
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019

102

Manuscript received February 5, 2019
Manuscript revised February 20, 2019

An efficient Modules for HPC Topologies Mapping

Saad B. Alotaibi1 and Prof. Fathy Elbouraey2

1,2King Abdulaziz University, Jeddah, KSA

Summary
Nowadays, as we are moving towards the Exascale era, the
topology-aware process mapping is becoming an important
approach to improve the performance and reduce the power
consumption of Exascale applications. Accordingly, most
researchers in this area have proposed many techniques and
approaches for finding the best and efficient topology aware
process mapping. In this paper, we have proposed the main
modules for any high-performance computing (HPC) topologies
mapping technique which includes parallel application behavior
analyzer module, physical topology generator module for the
target machine, virtual topology generator module for the entire
parallel application and topologies mapper module for mapping
the process to the processor during runtime. All models work as a
dynamic modules.
Key words:
HPC, Physical Topology, Virtual Topology, Topologies
Mapping, Dynamic Module, Static Module.

1. Introduction

High performance computing (HPC) refers to a computing
system and environment that typically uses many
processors (as part of a single machine) or several
computers organized in a cluster (operating as a single
computing resource). There are many types of HPC
systems ranging from large clusters of standard computers
to highly specialized hardware. Most cluster-based HPC
systems use high-performance network interconnects, such
as those from InfiniBand or Myrinet. The basic network
topology and organization can use a simple bus topology
[1] [2]. In high performance environments, the mesh
network system provides a shorter latency between hosts,
thus improving overall network performance and
transmission rate. “Figure 1” shows a mesh HPC system.
In a mesh network topology, this architecture accelerates
cross-host communication by reducing the physical and
logical distance between network nodes. Although network
topology, hardware, and processing hardware are
important in HPC systems, the core functionality that
makes the system so effective is provided by the operating
system and application software.

Fig. 1 HPC: Compute Nodes & Control Node

HPC systems use specialized operating systems that are
designed to look like a single computing resource. As can
be seen from “Figure 1”, there is a control node that forms
the interface between the HPC system and the client. The
control node also manages the work distribution of the
compute nodes [3]. For task execution in a typical HPC
environment, there are two models: Single
Instruction/Multi Data (SIMD) and Multiple
Instruction/Multi Data (MIMD). SIMD performs the same
computational instructions and operations across multiple
processors, but for different data ranges, it allows the
system to compute the same expression using many
variables simultaneously. MIMD allows the HPC system to
perform different calculations at the same time using
different variables, making the entire system look like not
just a computing resource without any features (although it
is powerful), it can perform many calculations
simultaneously. Whether using SIMD or MIMD, the basic
principles of a typical HPC are still the same: the entire
HPC unit behaves like a single computing resource,
spreading the actual requested load to each node [4]. HPC
solutions are also dedicated units that are specifically
designed and deployed to act as large computing resources.
Based on the previous, the matching communication
patterns of the parallel application into target machine
topology (HPC systems) is an important task in order to
improve the performance of the application as well as
reduce the power consumption. As we know, the modern
machine has multi nodes, cores, memories, etc. Actually,

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 103

this complexity of the devices needs to be cautious in
adapting the application to these devices in order to run the
application in the best form. For that matter, we have
studied how to make the important steps to do the mapping
of the virtual topology of the parallel application onto the
physical topology of the target machine. We have built an
architecture in order to clarify the details of each module
and facilitate constructive. In the following section we
described the important technical background related to the
main modules of the topologies mapping.

2. Technical Background

2.1 Parallel Programming Models

Parallel programming is a programming method that
achieves faster than serial programming by simultaneously
executing computer instructions. Parallel programming is a
concept that is proposed in relation to traditional serial
programming. In serial programming, a program's
instructions are executed sequentially on a single CPU,
while in parallel programming, a program is divided into
separate parts and executed synchronously on one or more
CPUs to achieve higher execution of efficiency and
performance [5].
According to the underlying memory structure, parallel
programming can be divided into the following three
programming types:

• Shared memory model “Figure 2”: Multiple
threads or processes running simultaneously [6].
They share the same memory resource, and every
thread or process can access the memory
anywhere. For example, OpenMP uses a shared
memory model.

