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Summary 
In the last few years with the advent of various compiler 

languages, it is perhaps difficult to choose one development 

language over another for a specific set of needs such that 

compatibility with a compiler for a particular problem is optimal 

as regards to caching, garbage handling and priority tasking. This 

hints at a need for automated optimization and compatibility. 

One possible way is to have general pseduocode which are 

optimized by profilers for different compilers to identify 

optimization opportunities and best fits using either sampling or 

event-based profilers for a software-mediated algorithm analysis. 

For devices with limited batteries, profilers may be used to 

optimize energy usage, as well. Additionally, if such an 

automated profiler is able to generate formal code from a 

pseduocode, much of Software Management may be automated. 

In this paper, an Android-based profiler integrated with a code 

generator is proposed in line with this rationale. 
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1. Introduction 

The parameters to judge quality of software include 

performance, efficiency, scalability and accuracy, among 

others. Statistics show that from the internet age i.e. 

between 1990 and 1999, approximately 14 major 

programming languages were developed whereas from 

2000 to 2015, 12 new languages were developed which 

means yearly, at least one new language evolves and gets 

prominent. Each language has its own convention, syntax 

and even memory requirements. With the increase in the 

number of languages, it is difficult for programmers to 

develop applications in various languages without in-depth 

knowledge about its compiler language. This requirement 

is tied with scalability and accuracy of any given program. 

In this regard, there exist software which aid developers in 

writing algorithms based on certain rules and convert this 

pseduocode into different languages, partially overcoming 

the need for an in-depth understanding of syntax based on 

a particular compiler language. To evaluate performance 

and efficiency, algorithmic analysis is employed, which 

acts as a diagnostic tool to identify areas for improvement. 

For this, there, too, exist automated software profilers 

which amalgamate information pertaining to software 

space complexity and running time complexity; this 

includes frequency of function calls. Such software are 

classified as either statistical profilers or event based 

profilers. The former samples a target program whereas the 

latter collects target program’s information by analyzing 

loops, function calls, path frequencies (Ball, 1996), load 

unload capacities and even memory requirements. As a 

motivating example, an event-based profiler may be 

employed to manage resources and memory by, for 

exampling, overcoming memory leakage (Hill, 2013). The 

most common optimizers are Common Language Runtime 

(CLR) and its garbage collector. The application of 

profilers is not limited to software and may even be 

applied to an OS (for e.g., see (González, 2014) for a 

Raspberry PI profiler) along with its hardware 

considerations. Profilers may also be employed for value 

prediction (Gabbay, 1997) to eliminate true-data 

dependencies whereby the outcome values of a routine are 

predicted run-time and true-data dependent routines are 

executed based on that prediction. An alternate is to 

predict running time of different applications using 

heuristics (Smith, 1998) but this requires a history of 

execution and thus is inapplicable for novel software. 

Profilers may even focus on hardware codes to improve 

hardware performance (Matev, 2009) There also exist 

profilers which are online and thus especially suitable for 

Cloud deployment when actual hardware is unknown  

(Riou, January 2014) and source code may not be available. 

In this context, profiling is still possible across different 

platforms in the Cloud for High Performance Computing 

(Marinković, July 2016). Profilers may also be GUI-based 

(e.g., (Rubio, December 2015) (Chevalier, September, 

2007). In this paper, an event-based profiler for program 

performance optimization is proposed explicitly to 

determine (run-time or otherwise) function calls, function 

iterations and function paths to address memory usages for 

Android devices. Profiling for Android systems is 

important to understand, say, the retardation experienced 

during browsing, streaming and booting (. Lin, (March 4, 

2013). From the aegis of a function call stack and path, the 

most expensive function can be singled out. This will 
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further allow the tracing of memory leaks for code 

