

3Department of Computer Science , FICT, BUITEMS, Quetta, Pakistan
4Department of Computer Sciences, Bahria University Lahore Campus, Lahore, Pakistan

5Computer Science and IT University of Lahore, Lahore Pakistan
6Department of Electrical and Computer Engineering, College of Engineering, Dhofar University, Salalah, Oman

Summary
In the last few years with the advent of various compiler

languages, it is perhaps difficult to choose one development

language over another for a specific set of needs such that

compatibility with a compiler for a particular problem is optimal

as regards to caching, garbage handling and priority tasking. This

hints at a need for automated optimization and compatibility.

One possible way is to have general pseduocode which are

optimized by profilers for different compilers to identify

optimization opportunities and best fits using either sampling or

event-based profilers for a software-mediated algorithm analysis.

For devices with limited batteries, profilers may be used to

optimize energy usage, as well. Additionally, if such an

automated profiler is able to generate formal code from a

pseduocode, much of Software Management may be automated.

In this paper, an Android-based profiler integrated with a code

generator is proposed in line with this rationale.

Key Words:
Pseduocode, Symbol Table, Analyzer, Parser, Profiling.

1. Introduction

The parameters to judge quality of software include

performance, efficiency, scalability and accuracy, among

others. Statistics show that from the internet age i.e.

between 1990 and 1999, approximately 14 major

programming languages were developed whereas from

2000 to 2015, 12 new languages were developed which

means yearly, at least one new language evolves and gets

prominent. Each language has its own convention, syntax

and even memory requirements. With the increase in the

number of languages, it is difficult for programmers to

develop applications in various languages without in-depth

knowledge about its compiler language. This requirement

is tied with scalability and accuracy of any given program.

In this regard, there exist software which aid developers in

writing algorithms based on certain rules and convert this

pseduocode into different languages, partially overcoming

the need for an in-depth understanding of syntax based on

a particular compiler language. To evaluate performance

and efficiency, algorithmic analysis is employed, which

acts as a diagnostic tool to identify areas for improvement.

For this, there, too, exist automated software profilers

which amalgamate information pertaining to software

space complexity and running time complexity; this

includes frequency of function calls. Such software are

classified as either statistical profilers or event based

profilers. The former samples a target program whereas the

latter collects target program’s information by analyzing

loops, function calls, path frequencies (Ball, 1996), load

unload capacities and even memory requirements. As a

motivating example, an event-based profiler may be

employed to manage resources and memory by, for

exampling, overcoming memory leakage (Hill, 2013). The

most common optimizers are Common Language Runtime

(CLR) and its garbage collector. The application of

profilers is not limited to software and may even be

applied to an OS (for e.g., see (González, 2014) for a

Raspberry PI profiler) along with its hardware

considerations. Profilers may also be employed for value

prediction (Gabbay, 1997) to eliminate true-data

dependencies whereby the outcome values of a routine are

predicted run-time and true-data dependent routines are

executed based on that prediction. An alternate is to

predict running time of different applications using

heuristics (Smith, 1998) but this requires a history of

execution and thus is inapplicable for novel software.

Profilers may even focus on hardware codes to improve

hardware performance (Matev, 2009) There also exist

profilers which are online and thus especially suitable for

Cloud deployment when actual hardware is unknown

(Riou, January 2014) and source code may not be available.