• Distributed Memory Model “Figure 3”: Multiple
independent processing nodes work at the same
time, and each processing node has a local private
memory space. A process executing a program
can directly access its private memory space. If a
process needs to access a private space at another
processing node, the process needs to send
information to the process for access. MPI is a
distributed memory model [6].

• Distributed shared memory model “Figure 4”:
The entire memory space is divided into shared
space and private space. Each thread has access to
all of the shared space, and each thread has its
own separate private space. Unified Parallel C
uses a split global address space model [6].

The following figure “Figure 2” explains the shared
memory, distributed memory as well as distributed shared
memory as a hardware architecture.

Fig. 2 Shared, Distributed and Shared Distributed Model

These types of parallel programming models can be
integrated as a hybrid parallel programming models, the
following section illustrates the hybrid model.

2.2 Hybrid Parallel Programming Model

Today, high-performance computer (HPC) systems
typically have a hierarchical hardware design: a shared
memory multi-core CPU to many nodes connected via a
network infrastructure. Parallel programming must
parallelize distributed memory parallelism with shared
memory in parallel within each node in the node
interconnect. This trend is even intended to expand the
range of hardware design that will continue in the
foreseeable future of its advanced technology system.
However, always with pure MPI, each CPU core has a
processing option, with its own address space, a separate
entity [7]. In the study of computing distribution, the
interface of transport is based on the parallel application
that extends to numerous algorithms of different kinds of
processors. This can experience loss of efficiency when
located in such a construction of obligatory applications.
The ability of parallel is primarily reduced when many
cores of processors are enabled. Otherwise, OpenMP is a
shared parallel programming memory paradigm that
delivers parallelism of thread-level. Combining OpenMP
and MPI parallelization to build a hybrid program offers
two levels of similarity. This kind of approach resolves the
communication load of MPI and exposes the OpenMP
overhead due to destruction and creation. For various
applications, the idea of the model which is hybrid model
OpenMP and MPI has made it prove better performance
than the only method of MPI. The use of OpenACC
interface delivers instructions of the compiler, environment
variables, library calls to enable programmers to state code
of parallel for platforms such as the (GPGPU) Which is

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 104

referred as general graphics processing unit. Scanning
MPAC by using OpenACC can run system of the side in a
cluster using the total amount of a number of cores of
aggregate allocated between nodes of the group [8].
Finally, the following sections explain the main parallel
programming models in each hybrid technique.

2.2.1 OpenACC

A new instruction-based accelerator parallel programming
standard was released at the Seattle Supercomputing
Conference (SC11). The goal of this development standard
is to allow more programmers to use GPU computing,
while the results can be used across accelerators and even
on multicore CPUs. In short, OpenACC instructions work
much the same way as OpenMP instructions, but the
former is especially useful for highly data-parallel code [9].
They can be plugged into standard C, C++ and Fortran
programs to direct the compiler to parallelize certain code
segments. The compiler pays special attention to the
logical relationship of data moving back and forth between
the CPU and the GPU (or other) and maps the computation
to the appropriate processor. This way, developers can
make relatively small changes to existing or new code to
mark the accelerated parallel region. Since the instruction
design is for a general-purpose parallel processor, the same
code can run on a multi-core CPU, GPU, or any other type
of parallel hardware supported by the compiler. This
hardware independence is especially important for HPC
users because they are reluctant to accept vendor-restricted,
non-portable programming environments. To this end, the
OpenACC design team emphasizes hardware
independence. Programmers cannot specify or guarantee
the use of any hardware-specific features in OpenACC
directives because portability and performance portability
are prioritized [10].

2.2.2 MPI: OpenMPI

Before the 1990s, programmers were not so lucky. Writing
concurrent programs for different computing architectures
is a difficult and lengthy task. At the time, many software
libraries were able to help write concurrent programs, but
there wasn't a standard that everyone accepted to do this.
At the time, most concurrent programs only appeared in
the fields of science and research [11]. The most widely
accepted model is the messaging model. What is a
messaging model? It actually refers to a program that
accomplishes certain tasks by passing messages between
processes (a message can be understood as a data structure
with some information and data). In practice, concurrent
programs are particularly easy to implement with this
model. For example, the master process can assign this
work to it by sending a message describing the job to the
slave process. Another example is that a concurrent sorter

