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Annotation 
In this paper a method for analyzing the components of a 
sequential dichotomic decomposition of integers is proposed. 
Some conditions that allow to generate a sequence of 
equiprobable binary vectors of given dimensions are formulated. 
The variety of vectors is limited to a certain and predetermined 
numerical value. That value is chosen for the dichotomic 
decomposition and is not necessarily related to the power of 2. It 
is proved that it’s always possible. The method is intended for 
using in controlled specialized means for structural generation of 
pseudo-random binary vectors. 
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1. Introduction 

Already known methods and corresponding specialized 
structural means for the formation of pseudo-random (PR) 
sequences are concerned, as a rule,  with certain definite 
values of such a parameter as the number of different 
output binary sets being formed by the generators. So in 
classical generators based on shift registers with linear 
feedback [1-4], the number of different output binary sets 
is determined by the power of 2. In many other known 
implementations such problem is being solved by 
generating a sufficiently large PR numbers with the 
subsequent division of the obtained values by an amount n 
- a given parameter. That limits from above the power of 
set of different elements (numbers) in generated sequence. 
Peculiarity of such approach appears in complexity of its 
structural implementation as well as in the multistage 
(multi-step) procedures for dividing of multi-digit integers. 
That means a relatively slow performance. At the same 
time the problem of obtaining sequences of equiprobable 
PR binary sets for arbitrary values of the number of 
different output vectors n has considerable both theoretical 
and practical interest.  

Considering abovementioned conditions it is possible to 
formulate the purpose of this article as solving the 
problem of theoretical substantiation of the possibility and 
analysis of the features of organizing the structural 
formation of pseudo-random sequences of equiprobable 
binary sets by using sequential dichotomic decomposition 
procedures. It is assumed that there are no restrictions on 
the number of different binary sets in generated sequence 
which means that this number can be arbitrary. For 
example, it can be determined only by specific number of 
processor elements in a fault-safe multiprocessor system 
when simulating the effect of possible failures in such 
systems and is in no way not delimited by power of 2. 

2. Decomposition Procedure 

Proposed method of obtaining a given number of PR 
vectors is based on a sequential dichotomic division of an 
integer positive number n (we consider the numbers 
between powers of 2) on a series of add-ons on the basis 
of relation 
 

n=2q+r, 
 
where q is the quotient of the number n by 2, r is the 
remainder of division. Obviously r = 0 if n - even and r = 
1 for odd n. Or else: 
 

/ 2, if 0,
( 1) / 2, if 1.

q n r
q n r
= =

 = − =
 

 
In other words, for each possible value n> 1, two positive 
integers n0 and ne can be put in correspondence, such as: 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 121 

0

0

0

,
1 11 ;if 1,

2 2
1;if 1,

2
/ 2;if 0.

e

e

e

n n n
n nn r

nn r

n n n r

= +
 − + = + = =

 − = =

 = = =

 

 
If the process of division by 2 is continued for the 
obtained values of n0 and ne, then in the end result the 
values q=1 will be achieved. Obviously, this requires 
m=log2n cycles. Note that in fact m=[log2n], where 
[log2n] means an integer positive number, such as: 
 

m>log2n>m-1 
 
Examples of the results of such sequential decomposing 
for numbers 17, 20 and 31 are given in the table 1. 

Table 1: 
Step i max (n0, ne) 

0 31 20 17 
1 16 10 9 
2 8 5 5 
3 4 3 3 
4 2 2 2 
5 1 1 1 

 
In other words if after every (any) division step 

i=1,2,...m we get a pair of numbers n0i and nei for the 

desired number ni-1 (divisible), then: 

1
0 1

1 1
0 1

;if even,
2

1 1, ;if odd.
2 2

i
i ei i

i i
i ei i

nn n n

n nn n n

−
−

− −
−

 = = −
 + − = = −


 

3. Features of Decomposition Tree 

To simplify on the one hand and generalize on the other, 
the decomposition procedure for a number a1 can be 
represented as a tree structure (Fig. 1). Let's denote by 
j=1,2,...7  indexes depicting this structure’s members. 

