
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019

23

Manuscript received February 5, 2019
Manuscript revised February 20, 2019

Software Maintenance Model through the Development Distinct
Stages

1Ahmad AbdulQadir Al Rababah, 2Ahmad A. Alzahrani
1Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh 21911, Saudi Arabia.

2Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia.

Summary
With the rapid development of software systems and the growing
demand to follow the results of these systems, in the face of
intense competition to provide the best outputs, it became
necessary to pay attention to the maintenance phase of software
systems, and work to develop them to serve their users
effectively through qualified results, taking into account the
saving time, effort and cost. The proposed model is concerned
with how to maintain the software projects starting from the pre-
testing stages of the software project[1]. The research will
provide in its initial phase the maintenance method from the
implementation stage, where this stage is one of the most
important stages for the formation of software projects, because
it occupies a high weight in building[2], developing and
evaluating the requirements of the issues in various domains.
This manuscript will provide a design model for the application
of maintenance for software projects while saving time, effort
and cost, in additional to ensure positive results with high
performance and efficiency[3].
Key words:
Software System

1. Introduction

High-quality software and the use of modern technologies
are considered the guarantee of the uninterrupted
operation of the enterprise. This also affects its financial
state[4]. Therefore, companies are increasingly demanding
quality and testing software. To reduce the risks of
introducing a low-quality product, improve the level of
software availability and reduce the financial costs of
owning software. It is important to check whether this
product meets the requirements for business, whether it
can work and develop in modern conditions or not[5],[6].
Operations on software testing include: Functional testing
is based on an analysis of the functionality of a component
or system; Automated testing implies software for
performing tests, which allows reducing testing time and
simplifying its process; Performance testing - determines
the performance of the software product; Load testing -
allows you to assess the capabilities of the system or
application in accordance with predefined objectives;
Stress testing - allows you to assess the capabilities of the
system or application in conditions of exceeding the limits
of normal operation; Localization testing is done to make
sure that the localized product is fully functional and

linguistically correct and that there were no problems
during the localization; Compatibility testing is the
process of testing the system with each of the software and
hardware configurations for which support services are
provided; Usability testing allows you to determine how
much the software product is understandable, easy to learn,
easy to use and attractive to users, provided they are used
under specified operating conditions; Security testing -
allows you to assess the security of the software product;
Testing the installation is aimed at checking the successful
installation and configuration, as well as updating or
removing software and hardware[7],[8],[9].
This service has a modular structure, so you can choose
only those elements in which your business really needs.
This helps create a testing process that best meets the
project requirements and allows you to spend your current
budget more efficiently. Independent testing is: Objective
assessment of software quality level, as well as
compliance with the requirements of your company; the
right step, which serves as a guarantee of reducing the
number of hidden defects (errors) in software development.
The company's specialists are highly qualified
professionals who have undergone serious training in
software testing[2],[1].

2. Life Cycle Stages of Software Systems

The phases of software systems development determined
as a lifecycle period of their creation and use, covering
various states, starting from the moment the need arises
for such a system and ending with the moment of its
complete withdrawal from use by users. The life cycle of
information systems includes four stages: pre-design,
design, implementation, operation. The quality of the
system depends on the quality of the design work;
therefore, each stage is divided into a number of stages
and provides for the preparation of documentation
reflecting the results of the work. At the pre-project stage,
some steps can be distinguished, like a collection of
materials for design - provides for the development and
selection of options for the system concept, the
identification of all the characteristics of the object and
management activities, the flow of internal and external
information communications, the composition of tasks and