can sort the data visible to the current process (which we
call local) in the current process, and then merge the sorted
data sent to the neighbor process. Almost all parallel
programs can be described using a messaging model. Since
many of the software libraries used this messaging model
at the time, but there were some minor differences in
definitions, the authors of these libraries and others have
defined a standard for messaging interfaces at
Supercomputing 1992 in order to solve this problem - also
It is MPI. This standard interface allows programmers to
write concurrent programs that run in all major
concurrency frameworks. And allow them to use the
features and models of some popular libraries that are
already in use at the time [11] [12]. By 1994, a complete
interface standard was defined (MPI-1). We have to
remember that MPI is just a definition of an interface.
Then the programmer needs to implement this interface
according to different architectures. Fortunately, a
complete MPI implementation has emerged. After the first
implementation, MPI was heavily used in the messaging
application, and remains such programs written standard
(de-facto).

2.2.3 OpenMP

OpenMP (Open Multi-Processing) is a multi-threaded
concurrent programming API that supports cross-platform
shared memory. It runs on most processor architectures
and operating systems using C, C++ and Fortran languages,
including Solaris, AIX., HP-UX, GNU/Linux, Mac OS X,
and Microsoft Windows. Includes a set of compiler
directives, libraries, and some environment variables that
can affect the behavior of the run [13] [14]. OpenMP is
portable, extensible model provides programmers with a
simple and flexible development platform, from standard
desktop computers to supercomputer parallel application
interfaces. Applications built with a hybrid parallel
programming model can use both OpenMP and MPI, or
more transparently through a cluster of computers running
on OpenMP-extended non-shared memory systems.
OpenMP is a widely accepted set of Compiler Directives
for multithreaded programming of shared memory parallel
systems, led by the OpenMP Architecture Review Board
[15]. OpenMP support of programming languages,
including C language, C ++ and Fortran; and support for
the OpenMP compiler include Sun Studio and Intel
Compiler, as well as open source in GCC and Open64
compiler. The programmer specifies his intention by
adding a dedicated pragma to the source code, so that the
compiler can automatically parallelize the program and
add synchronization mutex where necessary. In other word,
OpenMP is a cross-platform multi-threaded
implementation where the main thread (sequential
execution instructions) generates a series of sub-threads

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 105

and divides the tasks into these sub-threads for execution.
These child threads run in parallel, and the runtime
environment assigns threads to different processors. The
code snippet to be executed in parallel needs to be marked
accordingly. The precompiled instruction is used to
generate the thread before the code snippet is executed.
[16] [17]

2.3 Topologies

Topology is used to refer to a structure attached to a set X
that essentially depicts set X as a topological space that
can handle the properties of convergence, connectivity,
and continuity under transformation. In this dissertation,
we focus on two types of topologies including the virtual
topology of the parallel application and the physical
topology of the target machine. Regarding to virtual
topology, the communication model of a process set can be
represented by a graph, the nodes represent processes, and
the edges are used to connect processes that communicate
with each other [18]. MPI provides messaging between any
pair of processes in a group, and does not require a channel
to be opened explicitly. Therefore, in a user-defined
process map, "chain loss" does not prevent messages from
being exchanged between processes, which means this
connection is ignored in the virtual topology. This strategy
implies that the topology does not give a way to name this
communication path. Another possible result is that when
mapping an automatic mapping tool (if it exists in the
runtime environment) will not consider this edge, there is
no weighting in the communication graph, so the process is
either simple or not connected at all. Using a diagram to
illustrate the virtual topology is sufficient for all
applications. However, in many applications the graph
structure is regular, and the creation of detailed graphs is
inconvenient for the user and may lack effectiveness at
runtime. Most of the parallel applications used use process
topologies like rings, 2D or higher dimensional meshes,
and rings. These structures are completely defined by the
number of dimensions and the number of processes in each
respective coordinate direction. Moreover, grid and ring
mapping problems are generally easier than mapping of
normal graphs. Finally, a lot of applications use the
processes topology [19]. The following figure “Figure 3”
show all the virtual topology features.

Fig. 3 Virtual Topology Example with features [20]

For the physical topology, the physical topology represents
the hardware details whether in the form of a tree or graph.
The hardware maybe networks details, processors,
memories, caches, storages, and so on. In the following
figure “Figure 4” An example of the physical topology
(Hardware Information).