optimization after measuring memory consumption. For 

added robustness, the proposed software is further 

integrated with the capacity to convert pseduocode, written 

out based on certain rules, into formal code via a lexical 

analyzer and optimized using Business Intelligence. This 

optimized code is compiled remotely on a Cloud 

infrastructure. This overcomes any hardware limitations 

and the compiler may even be engineered to follow 

different kernels. The optimized code is then supplied to 

the profiler, analyzed and may then be improved upon by 

the developer. For the time being, the export only supports 

C++ code generation but may be extended to incorporate 

different languages, thus allowing for further compatibility 

across different platforms. The need for a remote compiler 

is justified not only because of the apparent increase in 

performance but because it allows for more log space than 

the limited counterpart on the Android device and further 

liberates hardware constraints. Furthermore, the execution 

of an application requires multiple software layers in the 

Android platform, which may even be programmed in 

different languages.  This paper is structured as follows: in 

Section 2, different methods of profiling and code 

generation in literature are reviewed to identify latest 

methods. In Section 3, the mechanism and algorithm of 

CGen-Profiler are detailed whereas running examples are 

presented in Section 4. In Section 5, an experiment is 

performed to compare how the proposed software fares 

against other existing software for similar ends. The paper 

is concluded in Section 6 with potential benefits and future 

additions. 

2. State of Art 

Since the proposal concerned with this paper involves a 

profiler integrated with a code generator, a survey of state 

of art profilers and code generators is performed to 

highlight popular methodology and identify potential 

contributions. In general, it is noted that each profiler and 

code generator serves purpose for a particular class of 

application for professional and amateur developers, alike. 

 

 

Fig. 1  Proposed framework of  (Bombieri, 2015) 

2.1 Profilers 

Profiling techniques differ in their nature, method and 

reporting methods. For instance, a class of profilers are 

based on lazy allocators (Shi, China 2016) which profile 

objects and manipulate them by run-time events in Java-

based applications running on a virtual machine. Recently, 

packed objects in the IBM J9 Virtual Machine have been 

profiled, too, to measure memory consumption (Pandya, 

2016). Such packed objects offer a better control over the 

layout of objects in memory. Furthermore, they employ a 

flexible memory structure which can be leveraged to 

increase the efficiency of caching. Run-time profiling has 

the advantage of analyzing execution under heavy load 

conditions, which may escape analysis prior to execution. 

Such run-time profilers are expected to be flexible apart 

from being accurate. In this regard, a novel performance 

monitoring unit not based on instrumentation is introduced 

in (Gibert, (June 19, 2015).Casual Profiling is introduced 

in (Curtsinger, 2015, October) via a tool named COZ. 

Causal profiling method narrows down the focal points of 

optimization by running performance experiments in 

parallel to execution of program, the underlying 

assumption being that profiling only tells programmers 

where their program spent most time and this may not 

accurately reflect performance. Event-based profilers 

typically base their methods on byte code instrumentation. 

This assumes that the compiler does not have an in-built 

capacity for optimization via stack allocation and in lining. 

One aspect of CGenProfiler is based on this idea, whereby 

it uses a remote compiler. For compilers without such 

optimization capacities, a novel technique was introduced 

Zheng et al.  (Zheng, 2015) on a Java Virtual Machine 

(JVM). 

 

 

Fig. 2  Block diagram of proposed prototype of  (Chang, (December 

1991) 

Bombieri et al. (Bombieri, 2015)have presented a profiling 

framework for GPU primitives called Pro++ (see Figure 1), 
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which allows measuring of the implementation quality of a 

given primitive compiler by considering the target 

architecture characteristics. The framework collects the 

information provided by a standard GPU profiler and 

combines them based on optimization criteria. The criteria 

evaluations are weighed to distinguish the impact of each 

optimization on the overall quality of the primitive 

implementation. In (Chang, (December 1991), authors 

propose and implement a compiler equipped with 

optimization and profiling capacities for classical methods 

of code optimizations (see Figure 2). The novelty of the 

compiler is in its two components viz. an execution 

profiler and a profile-based code optimizer. The former 

inserts probes into the target program, performs several 

runs, gathers profile information and then feeds this 

information to the latter – the optimizer. 

Froyd et al. in (Froyd, 2003)z proposed a novel low-

overhead call path profiler along with its implementation. 

The profiler samples frequency counts for call graph edges 

and, furthermore, managed to bypass code instrumentation. 