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 24

specialists who will work in new technological conditions,
their level of preparation as future users system. And then
analysis of materials and documentation - the design
assignment, the approval of a feasibility study. For the
successful creation of a management information system,
the ways of passing information flows are studied
comprehensively, both within the enterprise and in the
external environment.
Creating an information management system for an
organization is a rather complicated and time-consuming
process. The most typical and simple form of changing a
company is automation. A deeper form of organization
change — derived from automation — is the
rationalization of procedures. A deeper change in the
company is business process reengineering. Its essence
lies in the analysis, simplification and modernization of
business processes. New information systems can
fundamentally change the structure of the entire
organization, changing the way the company operates, or
even the direction of its activities. Such a more radical
form of changing the company's activities is called a
paradigm shift. A paradigm shift implies a revision of the
nature of the activity, not of individual procedures and
processes, but of the company itself.
Depending on the type, scope and requirements of the
project, the development procedure is determined[10]. It
will be somewhat different for the development of mobile
applications, embedded software, automation solutions
and databases, but the general sequence of actions for
creating software is universal as shown on Figure1:

Fig. 1 General Model of maintenance from testing phase

Software evolution. Since the mid-50s. began a new
period in the development of computing, associated with
the advent of semiconductor elements. During these years,
the first algorithmic languages and the first system
programs compilers appeared. In 1957, FORTRAN was

created, in 1960 - COBOL, Algol and Lisp, in 1964 -
Basic, Simula, PL / 1, in 1970 - Pascal and Smalltalk. By
the end of the 60s. The number of programming languages
exceeded one thousand. Practically all the basic concepts
procedural, logical, object-oriented programming was
proposed at this time. In subsequent years, progress in
programming automation did not go towards the creation
of new languages, but, on the contrary, along the path of
natural selection. Programming languages were born and
died, but only some of them - the most persistent and
viable - survived to the beginning of the XXI century, and
became standard in the international community of
programmers. Another achievement of the 60s. is the
appearance of the first batch processing systems. The cost
of CPU time has increased in order to increase the
efficiency of using a computer, tasks with similar required
resources begin to come together to create a task package.
Batch processing systems were a prototype of modern
operating systems (OS), they became the first system
programs designed to control the computing process.
Packaged OS greatly facilitated the work, and at the same
time increased the efficiency of the use of computers.
In the 70s. in the technical base there was a transition to
integrated circuits, which gave great opportunities to the
new generation of computers. There are families of
software compatible machines. The first family of
software compatible machines built on integrated circuits
was the IBM / 360 series, which significantly
outperformed the second generation machines in terms of
price / performance. Soon the idea of software compatible
machines became universally accepted.
Computers were still very expensive, but their power and
reliability increased dramatically. Then it began to create
large information systems for industrial and commercial
enterprises, banks, social institutions with displays
connected to the central computer located in the computer
center of the company appeared on the users' workplaces.
To organize the computational process in these conditions,
we needed operating systems of a new type, which allow
organizing a dialogue between a large numbers of users in
the time sharing mode. There were interactive OS.
Currently, the development of software designed for a
wide range of users is no longer taking place in the
competition of individual programmers, but in the process
of fierce competition between software manufacturers. In
the United States alone, more than 50 software
manufacturers have sales of more than $ 10 million, and
ten of them (including Microsoft, Lotus, Novell, Borland,
Autodesk, Symantec and Computer Associates) have sales
in excess of $ 100 million. Non-commercial software is
constantly declining and increasingly limited to programs
created in the process of scientific research or for personal
pleasure. When developing commercial programs, the
main task of development companies is to ensure their

Requirements

Testing

Analysis

Design

Implementation

Maintenance

Coding Debugging Evolution

Deliver

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 25

success in the market. For this, it is necessary that the
programs have the following qualities:

- program functionality, i.e. Completeness of its
satisfaction of user needs;

- visual, convenient, intuitive and familiar to the user
interface;
- ease of learning the program, even for novice users,

which uses informative prompts, built-in directories and
detailed documentation;
- Reliability of the program, i.e. its resistance to user
errors, equipment failures, etc., and its reasonable actions
in these situations.
Software Design – one of the most important components
of the product after the technical characteristics, affecting
the efficiency and speed of user interaction with it[11].
The design stage is divided into two sub stages: first is the
stage of technical design - design solutions are formed for
the supporting and functional parts of the information
system, modeling production, business and financial
situations, setting the task and flowcharts and solving
them.The second stage is the detailed design - the
development and refinement of the system, the adjustment
of the structure, the creation of various documentation are
carried out: for the supply, for the installation of technical
equipment, operating instructions, job descriptions.
Requirements analyzed for design are defined as a rule,
simplicity, intuition and minimum costs for performing
the action (achievement of the result), as well as beauty
and conformity to the style of the company and (or) the
product are important[12]. The analysis- design model
is evaluated by the software group in an effort to define
whether it holds faults, contradictions, or tasks among all
various transactions ; whether well another possibility
exist which shown on Fig.2; and whether the model can be
applied within the restrictions plan and cost that have been
recognized[13].