Fig. 4 Physical Topology

2.4 Parallel Application Communications

Parallel application has two important types of
communication. The first one is peer-to-peer
communication or point-to-point communication which
involves only two different processes at the same time. The
second one is collective communication which refers to a
method involving all processes in a communicator. To
begin with first type in the following section.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 106

2.4.1 Point-to-Point Communication (MPI Send and
Receive)

Sending and receiving are two basic concepts in MPI.
Almost all individual methods in MPI can be implemented
using the underlying send and receive APIs. The method of
sending and receiving MPI is as follows: At the beginning,
the A process decides to send some messages to the B
process. The A process will package all the data that needs
to be sent to the B process and put it in a cache. Because
all data is packaged into a large message, the cache is often
compared to an envelope (just like we pack a lot of
stationery into an envelope and then send it to the post
office). After the data is packaged into the cache, the
communication device (usually the network) is responsible
for passing the information to the right place. The correct
place is the process that is determined by a particular rank.
Although the data has been sent to B, Process B still needs
to confirm that it wants to receive A's data. Once it
determines this, the data is transmitted successfully.
Process A receives the information that the data is
delivered successfully, and then goes to other things.
Sometimes A needs to pass a lot of different messages to B.
In order to make it easier for B to distinguish between
different messages, the MPI runtime sender and receiver
additionally specify some information IDs (official names
are tags). When B only asks for information about a
particular tag, other information that is not the tag will be
cached first, and will be given to B when B needs it

2.4.2 Collective Communications

We have explained peer-to-peer communication, which
involves only two different processes at the same time.
Collective communication is a method of communication
which involves participation of all processes in a
communicator. The most important thing with collective
communication is the idea of synchronization points
between the parallel application processes. This means that
all processes of parallel application in the implementation
of the code must first have to reach a synchronization point
to continue the implementation of the code behind. The
example of collective communications is Broadcast,
Allgather, Gather and Scatter. Now, we've covered all the
important information about topologies mapping, for that
matter, we will explain the main modules of any HPC
topologies mapping in the following sections which
combines “Application Behavior Analyzer Module”,
“Physical Topology Generator Module”, “Virtual
Topology Generator Module”, and finally the “Topologies
Mapper Module”.

3. HPC Topologies Mapping Modules

To facilitate the idea we will start with the high level
design of any HPC topologies mapping (Proposed
Technique) based on our research in this area “Figure 5”.

Fig. 5 Proposed Technique for any HPC Topologies Mapping

The proposed technique architecture shows the exact steps
of the mapping algorithm. In the beginning, the proposed
technique analyzes the entire parallel application by the
“Behavior Analyzer algorithm, will be explained later in
details”, and then detect the processes that have the highest
communication between each other. Based on this result,
the “Virtual Topology Generator” builds the virtual
topology. In addition, the virtual topology pass in several
stages, starting from detect the number of parallel
application processes to generate the grid of the virtual
topology. In same time and as parallel step, the proposed
technique detects the target machine and collect all the
necessary information such as cores, GPUs, CPUs,
memories etc. and then create the physical topology by
“Physical Topology Generator”. After that and based on
the previous steps, the mapping algorithm takes the virtual
topology and physical topology in order to initialize the
mapping process. Mapping algorithm read the virtual
topology as a grid with multi dimension and this grid was
ordered based on the highest communication between the
processes. After that, takes the processes one by one based
on the grid ordered and bind it on the processor. This
processor was extracted from the physical topology and
this topology was built in the form of a tree with multi
levels. The mapping algorithm reads this tree and get the
exact levels of processor ID and then map this processor
with process. Moreover, the mapping algorithm ensures the
process implementation on this processor until the end.
Finally, the proposed technique has four main modules
including: Application Behavior Analyzer Module,
Physical Topology Generator Module, Virtual Topology
Generator Module, Topologies Mapper Module. The
following sections will explain all the modules in details.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 107

3.1 Parallel Application Behavior Analyzer Module

Parallel application has two important types of
communication. The first one is peer-to-peer
communication or point-to-point communication which
involves only two different processes at the same time. The
second one is collective communication which refers to a
method involving all processes in a communicator. In
addition, the main model of parallel application is MPI.
MPI doesn’t have a direct way to detect the number of
messages that transmitted between the processes. For that
matter, we have developed a parallel application behavior
analyzer without editing on the main code for detecting
and counting all the messages that happened between all
the processes. After that, we used this number of messages
between the processes as a weight for reordering the
processes in the virtual topology to prepare it for the
mapping process. The following figure “Figure 6”
illustrates the architecture of the application behavior
analyzer module.