 

Fig. 1   

Decomposition conditions can be written as: 
 

[ ]

[ ]

1
1 2 3

1 1 1 1
1 2 3 2 3

( ) mod 2 0 ,
2
1 1 1 1( ) mod 2 1 , , .

2 2 2 2

aa a a

a a a aa a a a a

 = → = = 
 
 + − − +    = → = = ∨ = =        

 

It is enough to verify that the difference  2 3a a∆ = −
 

belongs to set {0,1} for j=2,3..., which means 

2 3a a∆ = −
 . 

For the definiteness: 
 

( )

( )

1
2 3 1

1
2 3 1

1max , odd,
2

1min , odd.
2
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+
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In this case 
 

( ) ( )

( ) ( )
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max ,
max , , , ,

2
min ,

min , , , ,
2

a a r
a a a a

a a r
a a a a

+
=

+
=

 

 

where r1(2)=0(1) is the sign of parity of corresponding 

max and min values. Therefore: 

( ) ( )
1 1 1 2

max 4 7 4 7

1 1
2 24,5,6,7{ max ,... min ,...
2 2

1 1 2 1 1 1 2 2 1 2 1 1},
4 2

a r a r

j i a a a a

a r a r r r

+ + − +

∀ = ∆ = − = − =

+ + − + + + +
= = =
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because (r1=1)→(r2=0) or (r2=1) → (r1=0). 
When the structure is expanded by adding branches, there 
is preserved condition that the difference of any two 
decomposition elements belonging to one level does not 
exceed a value of 1. 
So in general case we can formulate following suggestion. 
 
Statement 1. For any step of decomposition i=1,2,...m, 
the value 

max max min 1,i i iq q q∆ = − ≤  
which means that for any pair of quotients of the same 

level 
{ }0,1 .qi∆ ∈

 
 
Proof. At the first stage of the decomposition n=2q1+r1,  

q1  – is a quotient, r1 – remainder, { }1 0,1 .r ∈
 

Consequently, ( )1
1 2

n r
q

−
= , which means 

1
1, .

2 2
n nq − ∈ 

   

For the second stage q1=2q2+r2, wherein 

1 2 1 2
2 .

2 4 2
q r n r rq − −

= = −
 

For the third stage (q2=2q3+r3): 

31 2
3 .

8 4 2
rn r rq −

= − −
 

Similarly for an arbitrary stage i we can write: 
 

31 2
1 2

1... .
2 2 2 4 2

i i
i i i i

r r rn r rq − −

−−
= − − − − −  

 
In this case three options are possible (two limiting and 
one intermediate). 

a) All ri=0, which means n and intermediate 
dividends are even numbers or n=2i·k, k - 
positive integer. Then it follows that: 

( )1,2,... 0 .ii m q k k∀ = ∆ = − =  

b) All ri=1, wherein n and obtained dividends are 
odd, that is: 

1 2

1 1 1 1 1... .
2 2 2 4 2i i i i

nq − −

−
= − − − − −

 
Therefore: 

( )1,2,... 0 .i i ii m q q q∀ = ∆ = − =
 

c) In this (intermediate variants between a) and b)) 

case max mini i iq q q> > , 

however, since 
max 2i i

nq =
, and  , then 

min max min 1

1 1 1... 1
2 2 2 2 2i i i i i i i i

n nq q q q −∆ < ∆ = − = − + + + + +
. 

Thus, the value of iq∆ ranges 2 0iq> ∆ ≥  and as 

iq∆ - a positive integer then 

{ }0,1 .qi∆ ∈
Therefore statement 1 is proved, 

i.e. 
 

( )1,2,... 1ii m q∀ = ∆ ≤
. 

Return to the tree shown in pic. 1. Let us prove next. 
 
Statement 2. At each step i of decomposition a sum of 
components belonging to subset 2i  is constant and equal 
to n, that is: 
 

2

1
1, 2,...

i

ij
j

i m a n
=

 
∀ = = 

 
∑ . 