Fig. 2 Analysis-Design transactions Model

The code is that part of the work that is usually associated
with software development as such. It is important that the
code is sufficiently optimized, concise and

understandable[14]. We assign the languages of the
programmers specializing in their use to the tasks selected
for the specific tasks[15, 16].
Software Implementation and Testing is carried out at
each stage of software development Fig.3 , includes a lot
of tests on the test plan, customized taking into account
the specifics of the project at the stage of drafting the
technical assignment. The test results are documented and
available to the client in real time[4]. Payment for the
product is made only after passing all kinds of tests,
including client tests[17]. The stage of implementation of
the information system involves initially the preparation
for commissioning - at this stage installation of technical
means, system tuning, personnel training, trial use are
performed. And then as conducting pilot tests of all
system components before launch. Lastly by putting the
instanced results into commercial operation, that is issued
by the act of acceptance of work. At the stage of operation
of the information system in the operating mode, the
adjustment of functions and control parameters is not
excluded, also carried out operational service and
administration.

Fig. 3 Software development testing

Software Maintenance, the program enters the
maintenance phase when transferred to users. The
software maintenance goals are to provide financial
support for a distributed software product[18]. Just like
software development, maintenance is also a frequent
program changes, but the goals are significantly reduced:
purposes are to maintain software that can be used for
cost-effectiveness and in this case no ambition for adding
new conditions or functions[1]. Developers changes made
at this level are general corrections or adaptations to
technological changes or uses Fig.4 Many software
problems arise from the fact that the program is being
used while maintaining it[4, 10]. Maintainability: Is the
simplicity with which a program can be precise if a fault
arises. Since there is no straight way of measuring this,
incidental way has been used to measure this. It measures
when a fault is exposed to determine how much time it
takes to investigate the change.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 26

Fig. 4 Software Maintenance overview and activities

The unique evolution reason is considered the knowledge
volatility of the parties concerned, in which the parties
concerned learn how to manage this technique.
Stakeholders have the learning process that found suitable
solutions, so no reason for additional development and the
software will reach the enough stability level. Therefore,
maintenance still may be necessary[2]. The above reasons
for the evolution of the program are the volatility of
requirements, technology or knowledge of the parties
involved. Once the fluctuations are over, the software
project reaches stability[19]. The non-original
development team can maintain the program. During the
maintenance period it is normal that there are at least two
versions of the program: a copy in production is
maintained (maintained), while the development team
develops simultaneously a different version for future
releases[20].
System Documentation is a procedure that fixes the plan,
process and result of software development. Includes all
the initial information, work plans, costs, testing, tasks list
of performers at each point in time, work reports and so

on[21]. Documentation is necessary for the rapid and
accurate identification of errors, transparency of joint
work, as a mandatory legal part of the contract[1, 2].

3. Propesed Models

As mentioned in the literatures, the coding-step value of
the software projects is around 60%, that means the all
other project development stages are taking only 40%, it
leads us to conclude that coding and debugging as sub
stages of the implementation are weighted 70% at least,
while the remaining steps, including the requirements
analysis, design, and testing will have just 30% that means
10% for each. So it is very useful and performed to start
the maintenance before the testing phase of the software
project[5]. In this research, the maintenance model of
software projects was divided into three sub models as
shown on Fig.5:

- Sub Model 1: Maintenance to (Implementation,
Design)
- Sub Model 2: Maintenance to Implementation
- Sub Model 3: Maintenance to Design

Fig. 5 Proposed Models of maintenance starting before testing Step

First sub model: After the maintenance request, we
return to the stage of participation (design -
implementation). In this way, we have saved the time, cost
and effort we take in the testing phase of the software
project that may equal no less than 10% of the overall
value. There must be strong coordination between the two
phases of design and implementation (coding part)[9] in
order to maintain cohesion requirements with a high
quality and efficiency to be used as necessary part for the
next stages of the projects development[22], in this
moment the debugging part is not needed and its value
becomes = 0, this method is represented on Fig. 6.