In this context, profiling is still possible across different

platforms in the Cloud for High Performance Computing

(Marinković, July 2016). Profilers may also be GUI-based

(e.g., (Rubio, December 2015) (Chevalier, September,

2007). In this paper, an event-based profiler for program

performance optimization is proposed explicitly to

determine (run-time or otherwise) function calls, function

iterations and function paths to address memory usages for

Android devices. Profiling for Android systems is

important to understand, say, the retardation experienced

during browsing, streaming and booting (. Lin, (March 4,

2013). From the aegis of a function call stack and path, the

most expensive function can be singled out. This will

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 224

further allow the tracing of memory leaks for code

optimization after measuring memory consumption. For

added robustness, the proposed software is further

integrated with the capacity to convert pseduocode, written

out based on certain rules, into formal code via a lexical

analyzer and optimized using Business Intelligence. This

optimized code is compiled remotely on a Cloud

infrastructure. This overcomes any hardware limitations

and the compiler may even be engineered to follow

different kernels. The optimized code is then supplied to

the profiler, analyzed and may then be improved upon by

the developer. For the time being, the export only supports

C++ code generation but may be extended to incorporate

different languages, thus allowing for further compatibility

across different platforms. The need for a remote compiler

is justified not only because of the apparent increase in

performance but because it allows for more log space than

the limited counterpart on the Android device and further

liberates hardware constraints. Furthermore, the execution

of an application requires multiple software layers in the

Android platform, which may even be programmed in

different languages. This paper is structured as follows: in

Section 2, different methods of profiling and code

generation in literature are reviewed to identify latest

methods. In Section 3, the mechanism and algorithm of

CGen-Profiler are detailed whereas running examples are

presented in Section 4. In Section 5, an experiment is

performed to compare how the proposed software fares

against other existing software for similar ends. The paper

is concluded in Section 6 with potential benefits and future

additions.

2. State of Art

Since the proposal concerned with this paper involves a

profiler integrated with a code generator, a survey of state

of art profilers and code generators is performed to

highlight popular methodology and identify potential

contributions. In general, it is noted that each profiler and

code generator serves purpose for a particular class of

application for professional and amateur developers, alike.

Fig. 1 Proposed framework of (Bombieri, 2015)

2.1 Profilers

Profiling techniques differ in their nature, method and

reporting methods. For instance, a class of profilers are

based on lazy allocators (Shi, China 2016) which profile

objects and manipulate them by run-time events in Java-

based applications running on a virtual machine. Recently,

packed objects in the IBM J9 Virtual Machine have been

profiled, too, to measure memory consumption (Pandya,

2016). Such packed objects offer a better control over the

layout of objects in memory. Furthermore, they employ a

flexible memory structure which can be leveraged to

increase the efficiency of caching. Run-time profiling has

the advantage of analyzing execution under heavy load

conditions, which may escape analysis prior to execution.

Such run-time profilers are expected to be flexible apart

from being accurate. In this regard, a novel performance

monitoring unit not based on instrumentation is introduced

in (Gibert, (June 19, 2015).Casual Profiling is introduced

in (Curtsinger, 2015, October) via a tool named COZ.

Causal profiling method narrows down the focal points of

optimization by running performance experiments in

parallel to execution of program, the underlying

assumption being that profiling only tells programmers

where their program spent most time and this may not

accurately reflect performance. Event-based profilers

typically base their methods on byte code instrumentation.

This assumes that the compiler does not have an in-built

capacity for optimization via stack allocation and in lining.

One aspect of CGenProfiler is based on this idea, whereby

it uses a remote compiler. For compilers without such

optimization capacities, a novel technique was introduced

Zheng et al. (Zheng, 2015) on a Java Virtual Machine

(JVM).

Fig. 2 Block diagram of proposed prototype of (Chang, (December

1991)

Bombieri et al. (Bombieri, 2015)have presented a profiling

framework for GPU primitives called Pro++ (see Figure 1),

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 225

which allows measuring of the implementation quality of a

given primitive compiler by considering the target

architecture characteristics. The framework collects the

information provided by a standard GPU profiler and

combines them based on optimization criteria. The criteria

evaluations are weighed to distinguish the impact of each

optimization on the overall quality of the primitive

implementation. In (Chang, (December 1991), authors

propose and implement a compiler equipped with

optimization and profiling capacities for classical methods

of code optimizations (see Figure 2). The novelty of the

compiler is in its two components viz. an execution

profiler and a profile-based code optimizer. The former

inserts probes into the target program, performs several

runs, gathers profile information and then feeds this

information to the latter – the optimizer.

Froyd et al. in (Froyd, 2003)z proposed a novel low-

overhead call path profiler along with its implementation.

The profiler samples frequency counts for call graph edges

and, furthermore, managed to bypass code instrumentation.

