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Abstract 
Most of the image denoising algorithms are tested on standard 
images with known noise process. It is assumed that the 
contaminating noise process is Additive White Gaussian Noise 
(AWGN). Moreover, intensity of the noise is also pre-defined. 
However, the real noise is much more complex than AWGN. In 
this paper, the blind image denoising is performed on real-world 
noisy images from Renoir dataset. The experiment is performed to 
analyze the convergence (finding optimum solution) performance 
of sparse or low rank approximation algorithms on removing real 
camera noise. Performance is evaluated in terms of peak signal-to-
noise-ratio (PSNR) and structural similarity index measure (SSIM). 
Experimental results show that for denoising images with real 
camera noise the correlation based sparse representation approach 
keeps finding the most suitable atoms from dictionary and its 
performance keeps improving with the increasing dictionary 
subspace when compared to well-known KSVD algorithm. 
Key words: 
Blind denoising; real-world noisy images; correlation based 
sparse representation. 

1. Introduction 

Image denoising is a classic and fundamental problem in the 
field of computer vision and image processing. Many 
researchers have proposed numerous algorithms [1]–[4] 
with approximate optimal results [5]–[7]. Here, the noise is 
considered to have additive white Gaussian noise (AWGN). 
However, in the real scenario, this is not the case. In real 
camera vision, the noise is contributed from different 
sources (i.e. dark current noise, short noise, thermal noise, 
etc). Further, the internal camera processing degrades the 
performance and quality of the images and Gaussian 
distribution alone is not able to account for it. In some cases, 
the Gaussian distribution based algorithms are extended for 
real world scenario, but still their performance is far from 
better and it remains an open challenge which needs to be 
addressed for blind denoising of real world images. 
With the recent advances in the deep convolutional 
networks (CNNs) [3], [4]. These algorithms perform well 
on Gaussian distributed noisy images and fail to perform 
well on real-world noisy images [8]. As described in [9], the 
CNNs work on the information from the training data 

images. The real-world noisy images are quite different 
from the clean ground-truth ones. Also, the Gaussian noisy 
images are quite indifferent from the real ones. Due to this 
reason, the CNN based algorithms fail to perform well in 
case of real world noisy image. 
To tackle this problem, several enhanced models have been 
proposed. In [10], [11], a correlated Gaussian model is 
proposed. In [12], [13], a noise model working on the 
principal of signal and frequency data is proposed. In [14], 
a model based on the merger of Poisson and Gaussian 
distribution is proposed for the real world noisy images. 
The recent deep neural networks also show promising 
results. However, early methods have quite limited 
performance [1], [15], [16]. In [2], authors use a multi-layer 
perceptron (MLP) approach and achieve good results. In [3], 
[17], authors utilize the optimization based algorithms for 
the task of image denoising. In [4], authors utilize the 
concept of residual learning[18] and batch 
normalization[19] to achieve good image denoising results. 
Other CNN based models include RED30 [20], MemNet 
[21], and FFDNet [22], all of these show promising results. 
However, their performance on real-world noisy images is 
quite limited. 
The blind denoising of real world images is more difficult 
than the earlier discussed non-blind models. In [23], authors 
propose an intensity skellam line estimation method for 
blind denoising. In [24], authors use the piece wise image 
smoothing model for the color noise images. In [25], authors 
model the mixed or unknown noise in the wavelet domain 
using the weighted 𝑙𝑙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙2  sparse regularizer. In [26], 
authors propose a mixture of Gaussian (MoG) model to 
estimate the complex noise by using the Bayesian 
nonparametric approach. 
In this paper. 
The rest of the paper is as follows; In Section 2, the 
motivation and problem statement is given. In Section 3, 
blind denoising framework is defined and algorithm is 
discussed. In Section 4, the complexity analysis of 
algorithm is presented. In Section 5, the simulation and 
results are presented. Section 6 concluded the paper. 
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2. Motivation and Problem Statement 

Depth of the dictionary subspace needs to be well defined in 
order to avoid the overfitting and/or underfitting problem. 
As we know that the image denoising is a convex 
optimization problem, hence, the dictionary subspace plays 
important role in denoising performance. This problem 
becomes more sever for real-world noisy images [27] due to 
unknown noise process with unknown noise intensity.  
Our problem is stated as follows: Given a real-world noisy 
image corrupted with real camera noise, find its sparse 
approximation with varying dictionary subspace to analyze 
the efficiency of low rank image denoising algorithms. 