Design

Maintenance

Evolution

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 27

Fig. 6 Sub Model of maintenance: Implementation-Design

Second sub model: As the maintenance request will arise,
this model will activate the link between both system
stages maintenance and implementation directly. So this
model will jump over the testing, taking into consideration
the implementation steps coding and debugging that will
have values (60% + 10%) with saving of testing
weight(time, cost and effort) 10%. The internal
relationship between the implementation steps has to be
very consistent and accurate for exact succession of the
programming side of the project[23], this method is
represented on Fig. 7.

Fig. 7 Sub Model of maintenance starting from the implementation step

Third sub model: In this type of maintenance of the
software projects, the maintenance request is answered by
direct return to the design stage, so that the maintenance
relationship is activated by the design without attention to
the implementation and testing stages[24]. Therefore, the
total time, cost and effort used for these stages in the
previous first and second sub models will be saved and
totally it becomes nearly = 0, for this sub model the
project managers must focus on managing people and
project teams distribution. It is a must to merge the team
of implementation with the design team according to the
type and the size of the software project in maintenance-
design demands[22]. Such created new team will play the
role of the hidden implementation and the design as well;
especially it is well known that its weight is around 70%
in additional to 10% of the testing weight [7, 25]. This sub
model is illustrated on Fig. 8.

Fig. 8 Sub Model of maintenance starting directly from a design step

In the following table 1. There is a distribution of the
importance value that is distributed to all stages of
development of the software systems such as analysis,
design, implementation and testing.

Table 1. Value distributions among the system development stages in
several proposed models

An
aly
sis
%

Des
ign
%

Implem
entation

%

Testi
ng
%

Total
usage

%

Total
saving
value

%
Existing
Model 10 10 60 + 10 10 100 0

Sub
Model 1 10 10 60 + 0 0 80 20

Sub
Model 2 10 10 60 + 10 0 90 10

Sub
Model 3 10 10 0 + 0 0 20 80

4. Conclusion

By implementing and conducting the necessary
examination and analysis on the results of the
programming and the compatibility of those results with
the requirements of the user based on the issue required to
establish the software system. It was clearly found that the
efficiency of the software system increased by 20% when
applying the first model: design – implementation, also it
was increased by 10% when applying the second model:
implementation based, and lastly when applying the third
model- design based, the efficiency may be increased up
to 80%, this means that the time, effort and cost of the
software projects will be reduced by those percentages
when following any of these three models mentioned
above.

5. Acknowledgement

This work was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah,
under grant No. (D-161-830-1439). The authors, therefore,
acknowledge with thanks DSR technical and financial
support.

Design

Implementation

Maintenance

Evolution

Design

Maintenance

Evolution

Design

Maintenance

Evolution

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 28

References
[1] Grieskamp, W., et al., Model‐based quality assurance of

protocol documentation: tools and methodology. Software
Testing, Verification and Reliability, 2011. 21(1): p. 55-71.

[2] Al-Rababah, A.A., T. AlTamimi, and N. Shalash, A New
Model for Software Engineering Systems Quality
Improvement. Research Journal of Applied Sciences,
Engineering and Technology, 2014. 7(13): p. 2724-2728.

[3] Asuncion, H.U., A.U. Asuncion, and R.N. Taylor. Software
traceability with topic modeling. in Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering-Volume 1. 2010. ACM.

[4] Hoefler, D., et al., Software maintenance management.
2012, Google Patents.

[5] Al-Rababah Ahmad, A., UML–Models Implementations in
Software Engineering System Equipments Representations.
International Journal of Soft Computing Applications,
2009(4): p. 25-34.