Fig. 6 Architecture of the application behavior analyzer module

The application behavior analyzer works as a middle
between the MPI functions calls and the functions
execution as shown in the architecture “Figure 6”. To

begin with first step, the module works with receive the
MPI communication functions only such as Send, Receive,
Broadcast, ...etc. before execution. After that, the analyzer
uses Tag of the messages to detect and classify the
message, then identify the Id of process source and
destination for consequence action which is save all
communications that happens between the processes with
IDs in table A, then allow original MPI communication
function to complete execution. We have now data that
represents the communications between all the processes in
the parallel application. The second step of the analyzer,
takes this data and make a mathematical calculations to
provide how many times process X communicate with
process Y, such as (P1 P2 = 4) and then save this
results in the table B. The third step of the analyzer module
is construct file “C” type of MPI ranks file for saving the
final result which is sorting the processes based on the
highest communication that’s happened between the
processes. Finally, the “Virtual Topology Generator”
access this file “File C” to reordering the processes in the
virtual topology to put the processes that has highest
communications near of each other. The “Virtual
Topology Generator Module” described in the following
section.

3.2 Virtual Topology Generator Module

In reality, most of studies depends on the technology of
graph for creating the virtual topology. We have built our
virtual topology as a grid to facilitate the communication
between processes. So that, the MPI provide two important
types of virtual topology including Graph and Cartesian.
The proposed virtual topology based on the Cartesian
virtual topology. The following figure “Figure 7” describes
the architecture of the virtual topology generator module.

Fig. 7 Virtual Topology Generator Module Architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 108

First of all, the “virtual topology generator module” detect
the processes number of the Exascale application, based on
this number the dimension of the virtual topology will be
created (ex: 6 processes – 2-Dimensions 2*3). Then, the
generator makes the virtual topology accepted the
processes reordering to allow the mapping algorithm match
the virtual topology onto the physical topology in the right
way. Moreover, the generator makes this topology as a
periodic for a cyclic boundary. Then, it collects all the
processes of the Exascale application and export it into the
virtual topology with numeric ordering. At this step, we
generate the virtual topology that contains all the Exascale
processes, these processes not ordered based on any wright,
for that matter we have developed the “Application
Behavior Analyzer Module” to provide us the new
processes ordering based on the highest communication
between each other. The “virtual topology generator
module” takes this weight for reordering the processes in
the grid and put the processes that has a highest
communication near to each other. Finally, we have the
virtual topology for the Exascale application and ready to
map it with the physical topology. The physical topology
generator module explained in the following section.

3.3 Physical Topology Generator Module

Actually, gathering the information of target HW not easy
task. We have tried a lot of methods and technique to get
the hardware information but we can’t do it as a dynamic
hardware topology. With HWLOC [21], we can gather all
the necessary information of the target hardware and we
have developed our physical topology as a dynamic
physical topology based on HWLOC library. Our proposed
topology, depends on the operating system of the target
machine to detect the processors are Idle or Busy. The
following figure “Figure 8” explains the architecture of the
physical topology generator.

Fig. 8 Physical topology generator architecture

The physical topology generator module begins with detect
the target hardware and then aggregate all the hardware
information including NUMA memory nodes, shared
caches, processor sockets, processor cores, PCI
devices/bridges and simultaneous multithreading …etc.

After that, the generator built a tree with 5 levels to export
this information, the root will be the machine and the
levels are processing units. In the parallel step, the
generator constructs a data table to save the number of
nodes and the number of cores because this information is
very important during the mapping phase, to divide the
communication patterns of the Exascale application based
on these numbers. Actually, the benefit of a tree approach
over a topology matrix is that there is no need for
considering the aspects of the latency and speed of the
cache hierarchy. In the algorithm, upward processing is
carried out for the topology tree. The processes are
grouped recursively based on the next level's arity. Finally,
the mapping algorithm uses this tree to prepare the
process-to-processor mapping stage. the “Topologies
Mapper Module” described in the following section.

3.4 Topologies Mapper Module

The mapper module depends entirely on the modules of
virtual topology and physical topology generator. The
following architecture explains the module in details
“Figure 9”.