An efficient instrumentation technique is implemented by 

Mudduluru et al. (Mudduluru, 2016) which generates 

object flow profiles for programs written in Java, without 

modifying the underlying JVM. This is done by a method 

called Ball-Larus numbering on a specialized hybrid flow 

graph. In (Matev, 2009), Matev et al. designed a run-time 

profiler on instruction level with a focus on analysis of 

loops. Costly and fine grain blocks are searched for in lieu 

of coarse grain blocks to determine wall clock time. Data 

pertaining to position of blocks, its body, number of 

executions and its size are stored and analyzed by the 

profiler in separate hardware whereas a majority of 

profiling of code is done in software by introducing code 

into the target program which has time overhead. A 

profiling platform specifically for Android platform was 

made by Yoon (Yoon, (April 2012) to analyze the 

platform’s performance via a modified debugging method 

and a trace tool. CGen-Profiler differs in that it allows for 

run-time profiling and includes a path-profiling with 

frequency of function calls to identify expensive iterations. 

This is complemented by the framework in (Steigerwald, 

2012) as an attempt to optimize battery performance of 

Android devices. Such considerations stem from efficient 

use of energy. This is also another important consideration 

not only from an engineering and social perspective but is 

now an important practice for IT development, as well 

(Murugesan, October 2012) and is not limited to hardware; 

the term “green software” is becoming increasingly 

popular. It is important to realize that source code structure 

has an effect on energy consumption by virtue of compiler 

mechanisms. Several mechanisms exist to calculate energy 

consumption of different software. For example, ALEA 

was proposed in (Murugesan S. a., (March 2017). ) to 

profile software at the fine-grained level of loops and 

functions, yielding energy savings up to 2.97 times. A 

similar software which the authors call eCalc (Hao, 2012) 

was introduced for Android systems. To address this 

concern, the implementation of a remote compiler in the 

proposed mechanism is expected to contribute to a 

reduction of hardware waste 

 

 

Fig. 3  A specification tree, as found in  (Lei, 2013) 

2.2 Code Generators 

The discussion of compilers as translators of source 

language code to optimized target language code 

notwithstanding, a great advantage may be leveraged if 

such optimization compilers are complemented with 

translation of pseudo code to formal code, offering a user-

friendly integrated tool. To this end, there are various 

standalone tools available called code generators which are 

either designed for narrowed down purposes or specific 

languages. For instance, in (Eid, 2010), a geometric 

algebra-based code generator is designed specifically to 

represent and process geometric data. In (Cataño, 2015), 

an Enterprise Resource Planning system is code generated 

and evaluated by code generators called EventB2SQL and 

Open Bravo POS. A code generator for Oracle embedded 

with business logic, a GUI and drag-and-drop tool box was 

developed in (Rathod, 2016). In (Lee, 2012), the authors 

develop a code generator which allows for semantic 

translation of code for cross-platform compatibility. 

Similarly, for hardware, a compiler framework converts an 

Open MP programming model to that for NVIDIA’s 

CUDA (Lee S. M.-J., 2009). Similarly, in (Verdoolaege, 

2013), a source-to-source compiler is introduced for 

CUDA’s parallel execution paradigm. In (Li, 2015), an 

automatic code generator called STEPOCL for multicores 

is proposed which uses one piece of code and replicates it 

for other cores along, ensuring compatibility. A generic 

code generator for statistical translation of natural 

language to formal code may be found in a paper by Lei et 

al.  (Lei, 2013), in which the authors implemented a 

statistical (Bayesian) model to translate natural language 

specification into a specification tree (see Figure 3). This 

specification tree is then used to build a C++ input parser. 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.1, January 2019 226 

 

Fig. 4  Pseudocode generated from Python – example in  (Oda, 2015) 

The other way (from code to natural language) has been 

accomplished, as well (Oda, 2015) wherein the authors to 

use the Statistical Machine Translation (SMT) method for 

a tokenized Python code via a proposed tool called 

Pseudogen. Their main idea is show in Figure 4. In 

summary, profilers and code generators are used for a 

particular set of existing problems on a unique platform. 

CGen-Profiler is expected to contribute to the growing gap 

between diversity of software available and narrow 

expertise of developers to address broader platforms 

simultaneously. Since the architecture for kernels across 

platforms are usually different in their execution, the 

translation of data handling by across compilers needs 

careful attention. CGen-Profiler is expected to contribute 

to greener software, as well, for mobile devices powered 

by portable batteries. 