Indeed, for the first division step: 
1

1 2
n rq −

=
, which 

means: 
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( )

1 1 1 2
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0 , ,
2 2

11 .
2

n nr q a a

nr q

 = → = = = 
 

− = → = 
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From last condition it follows that 
1

1
2

na −
=

 and 

2
1

2
na +

=
 or in the general case any term of 

decomposition can be represented as the relation 
1

2
n r±

. 
Therefore, a1+a2=n. 
For the second decomposition step result of division of a1 
belongs to set {a3, a4}, and result of dividing a2 - to the 
set {a5, a6}. 
Then: 
 

2 3 2 31 2 1 2
3 4 5 6, , , .

2 2 2 2
a r a ra r a ra a a a+ −+ −

= = = =  

Sum of these terms of decomposition for i = 2 is: 
 

( )6
1 31 2 1 2 2 3 2 3

3

2
2 2k

k

a aa r a r a r a ra n
=

++ + − + + + −
= = =∑  
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For an arbitrary step i, we find sum Si as: 

2

1

i

i ik
k

S a
=

=∑
. 

Under conditions of the division 

( )( 1) ( 1)1, 2,...2i
ik i k i kk a a a+ −∀ = + =

, 

and besides 

( 1) ( 1)
( 1), .

2 2
i k k i k k

ik i k

a r a r
a a− −

+

+ −
= =

 It 
was shown above that a1+a2=a11+a12=n, from which, 
using the well-known induction rules, we can deduce that: 

1 2 32 2 2 2

1 2 3
1 1 1 1

...
i

k k k ik
k k k k

a a a a n
= = = =

= = = = =∑ ∑ ∑ ∑
, so the 

validity of statement 2 is proved. 

4. Probabilities of paths in the graph 

Let’s assume that the positive integer n is 

decomposed into the components at the levels which are 

corresponding to levels of the tree and each j-th number of 

aij level i, i = 1,2, ..m-1, j = 1,2, ... 2i is the sum: 

( 1) ( 1)( 1)ij i k i ka a a+ + += + , 

 
where k=2j+1, and besides: 
 

( 1) ( 1)( 1),
2 2

ij ij ij ij
i k i k

a r a r
a a+ + +

− +
= = , 

 
where rij = res(aij)mod2 is an attribute of parity of the 
number aij. 
When decomposition tree is built it can be assumed that at 
each level i = 1,2, ... m-1 it is carried out a random 
(pseudo-random) selection of one of the level’s 
decomposition members i + 1, as it is shown at Fig. 2. 
Such selection will be needed of  an external probabilistic 
source. Wherein probability of choosing the number aij 
after the level i-1 is p(aij) so probabilities of choosing each 
of the corresponding components of number aij (after step 
i) are p1=p(a(i+1)k) and p2=p(a(i+1)(k+1)). 
 

 

Fig. 2 

Consider set of paths from a vertex a(i+1)k of the tree graph 
to the end “1” vertices as it shown on Fig.3. Obviously for 
intermediate terms a(i+1)k there are a(i+1)k paths l(q), 
q=1,2,… a(i+1)k in the tree graph. Let us prove next 
statement. 
Statement 3. To fulfill the requirements of equal 
probability 1/n of all n tree graph paths starting from (n) to 
the end (1) vertices next necessary and sufficient 
conditions should be satisfied: 
 

( 1)
( 1)1,2,..., 1, 1,2,...2 i ki
i k

ij

a
i m j P a

a
+

+

       
∀ = − = = ,  

 
where k=2j+1. 
Proof. Analyzing the structure on pic. 3, we can see that 
in order to fulfill requirement of equal probability of paths, 
the following ratio must be true: 
 

1
1( ), , ( ) ij n

P P aq i j P l q     
⋅ ⋅ =∀ , 

 
According to formulation of statement 3 for any pair of 
paths q and s we can write: 
 

[ ] [ ]{ }( 1) 1 1( ) ( ) ( ) ( ), 1,2... ,i k ij ijP l q P P a P l s P P aq s a q s+ ⋅ ⋅ = ⋅ ⋅∀ = ≠ , 

which means that  

[ ] [ ]{ }( ) ( ), , P l s P l qq s q s =∀ ≠ . 
 