An efficient instrumentation technique is implemented by

Mudduluru et al. (Mudduluru, 2016) which generates

object flow profiles for programs written in Java, without

modifying the underlying JVM. This is done by a method

called Ball-Larus numbering on a specialized hybrid flow

graph. In (Matev, 2009), Matev et al. designed a run-time

profiler on instruction level with a focus on analysis of

loops. Costly and fine grain blocks are searched for in lieu

of coarse grain blocks to determine wall clock time. Data

pertaining to position of blocks, its body, number of

executions and its size are stored and analyzed by the

profiler in separate hardware whereas a majority of

profiling of code is done in software by introducing code

into the target program which has time overhead. A

profiling platform specifically for Android platform was

made by Yoon (Yoon, (April 2012) to analyze the

platform’s performance via a modified debugging method

and a trace tool. CGen-Profiler differs in that it allows for

run-time profiling and includes a path-profiling with

frequency of function calls to identify expensive iterations.

This is complemented by the framework in (Steigerwald,

2012) as an attempt to optimize battery performance of

Android devices. Such considerations stem from efficient

use of energy. This is also another important consideration

not only from an engineering and social perspective but is

now an important practice for IT development, as well

(Murugesan, October 2012) and is not limited to hardware;

the term “green software” is becoming increasingly

popular. It is important to realize that source code structure

has an effect on energy consumption by virtue of compiler

mechanisms. Several mechanisms exist to calculate energy

consumption of different software. For example, ALEA

was proposed in (Murugesan S. a., (March 2017).) to

profile software at the fine-grained level of loops and

functions, yielding energy savings up to 2.97 times. A

similar software which the authors call eCalc (Hao, 2012)

was introduced for Android systems. To address this

concern, the implementation of a remote compiler in the

proposed mechanism is expected to contribute to a

reduction of hardware waste

Fig. 3 A specification tree, as found in (Lei, 2013)

2.2 Code Generators

The discussion of compilers as translators of source

language code to optimized target language code

notwithstanding, a great advantage may be leveraged if

such optimization compilers are complemented with

translation of pseudo code to formal code, offering a user-

friendly integrated tool. To this end, there are various

standalone tools available called code generators which are

either designed for narrowed down purposes or specific

languages. For instance, in (Eid, 2010), a geometric

algebra-based code generator is designed specifically to

represent and process geometric data. In (Cataño, 2015),

an Enterprise Resource Planning system is code generated

and evaluated by code generators called EventB2SQL and

Open Bravo POS. A code generator for Oracle embedded

with business logic, a GUI and drag-and-drop tool box was

developed in (Rathod, 2016). In (Lee, 2012), the authors

develop a code generator which allows for semantic

translation of code for cross-platform compatibility.

Similarly, for hardware, a compiler framework converts an

Open MP programming model to that for NVIDIA’s

CUDA (Lee S. M.-J., 2009). Similarly, in (Verdoolaege,

2013), a source-to-source compiler is introduced for

CUDA’s parallel execution paradigm. In (Li, 2015), an

automatic code generator called STEPOCL for multicores

is proposed which uses one piece of code and replicates it

for other cores along, ensuring compatibility. A generic

code generator for statistical translation of natural

language to formal code may be found in a paper by Lei et

al. (Lei, 2013), in which the authors implemented a

statistical (Bayesian) model to translate natural language

specification into a specification tree (see Figure 3). This

specification tree is then used to build a C++ input parser.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 226

Fig. 4 Pseudocode generated from Python – example in (Oda, 2015)

The other way (from code to natural language) has been

accomplished, as well (Oda, 2015) wherein the authors to

use the Statistical Machine Translation (SMT) method for

a tokenized Python code via a proposed tool called

Pseudogen. Their main idea is show in Figure 4. In

summary, profilers and code generators are used for a

particular set of existing problems on a unique platform.

CGen-Profiler is expected to contribute to the growing gap

between diversity of software available and narrow

expertise of developers to address broader platforms

simultaneously. Since the architecture for kernels across

platforms are usually different in their execution, the

translation of data handling by across compilers needs

careful attention. CGen-Profiler is expected to contribute

to greener software, as well, for mobile devices powered

by portable batteries.

3. Mechanism of CGen-Profiler

The CGen-Profiler analyzes the pseudocode with the help

of a formally defined algorithm lexicon for conversion to

formal code and for profiling. The profiling indicates key

areas which need to be optimized for efficiency. The

components of CGen-Profiler are listed out in detail in the

following subsections, showed pictorially in Figure 5.