3. Mechanism of CGen-Profiler 

The CGen-Profiler analyzes the pseudocode with the help 

of a formally defined algorithm lexicon for conversion to 

formal code and for profiling. The profiling indicates key 

areas which need to be optimized for efficiency. The 

components of CGen-Profiler are listed out in detail in the 

following subsections, showed pictorially in Figure 5. 

 

 

Fig. 5  Logic flow of CGen-Profiler 

3.1 Pseudo code input 

CGen-Profiler accepts an algorithm in the form of standard 

pseudo code in the particular standard format found in 

(Cormen, 2009) These include reserving formal names for 

standard C++ routines including while, for, switch if-else 

along with their indentation. Incorrect syntax is highlighted 

in red. It is important that the pseudo code must be 

conforming to standards as the inputs are tokenized. If the 

pseudo code is written without standard practices, then a 

token is considered unavailable in the rules. 

Table 1: Symbolic Description 
Lexeme Category Code 

= Comparison = = 
:= Assignment = 
↵ Next statement ; 

input Get input cin>> 
display Give output cout<< 

3.2 Lexical Analyzer 

A lexical analyzer then performs a straightforward 

conversion of the given pseudo code into formal C++ code 

based on a symbol table. A part of the symbol table is 

shown in Table 1. This analyzer parses the algorithm by 

converting the given pseudo code in tokens of lexemes. 

The symbol table is used as a reference to replace tokens 

with formal code. These lexemes are matched with set of 

rules and converted into code parts using the symbol table. 

In case the pseudo code is not standard, the lexical 

analyzer generates an error message and stops the process 

at this stage. 
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Fig. 6  Screenshot of CGen-Profiler with code generated from 

pseduocode 

3.3 Code Generation 

The pseduocode is segmented into code directly from the 

input and data for identification of variables, necessary 

variables and inclusion of called-for libraries. The 

pseduocode itself identifies variables needed. The 

pseduocode is sent to a remote server for compilation to an 

online version of Cygwin supporting Android with POSIX. 

A quick reference on Android architecture may be found in 

(Yoon, (April 2012)). If the code has no compile time 

error, it saves a log file and generates a formal code. The 

metadata of each code is kept separate. This part includes 

function names, as well, determined directly by the lexical 

analyzer. 

3.4 Profiler 

The flow for this profiling is shown in Figure 7. In its 

architecture, the profiler is no different than the 

commonplace profiler for Android Dalvik Debug Monitor 

Service, which is a part of the Android Software 

Development Kit. The profiling tool has the capacity to 

determine function calls, function iterations, 

interdependence of functions, flow of operations and 

duration (in wallclock time) of function execution. Since 

Cygwin is employed as the virtual machine for remote 

compilation instead of a local Linux kernel, the 

commonplace profiler was modified to support dynamic 

profiling. Thus, parts of memory reserved for the kernel 

may be freed up and any garbage dump, poor stack 

allocation and method inlining may be managed 

accordingly. 

In summary, all valid options are profiled and best options 

are compared with the prehistorical data and thus 

optimized. Afterwards, the profiler checks the outputs for 

all cases, ensuring that the output is the same for the given 

inputs and more efficient code is displayed as optimized 

code. The efficient code is sent back again to Cygwin for a 

final compilation. 

 

 

Fig. 7  Profiler logic flow of CGen-Profiler 

4. Running examples 

A pseudo code for finding the factorial of a given integer 

(𝑛 = 5 in this case) is written using recursive functions. 

The algorithm spelled out to CGen-Profiler is as follows: 

 

 

Listing 1: Pseudocode for Factorial of 5 as input to CGen-Profiler 

The software translates the pseudo code into a complete 

C++ code, adding any necessary libraries, function names 

and variables. The outcome obtained is present in Listing 2. 

The pseudo code is fed to the software again but this time, 

with a replacement of the recursive function with a loop. 

The output given is in Listing 3. To show that this 

enhances the algorithm, we profile both codes. These are 

listed in the Results and Discussion section. 
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Listing 2:  C++ code from pseduocode 

 

Listing 3:  C++ code from different pseduocode 

These steps are repeated for the well-known binary search. 