Fig. 9 Mapper Architecture

The topologies mapper module works after generate the
physical topology of the target machine and the virtual
topology of the parallel application. The first step, the
mapper takes the physical topology and reads the tree from
the first level (Level 0 = Machine) and go to the processor
depth (level 3 = core), and then get the index of this object
as a physical index. After that, the mapper module
allocates cpuset as an empty temporary set regarding to
specific processor in specific depth, this cpuset has the
target processor index and then check if this index busy or
idle based on the target machine operation system. The
second step, the mapper takes the virtual topology and
reads the grids and start taking the first process Id. The last
step, the mapper takes this process id and processor index
and pin it together by hardware low level function using
hardware API based on C language, and then bind this
process with target processor until end the execution to

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 109

prevent the process migration. Finally, we’ve got fantastic
results after implementing and testing these models with
each other, the following section cover the implementation
and testing of these modules.

4. Implementation and Testing

The explained implementation and testing in this paper
were performed on a cluster with multicores platform (12
processors). We have tested the proposed modules more
than 50 times, and these modules demonstrated impressive
performance when there was a higher level of irregularity
in the communication pattern. Gains shown in some cases
were even up to the extent of 50 percent. All the parallel
programming was tested with 6 processes. These modules
tested with many parallel applications and we have got
very impressive results. To begin with the first
implementation, we have developed a more complicated
parallel application to test power consumption and
application performance. This application contains
100000000 calculations for each process and we have
developed this application with 6 processes, then we have
in this application (6*100000000) calculations. Moreover,
this application contains 10000000 communications as a
Collective communications not point-to-point
communication, this collective communication as a
Broadcast for each process, this means every process send
one message to all processes 10000000 times, then we
have (6*6*10000000) communications in this parallel
application. We have implemented this application without
and with our proposed modules Actually, we have got
excellent results in terms of reduce power consumption
and improve the performance of parallel application. The
following table “Table 1” and graphs as a result of the
implementation of the above-mentioned parallel
application.

Table 1: all testing results of collective communications
Performance Measurement

 Main Parallel
Application

Parallel Application with
Proposed Modules

Test #1 56.53 s 24.19 s

Test #2 61.44 s 24.43 s

Test #3 51.55 s 24.79 s
Power Measurement

 Main Parallel
Application

Parallel Application with
Proposed Modules

Test #1 26.38 w 11.12 w

Test #2 23.12 w 11.43 w

Test #3 22.99 w 11.24 w

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 110

Finally, we have developed a point-to-point parallel
application, also this parallel application is very
complicated because it has a 6M communications between
the processes. We have tested this application with and
without our proposed technique and got an excellent result
in terms of reduce the power consumption as well as
improve the application performance. The following
graphs and table “Table 2” show the experiments results.

Table 2: all testing results of point-to-point communications
Performance Measurement

 Main Parallel
Application

Parallel Application with
Proposed Modules

Test #1 2.58 s 1.49 s
Test #2 2.87 s 1.46 s
Test #3 2.98 s 1.52 s

Power Measurement
 Main Parallel

Application
Parallel Application with

Proposed Modules
Test #1 8.78 w 2.89 w
Test #2 8.18 w 3.59 w
Test #3 9.75 w 3.19 w

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 111

After the implementation and testing of our proposed
modules, we have discussed the results in the following
section.

5. Discussion

The excellent results that we have got after add the
proposed technique onto the target parallel application it
indicates that the proposed technique works in an excellent
way and achieved the desired objectives in terms of reduce
the power consumption and improve the parallel
application performance. Moreover, in each result we
observed big reduction in the power consumption as well
as time and that refer to three reasons.

1. The first one, the processes of the parallel
application were executed near each other
because the mapping algorithm maps the
processes physically close to each other.

2. The second reason, the volume of exchange data
between the processors is huge and that need to
map the processes physically close to others to
make the processing nearby from others to reduce
the time as well as the traffic of data exchange.

3. The last reason, the algorithm ensures the
processing of the parallel application process was
bound on the specific processor until the
processing accomplished.