Fig. 5 Logic flow of CGen-Profiler

3.1 Pseudo code input

CGen-Profiler accepts an algorithm in the form of standard

pseudo code in the particular standard format found in

(Cormen, 2009) These include reserving formal names for

standard C++ routines including while, for, switch if-else

along with their indentation. Incorrect syntax is highlighted

in red. It is important that the pseudo code must be

conforming to standards as the inputs are tokenized. If the

pseudo code is written without standard practices, then a

token is considered unavailable in the rules.

Table 1: Symbolic Description
Lexeme Category Code

= Comparison = =
:= Assignment =
↵ Next statement ;

input Get input cin>>
display Give output cout<<

3.2 Lexical Analyzer

A lexical analyzer then performs a straightforward

conversion of the given pseudo code into formal C++ code

based on a symbol table. A part of the symbol table is

shown in Table 1. This analyzer parses the algorithm by

converting the given pseudo code in tokens of lexemes.

The symbol table is used as a reference to replace tokens

with formal code. These lexemes are matched with set of

rules and converted into code parts using the symbol table.

In case the pseudo code is not standard, the lexical

analyzer generates an error message and stops the process

at this stage.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 227

Fig. 6 Screenshot of CGen-Profiler with code generated from

pseduocode

3.3 Code Generation

The pseduocode is segmented into code directly from the

input and data for identification of variables, necessary

variables and inclusion of called-for libraries. The

pseduocode itself identifies variables needed. The

pseduocode is sent to a remote server for compilation to an

online version of Cygwin supporting Android with POSIX.

A quick reference on Android architecture may be found in

(Yoon, (April 2012)). If the code has no compile time

error, it saves a log file and generates a formal code. The

metadata of each code is kept separate. This part includes

function names, as well, determined directly by the lexical

analyzer.

3.4 Profiler

The flow for this profiling is shown in Figure 7. In its

architecture, the profiler is no different than the

commonplace profiler for Android Dalvik Debug Monitor

Service, which is a part of the Android Software

Development Kit. The profiling tool has the capacity to

determine function calls, function iterations,

interdependence of functions, flow of operations and

duration (in wallclock time) of function execution. Since

Cygwin is employed as the virtual machine for remote

compilation instead of a local Linux kernel, the

commonplace profiler was modified to support dynamic

profiling. Thus, parts of memory reserved for the kernel

may be freed up and any garbage dump, poor stack

allocation and method inlining may be managed

accordingly.

In summary, all valid options are profiled and best options

are compared with the prehistorical data and thus

optimized. Afterwards, the profiler checks the outputs for

all cases, ensuring that the output is the same for the given

inputs and more efficient code is displayed as optimized

code. The efficient code is sent back again to Cygwin for a

final compilation.

Fig. 7 Profiler logic flow of CGen-Profiler

4. Running examples

A pseudo code for finding the factorial of a given integer

(𝑛 = 5 in this case) is written using recursive functions.

The algorithm spelled out to CGen-Profiler is as follows:

Listing 1: Pseudocode for Factorial of 5 as input to CGen-Profiler

The software translates the pseudo code into a complete

C++ code, adding any necessary libraries, function names

and variables. The outcome obtained is present in Listing 2.

The pseudo code is fed to the software again but this time,

with a replacement of the recursive function with a loop.

The output given is in Listing 3. To show that this

enhances the algorithm, we profile both codes. These are

listed in the Results and Discussion section.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 228

Listing 2: C++ code from pseduocode

Listing 3: C++ code from different pseduocode

These steps are repeated for the well-known binary search.

The pseudo code is shown in Listing 4.

Listing 4: Pseduocode for Binary Search as input to CGen-Profiler

The result, without optimization, is shown in Listing 5. In

Listing 6, the heuristic optimization process is applied and

the function itself is integrated in the main function but

instead of a recursive function, a while loop is added.

Listing 5: C++ code from pseduocode

Listing 6: Changed C++ code for binary search

5. Results and Discussion

CGen-Profiler is now compared with Microsoft Visual

Studio’s inbuilt profiler. The same codes were fed to the

profilers for both binary searches and factorial algorithm,

once for each version of the algorithm. The runs were

performed on a Core i-3-3227U CPU @ 3MB Cache, 2

cores, 4 threads, 1.90GHz base processor frequency,

5GT/s bus speed and a TDP of 17W with 3.89GB usable

RAM. Microsoft Visual Studio was also employed as a

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 229

benchmark to establish the accuracy of the profilers and,

furthermore, to establish the veracity of the remote profiler.