The pseudo code is shown in Listing 4. 

 

 

Listing 4:  Pseduocode for Binary Search as input to CGen-Profiler 

The result, without optimization, is shown in Listing 5. In 

Listing 6, the heuristic optimization process is applied and 

the function itself is integrated in the main function but 

instead of a recursive function, a while loop is added. 

 

Listing 5:  C++ code from pseduocode 

 

Listing 6:  Changed C++ code for binary search 

5. Results and Discussion 

CGen-Profiler is now compared with Microsoft Visual 

Studio’s inbuilt profiler. The same codes were fed to the 

profilers for both binary searches and factorial algorithm, 

once for each version of the algorithm. The runs were 

performed on a Core i-3-3227U CPU @ 3MB Cache, 2 

cores, 4 threads, 1.90GHz base processor frequency, 

5GT/s bus speed and a TDP of 17W with 3.89GB usable 

RAM. Microsoft Visual Studio was also employed as a 
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benchmark to establish the accuracy of the profilers and, 

furthermore, to establish the veracity of the remote profiler. 

5.1 Processing Speed Comparison 

For a measurement of time corresponding to realistic 

epochs, ideally emphasis should be on the wall clock time. 

We thus choose to measure the wall clock speed for each 

code. Such runs may be plotted against frequency of 

function call to measure rates at which the function is 

summoned. The comparison in this section is much simpler 

in that the focus is on CPU usage plotted against wallclock 

time (in seconds). The gradient of the graphs may be used 

to determine processing speed and offer a comparison of 

the profilers. Wall clock measurements for CGen-Profiler 

were accomplished using std::chrono::time_point. The 

number of samples collected for each code were left 

unaltered. The outcomes for profiling are recorded in 

Figures 8 and 9 for the two factorial algorithms whereas 

Figures 10 and 11 record profiling outcomes for the binary 

search algorithm. 

 

 

 

Fig. 8  Profiling for Listing 2 

 

Fig. 9  Profiling for Listing 3 

 

Fig. 10  CPU Usage for Listing 6 

 

Fig. 11  CPU Usage for Listing 5 

Listing 3 and Listing 6 are an optimized version of Listing 

4 and Listing 5, respectively. To see this, observe that the 

CPU usage, as indicated by both profilers, peaks at 0.5 

with different memory usage. The gradient of the graphs 

for the first 0.5s differs in that the first slope is higher, 

indicating that the rate at which memory is consumed is 

higher for Listing 2 (respectively, Listing 5) than that for 

Listing 3 (respectively, Listing 6). This could be explained 

by the frequency of function calls, memory leaks due to 

different algorithms or because one algorithm occupies 

more memory than the other by virtue of running memory 

requirements. Similar results are displayed. 

5.2 Accuracy 

Microsoft Visual Studio notes 90 allocations for Listing 2, 

with 41 samples collected. The number of modules 

assigned for each algorithm differ with 14, and 16 for 

Listing 1 and Listing 3, respectively. CGen-Profiler, on the 

other hands, notes 85 allocations for Listing 2 with 28 

samples collected with modules 18 and 21 for Listing 1 

and Listing 3, respectively. The allocation of more 

modules reflects the remote nature of the compiler. For 

each module, the function names and its calls were 

assigned and were in agreement with both profilers. The 

iterations for the fact function were reported to be 23 for 

both. 

6. Conclusions and Future Work 

A program called CGen-Profiler is proposed which 

simultaneously generates formal code from a given 

pseduocode and profiles it. This combination is optimized 

according to reference architecture for business 

intelligence. Currently, the optimized output formal code is 

generated for C++ only but may be extended to cover other 

languages, as well, by modifying the symbol table. With a 

broader “conversion capacity”, a smart system could be 

devised which automatically determines the best language 

for a given pseduocode, based on memory requirements, 

compilation speed etc. This is hoped to circumvent the 

need for in-depth understanding of different syntax. It is 

hoped that CGen-Profiler may encourage beginners and 
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professionals in their endeavors to develop software. The 

execution of a final compatibility check of the optimized 

program could also be added in future versions. 
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