[6] Fitzgerald, B. and K.-J. Stol, Continuous software
engineering: A roadmap and agenda. Journal of Systems
and Software, 2017. 123: p. 176-189.

[7] Vyatkin, V., Software engineering in industrial automation:
State-of-the-art review. IEEE Transactions on Industrial
Informatics, 2013. 9(3): p. 1234-1249.

[8] Ciccozzi, F., et al., Model-Driven Engineering for Mission-
Critical IoT Systems. IEEE Software, 2017. 34(1): p. 46-53.

[9] AlRABABAH, A.A., IMPLEMENTATION OF
SOFTWARE SYSTEMS PACKAGES IN VISUAL
INTERNAL STRUCTURES. Journal of Theoretical &
Applied Information Technology, 2017. 95(19).

[10] Trivedi, S.H., Software testing techniques. International
Journal of Advanced Research in computer science and
software Engineering, 2012. 2(10).

[11] Siewiorek, D. and R. Swarz, Reliable Computer Systems:
Design and Evaluatuion. 2017: Digital Press.

[12] Al-rababah, A.A. and M.A. Al-rababah, Module
Management Tool in Software Development Organizations
1. 2007.

[13] Moustafa, A., et al., A New Dynamic Model for Software
Testing Quality. Research Journal of Applied Sciences,
Engineering and Technology, 2014. 7(1): p. 191-197.

[14] .Lewis, W.E., Software testing and continuous quality
improvement. 2016: CRC press.

[15] Al Ofeishat, H.A. and A.A. Al-Rababah, Real-time
programming platforms in the mainstream environments.
IJCSNS, 2009. 9(1): p. 197.

[16] Newcomer, K.E., H.P. Hatry, and J.S. Wholey, Handbook
of practical program evaluation. 2015: John Wiley & Sons.

[17] Utting, M., A. Pretschner, and B. Legeard, A taxonomy of
model‐based testing approaches. Software Testing,
Verification and Reliability, 2012. 22(5): p. 297-312.

[18] Panichella, S., et al. How can i improve my app? classifying
user reviews for software maintenance and evolution. in
Software maintenance and evolution (ICSME), 2015 IEEE
international conference on. 2015. IEEE.

[19] Rodríguez, P., et al., Continuous deployment of software
intensive products and services: A systematic mapping
study. Journal of Systems and Software, 2017. 123: p. 263-
291.

[20] Silver, A., Collaborative software development made easy.
Nature, 2017. 550(7674): p. 143-144.

[21] Rafi, D.M., et al. Benefits and limitations of automated
software testing: Systematic literature review and
practitioner survey. in Proceedings of the 7th International
Workshop on Automation of Software Test. 2012. IEEE
Press.

[22] Mir, F.A. and A.H. Pinnington, Exploring the value of
project management: linking project management
performance and project success. International journal of
project management, 2014. 32(2): p. 202-217.

[23] Snyder, C.S. A Guide to the Project Management Body of
Knowledge: PMBOK (®) Guide. 2014. Project
Management Institute.

[24] Nguyen, C.D., et al., Evolutionary testing of autonomous
software agents. Autonomous Agents and Multi-Agent
Systems, 2012. 25(2): p. 260-283.

[25] Vogel-Heuser, B., et al., Evolution of software in automated
production systems: Challenges and research directions.
Journal of Systems and Software, 2015. 110: p. 54-84.

Ahmad AbdulQadir Al Rababah
received Phd degree in 1998 in computer
Engineering, now he is an associate
professor at king Abdulaziz
university(KSA), he has around 20
experience years of teaching and research
in different fields of computing technology
and engineering, his research interest areas
are: information systems, software
engineering, artificial intelligence and

others.

Dr. Ahmad A Alzahrani has received
a PhD in computer science from La Trobe
University in 2014, he is currently an
assistant professor in the faculty of
Computing and Information Technology at
King Abdulaziz University. His research
interests include pervasive and mobile
computing, Human-Computer Interaction
and data science.