5.1 Processing Speed Comparison

For a measurement of time corresponding to realistic

epochs, ideally emphasis should be on the wall clock time.

We thus choose to measure the wall clock speed for each

code. Such runs may be plotted against frequency of

function call to measure rates at which the function is

summoned. The comparison in this section is much simpler

in that the focus is on CPU usage plotted against wallclock

time (in seconds). The gradient of the graphs may be used

to determine processing speed and offer a comparison of

the profilers. Wall clock measurements for CGen-Profiler

were accomplished using std::chrono::time_point. The

number of samples collected for each code were left

unaltered. The outcomes for profiling are recorded in

Figures 8 and 9 for the two factorial algorithms whereas

Figures 10 and 11 record profiling outcomes for the binary

search algorithm.

Fig. 8 Profiling for Listing 2

Fig. 9 Profiling for Listing 3

Fig. 10 CPU Usage for Listing 6

Fig. 11 CPU Usage for Listing 5

Listing 3 and Listing 6 are an optimized version of Listing

4 and Listing 5, respectively. To see this, observe that the

CPU usage, as indicated by both profilers, peaks at 0.5

with different memory usage. The gradient of the graphs

for the first 0.5s differs in that the first slope is higher,

indicating that the rate at which memory is consumed is

higher for Listing 2 (respectively, Listing 5) than that for

Listing 3 (respectively, Listing 6). This could be explained

by the frequency of function calls, memory leaks due to

different algorithms or because one algorithm occupies

more memory than the other by virtue of running memory

requirements. Similar results are displayed.

5.2 Accuracy

Microsoft Visual Studio notes 90 allocations for Listing 2,

with 41 samples collected. The number of modules

assigned for each algorithm differ with 14, and 16 for

Listing 1 and Listing 3, respectively. CGen-Profiler, on the

other hands, notes 85 allocations for Listing 2 with 28

samples collected with modules 18 and 21 for Listing 1

and Listing 3, respectively. The allocation of more

modules reflects the remote nature of the compiler. For

each module, the function names and its calls were

assigned and were in agreement with both profilers. The

iterations for the fact function were reported to be 23 for

both.

6. Conclusions and Future Work

A program called CGen-Profiler is proposed which

simultaneously generates formal code from a given

pseduocode and profiles it. This combination is optimized

according to reference architecture for business

intelligence. Currently, the optimized output formal code is

generated for C++ only but may be extended to cover other

languages, as well, by modifying the symbol table. With a

broader “conversion capacity”, a smart system could be

devised which automatically determines the best language

for a given pseduocode, based on memory requirements,

compilation speed etc. This is hoped to circumvent the

need for in-depth understanding of different syntax. It is

hoped that CGen-Profiler may encourage beginners and

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 230

professionals in their endeavors to develop software. The

execution of a final compatibility check of the optimized

program could also be added in future versions.

References
[1] Lin, Y.-D. H.-Y.-C.-H.-L. ((March 4, 2013). Booting,

browsing and streaming time profiling, and bottleneck

analysis on androidbased systems. Journal of Network and

Computer Applications, 36, 4 . 1208–1218. .

[2] Ball, T. a. (1996). Efficient Path Profiling. In MICRO 29

Proceedings of the 29th annual ACM/IEEE international

symposium on Microarchitecture (pp. 46-57). Paris, France

1996: IEEE.

[3] Bombieri, N. B. (2015). An enhanced profiling framework

for the analysis and development of parallel primitives for

GPUs. In 2015 IEEE 9th International Symposium on

Embedded Multicore/Many-core Systems-on-Chip

(MCSoC) (pp. 1-8). (Turin, Italy : IEEE.

[4] Cataño, N. a. (2015). A Case Study on Code Generation of

an ERP System from Event-B. In International Conference

on Software Quality, Reliability and Security. IEEE.

[5] Chang, P. P.-m. ((December 1991). Using profile

information to assist classic code optimizations. Software --

Practice & Experience, 21, 12. (pp. 1301 - 1321). Software:

Practice and Experience.