Continuing analysis of the structure we can note that the 
number of different paths starting from vertex a(i+1)k  is 
exactly equal to the value of component a(i+1)k. However, 
since: 
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[ ]
( 1)

1
( ) 1

i ka

d
P l d

+

=

=∑ , 
 
consequently therefore 

[ ]{ }( 1) ( 1) ( ) 11,2... i k i ka P l qq a + + ⋅ =∀ = . 
 
In other words following condition is true: 

[ ]( 1)
( 1)

1( )1,2... i k
i k

P l q
a

q a +
+

  = 
  

∀ = . 

 
Doing in the same way as we did for the value of a(i+1)k, 
it can also be stated that for vertex a(i+1)(k+1)   
corresponding probability of selection (transition) will be 
equal to 
 

[ ]
( 1)( 1)

1( )
i k

P l s
a

s
+ +

  = 
  

∀
. 

 

 

Fig. 3 

Obviously, the requirement of equal probability 1 /n for all 
n possible paths leads to necessity of fulfilling the relation 
 

[ ] [ ]{ }( 1) , ( 1)( 1) 1 21, 2,... ( ) ( )1,2,... i k i ka f a P P l d P P l fd + + += ⋅ = ⋅∀ = . 
But from this it follows that  

1 2

( 1) ( 1)( 1)i k i k

P P
a a+ + +

= . 

Taking into account that P1 + P2 = 1 we can write: 

1 1

( 1) ( 1)( 1)

1

i k i k

P P
a a+ + +

−
= , 

or  
P1ּa(i+1)k=(1-P1(ּ a(i+1)(k+1) , which means that a(i+1)k 
= P1 ּ[aR(i+1)k R+ aR(i+1)(k+1)R]. 
In accordance with adopted method of dichotomic 
decomposition of numbers into terms, the following 
condition is fulfilled: 
 

( 1) ( 1)( 1), , i k i k ija a ai j k + + + + = ∀ , 
 
from which it follows that: 
 

( 1)
1 ( 1), , i k

i k
ij

a
P P a

a
i j k +

+

   = =  
  

∀ . 

 
Thus, validity of statement 3 is proved. 
By analogy and according to statement 3, we can verify 
that: 
 

( 1)( 1)
2 1 ( 1)( 1)1, , i k

i k
ij

a
P P P a

a
i j k + +

+ +

   = − = =  
  

∀ . 

 
Let’s select a certain path in tree-like graph which begins 
from initial vertex a0=n   and ends on some finite vertex 
am=1 (pic. 4). 
Taking into account the fact that m=]log2n[ , am=1 and a0 
= n, so in accordance with statement 3, we can write that: 
 

1

1,2,... i
i

i

aP
a

i m
−

 
= 

 
∀ = . 

 
Probability P of passage through each particular path can 
be found from relation 
 

3 11 2 4

1 0 1 2 3 2 1 0

1...
m

m m m
i

i m m

a a a aa a aP P
a a a a a a a n

−

= − −

= = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = =∏ . 

 
If on each of the m=]log2n[ levels of the dichotomic graph 
we form the value of some bit in accordance with the 
probabilities that were calculated for particular level, then 
as a result we obtain a binary set of dimension m, that 
belongs to set n, and, as it was shown above, all the 
components of such set will have an equal probability of 1 
/ n. 

5. Conclusion 

Method for analyzing the components of a sequential 
dichotomic decomposition of integers was considered. 
The method is supposed to be used in procedures of 
structural synthesis of sequence generators of pseudo-
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random equiprobable binary sets which belong to certain 
set of arbitrary number of components. Also this method 
can be applied to construction of high-speed hardware 
binary signal generators with variable (programmable) 
probability of  one (zero) values [5-7]. A certain value is 
represented by a number of parity bits of decomposition 
components - for specifying and minimizing Boolean 
parity functions for synthesis of their realization circuit. 
The same parity features are proposed to be used to 
control the structural means for multiplexing both binary 
signals with equal probability and signals with given 
probabilities at the outputs of external generators. In this 
case the multiplexing elements set output bit states of 
equiprobable binary sets. 
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