Actually, the execution way of the proposed algorithm
helps the parallel application to execution without any
obstacles or code modification. This way including: detect
the number of parallel application processes and after that,
the virtual topology was created during the runtime based
on the number of processes, and then using the tracing
algorithm to trace all the messages or communications that
happened between these processes and after that used this
analysis to ranks reordering to make the processes that
contain highest communications near each other. The
virtual topology was modifies based on the results of the
application behavior analyzer algorithm, to generate the
weights of the processes. The weights are the volume of
messages which are between the parallel application
processes. In same time, the physical topology was created
with weights. the weights are the physical ordering or
logical distance. Once both topologies are ready, it’s the
time to the mapping algorithm. The mapping algorithm
takes the processes of the virtual topology and the
processors of the physical topology and map it together.
Moreover, the mapping algorithm bind this process on the
processor unit the execution finish, so as to ensure that it is
not transferred to another processor.
Through many tests on the proposed technique, we have
observed several points on the results and divided into two
main parts are as follows:

5.1 Collective Communication

In this part, the parallel application after using our
proposed technique has improvement near 43% of normal
parallel application. As for power consumption, we have
seen the reduction is near 42% after using our proposed
technique, the following table show the summary of
collective communication results after using our proposed
technique.

 Performance
improvement

Power
Consumption
Improvement

Parallel Application:
Collective

Communication
43% 42%

5.2 Point-To-Point Communiction

Regarding to this type of parallel application, we have
observed the improvement of the performance after using
our proposed technique is near 48% of normal parallel
application. As for power consumption, we have seen the
reduction is near 47% after using our proposed technique.
the following table show the summary of collective
communication results after using our proposed technique.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 112

 Performance
improvement

Power
Consumption
Improvement

Parallel Application:
Point-To-Point
Communication

48% 47%

This modules will be help the parallel applications in terms
of increased performance, as well as help high
performance computing reduce energy usage.

6. Conclusion

As a matter of fact, after developing these modules which
is parallel application behavior analyzer module, virtual
topology generator module, physical topology generator
module and topologies mapper module we have improved
the parallel application performance as well as reduce the
power consumption. These models have been tested a lot,
and has proven itself in terms of improving the application
performance and reducing the power consumption.
Acutally, these module doesn’t need any special
configuration or modicfication on the appliction code, its
work like a library used by any parallel application. In the
future works, we will add a new module to use the the
compiler directives that deals with a specific hardware to
achieve better performance.

References
[1] A. c. n. o. expertise, "Introduction to High-Performance

Computing".
[2] S. Wind, "Optimization of cpu topology and ceph use,"

2017.
[3] I. HPC, "What is high performance computing?," Insidehpc.
[4] C. S. Communication, "High performance computing,"

China, 2018.
[5] National Energy Research Scientific Computing Center,

"OpenMP Resources, 2016.
[6] T. Shan, "A programming model supports all architectures,"

2017.
[7] landcareweb, "What is the difference between openacc and

openmp and mpi?," 2017.
[8] P. Springer, "OpenACC - A Step Towards Heterogeneous

Computing," German Research School for Simulation
Sciences GmbH Laboratory for Parallel Programming.

[9] Easy GPU Parallelism with OpenACC, Rob Farber, drdobbs,
2012

[10] Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation , Edgar Gabriel et al., 2004

[11] W. Kendall, MPJExpress Tutorials, "MPI tutorial
introduction”, 2017.

[12] G. W. Amy Brown, "OpenMPI," in The Architecture of
Open Source Applications , 2007.

[13] T. H. G. B. J. J. D. Teng Ma, "Process Distance-aware
Adaptive MPI Collective Communications," 2011 IEEE
International Conference on Cluster Computing, 2011.

[14] A. Sen, "Learning the OpenMP framework with GCC,"
2012.

[15] Wikipedia, OpenMP Architecture Review Board
"OpenMP," 2013.

[16] L. M. Tim Mattson, "A “Hands-on” Introduction to
OpenMP," OpenMP.\

[17] "OpenMP directives," Microsoft, 2018
[18] Wikipedia, "Topology"
[19] T. Hatazaki, "Rank Reordering Strategy for MPI Topology

Creation Functions".
[20] Npac, "Cartesian and graph topologies," 1999
[21] Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N.,

Goglin, B., Mercier, G., Thibault, S., Namyst, R.: hwloc: a
Generic Framework for Managing Hardware Affinities in
HPC Applications. In: IEEE (ed.) PDP 2010 - The 18th
Euromicro International Conference on Parallel, Distributed
and Network-Based Computing. Pisa, Italie (Feb 2010)