[6] Chevalier, F. A. (September, 2007). Structural Analysis and

Visualization of C++ CodeEvolution using Syntax Trees. In

Ninth international workshop on Principles of software

evolution: in conjunction with the 6th ESEC/FSE (pp. 90-

97). Dubrovnik, Croatia 3-4 : IEEE, 90-97. .

[7] Cormen, T. H. (2009). Introduction to Algorithm. MIT

Press.

[8] Curtsinger, C. a. (2015, October). Coz: Finding code that

counts with causal profiling. In Proceedings of the 25th

Symposium on Operating Systems Principles. (pp. 184-197).

(Monterey, California: Elseveir.

[9] Eid, A. H. (2010). Optimized Automatic Code Generation

for Geometric Algebra Based Algorithms with Ray Tracing

Application. Port-Said.

[10] Froyd, N. M.-C. (2003). Low-overhead call path profiling

of unmodified, optimized code. In Proceedings of the 19th

ACM Annual International Conference on Supercomputing

(pp. 81-90). (Cambridge, Massachusetts, USA : IEEE.

[11] Gabbay, F. a. (1997). Can Program Profiling Support Value

Prediction? In Proceedings of Micro-30 (pp. 270-280).

(North Carolina: IEEE.

[12] Gibert, E. M. ((June 19, 2015). Support for Runtime

Managed Code: Next Generation Performance Monitoring

Units. Computer Architecture Letters, 14, 1 (pp. 62-65).

IEEE.

[13] González, P. M. (2014). Profiling and optimizations for

Embedded Systems. In 2014 Twelfth ACM/IEEE

International Conference on Formal Methods and Models

for Codesign (MEMOCODE). (Lausanne, Switzerland:

IEEE.

[14] Hao, S. L. (2012). Estimating Android Applications’ CPU

Energy Usage via Bytecode Profiling. In GREENS '12

Proceedings of the First International Workshop on Green

and Sustainable Software (pp. 1-7.). Zurich, Switzerland:

IEEE.

[15] Hao, S. L. (2012). Estimating Android Applications’ CPU

Energy Usage via Bytecode Profiling. In GREENS '12

Proceedings of the First International Workshop on Green

and Sustainable Software (pp. 1-7). Zurich, Switzerland:

IEEE.

[16] Hill, E. T. (2013). GrowthTracker: Diagnosing Unbounded

Heap Growth in C++ Software. In 2013 IEEE Sixth

International Conference on Software Testing, Verification

and Validation (pp. 134-143). Luxembourg, Luxembourg:

IEEE.

[17] Lee, S. M.-J. (2009). OpenMP to GPGPU: A Compiler

Framework for AutomaticTranslation and Optimization. In

Proceedings of the 14th ACM SIGPLAN symposium on

Principles and practice of parallel programming . Raleigh,

NC, USA : IEEE.

[18] Lee, Y. a. (2012). A Study on the Smart Virtual Machine for

Executing Virtual Machine Codes on Smart Platforms.

International Journal of Smart Home, 93-106.

[19] Lei, T. L. (2013). From Natural Language Specifications to

Program Input Parsers. In The 51st Annual Meeting of the

Association for Computational Linguistics (pp. 1294-1303).

Sofia, Bulgaria : Omnipress, Inc.

[20] Li, P. B. (2015). Automatic OpenCL code generation

formulti-device heterogeneous architectures. In 44th

International Conference on Parallel Processing (pp. 959-

968). Beijing, China: IEEE.

[21] Marinković, M. K. (July 2016). Platform independent

profiling of a QCD code. In 34th Annual International

Symposium on Lattice Field Theory . (University of

Southampton, UK : PoS.

[22] Matev, V. T. (2009). Method for run time hardware code

profiling for algorithm acceleration. In Proc. SPIE 7363,

VLSI Circuits and Systems IV (p. 736304). SPIE

Proceedings.

[23] Mudduluru, R. a. (2016). Efficient flow profiling for

detecting performance bugs. In Proceedings of the 25th

International Symposium on Software Testing and Analysis

(pp. 413-424). (Saarbrücken, Germany : ACM.

[24] Murugesan, S. a. (October 2012). R., eds. Harnessing

Green IT: Principles and Practices. Wiley Publishing.

[25] Murugesan, S. a. ((March 2017).). de, and Leather, Hugh.

ALEA: A Fine-Grained Energy Profiling Tool. ACM

Transactions of Architecture Code and Optimization, 14, 1.

[26] Oda, Y. F. (2015). Learning to Generate Pseudo-Code from

Source Code Using Statistical Machine Translation. In 30th

IEEE/ACM International Conference on Automated

Software Engineering (ASE) (pp. 574-584). Lincoln, NE,

USA: IEEE.

[27] Pandya, U. K. (2016). In 2016 IEEE Canadian Conference

on Electrical and Computer Engineering. In Electrical and

Computer Engineering (CCECE) (pp. 1-6). (Vancouver,

British Columbia, Canada: IEEE.

[28] Rathod, S. D. (2016). A new Approach to Capture Business

Logic from UI with Automatic Code Generation and

Database Creation. International Journal of Innovative

Research & Development, 119-126.

[29] Riou, E. R. (January 2014). PADRONE: a Platform for

Online Profiling, Analysis and Optimization. In

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 231

International workshop on Dynamic Compilation

Everywhere . In DCE 2014-International workshop on

Dynamic Compilation Everywhere. Vienna, Austria : HAL.

[30] Rubio, A. a. (December 2015). R: A Review of Existing

Methods and an Introduction to Package GUIProfiler. The R

Journal, 7, 2 , (pp. 275-287).

[31] Shi, J. J. (China 2016). Profiling and analysis of object lazy

allocation in Java programs. In Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed

Computing (SNPD) (pp. 591-596). Shanghai: IEEE.

[32] Smith, W. F. (1998). Predicting Application Run Times

Using Historical Information. In IPPS/SPDP '98

Proceedings of the Workshop on Job Scheduling Strategies

for Parallel Processing (pp. 122-142). Orlando:

SpringerVerlag London, UK, 122-142.

[33] Steigerwald, B. a. (2012). Green Software. In Murugesan,

San and Gangadharan, G. R., eds., Harnessing Green IT.

John Wiley & Sons.

[34] Verdoolaege, S. J. (2013). Polyhedral Parallel Code

Generation for CUDA. ACM Transactions of Architecture

and Code Optimization - Special Issue on HighPerformance

Embedded Architectures and Compilers.

[35] Yoon, H.-J. ((April 2012). A Study on the Performance of

Android Platform. International Journal on Computer

Science and Engineering, 4, 4 , (pp. 532-537).

[36] Zheng, Y. B. (2015). Accurate Profiling in the Presence of

Dynamic Compilation. In roceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (pp.

433-450). (Pittsburgh, PA, USA : ACM, .

Muhammad Azeem Received MCS and

MSCS degree from PMAS Arid

Agriculture University Rawalpindi,

Pakistan. He is currently associated with

Barani Institute of Information Technology

as Lecturer. His research interests are Data

Mining, Algorithms.

Munir Ahmad Born in Punjab, Pakistan

1983.Get P h D degree from Capital

University of Science and Technology

Islamabad, Pakistan Current Research

interests Data Science, Data Mining,

Algorithms, Semantic Cache.

Ahthasham Sajid working as Assistant

Professor in Department of Computer

Science Since 2009, He did his PhD in

Opportunistic Networks. His areas of

interest are Wireless & Sensor Networks,

Mobile Communication, and Network

Security. He has more than 15 International

and national publications.

Tahir Iqbal has a master degree in CS

currently working as assistant professor in

Computer Science Department at Bahria

University Lahore. His current areas of

research interests lie in wireless

communication and Networks, Cloud

Computing, and Data Science. He has

number of national and international

journal publications.

Asif Farooq is working as Lecturer in

Department of Computer Science,

University of Lahore. He is very

energetic, hardworking and passionate

about his profession. He is versed with

teaching experience spread over 4 years

including public and private sectors. He

did MS Computer Science from The

University of Management and Technology.

His area of the interest and working domain is Cloud Computing.

Prajoona Valsalan is currently working as

Assistant Professor in the Department of

Electrical and Computer Engineering,

Dhofar University. Her research areas

include Low power VLSI, Sensors, Digital

Design and Networks. She has published

more than 15 papers in various reputed

journals and conferences.