3. Blind Denoising Framework of Real-World 
Noisy Images 

3.1 Sparse Representation by Correlation Reduction 

Let us take a real-world noisy image from Renoir dataset 
[27]. Note that we consider ground truth image given in [27] 
as a clean image. Finding the accurate noise level in any 
noisy image is a challenging task especially if number of 
samples are not sufficient. Therefore, in order to accurately 
measure the performance, we vary the dictionary subspace 
and observe the convergence of the algorithm. Firstly, we 
divide the clean image 𝒙𝒙 and noisy image 𝒚𝒚  into fully 
overlapping patches. Then, we find sparse approximation α 
of each patch using redundant bases called dictionary. After 
finding sparse representation 𝒙𝒙� = 𝑫𝑫𝑫𝑫 , the residual is then 
given by 𝒓𝒓 = 𝒚𝒚 − 𝒙𝒙�.  Here 𝒙𝒙�  is recovered (denoised) image 
patch. For finding α, we employ correlation reduction-based 
approach [28]. However, in [28], the standard test noisy 
images with known noise process are denoised. Moreover, 
dictionary size is also fixed and noisy intensity is predefined. 
Whereas, in this paper we perform blind denoising 
(unknown noise process and noise intensity) on real-world 
noisy images with variable dictionary subspace. So, in this 
scenario, the sparse approximation method is 
mathematically formulated as;  
𝑫𝑫� = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 

𝑫𝑫
||𝑫𝑫||𝟎𝟎 𝒔𝒔. 𝒕𝒕 �(|𝒖𝒖𝒋𝒋𝒓𝒓 − 𝝈𝝈𝟐𝟐𝜹𝜹𝒋𝒋|)

𝒋𝒋

≤  𝜺𝜺. (1) 

Here 𝒖𝒖𝑗𝑗𝑟𝑟 and 𝛿𝛿𝑗𝑗  are the internal autocorrelation of the 
residual and standard deviation of noise. Internal correlation 
can mathematically be formulated as; 

𝑼𝑼𝐽𝐽1,𝐽𝐽2 = 1
𝑀𝑀
∑ ∑ 𝑺𝑺𝑖𝑖,𝑘𝑘𝑺𝑺𝑖𝑖+𝑗𝑗,𝑘𝑘+𝑗𝑗2𝑘𝑘𝑖𝑖                    (2) 

Internal correlation is determined by selecting a center patch 
inside residual then finding its correlation with neighboring 
patches ( 𝑗𝑗 = 0,1,2 𝑜𝑜𝑜𝑜 3 ). Then, all the correlations are 
summed in absolute sense. Finally, current correlation is 
removed from previous correlation to find the amount of 
correlation reduction. The dictionary subspace with highest 
correlation reduction is selected for sparse approximation. 

This is to ensure that the autocorrelation of contaminating 
noise should be similar to the autocorrelation of the residual. 
It is to note that taking more neighbors increases the 
complexity, however, it does not improve the denoising 
performance. Therefore, we kept three neighbors to achieve 
optimum performance. Note that if 𝑗𝑗 = 0 then 𝒖𝒖0𝑟𝑟  represents 
the residual power. Hence by minimizing the optimization 
function (1) one can reduce the residual power as well as 
non-zero lag correlation to ensure the similarity between 
residual and contaminating noise.  
In (1), we obtain norm-zero i.e., (number of nonzero entries) 
to set the level of sparsity. After finding sparse 
representations of all the patches, we update the dictionary 
as following: 
 
{𝑫𝑫�,𝑫𝑫�} = argmin

𝑫𝑫,𝑫𝑫
∑ ||𝑫𝑫||0𝑖𝑖  𝑠𝑠. 𝑡𝑡 ∑ ∑ (|𝒂𝒂𝑗𝑗𝑟𝑟 − 𝜎𝜎2𝛿𝛿𝑗𝑗|)𝑗𝑗𝑖𝑖 ≤  𝜀𝜀          (3) 

As (2) is the dual optimization problem, therefore, we 
initialize the Dictionary with random patches and keep it fix 
to learn the sparse representation. Once sparse 
representations of all the patches are achieved, we fix the 
sparse representation and train the dictionary atoms using 
(2). 

3.2 Sparse Representation by Maximum Projection 
Based Algorithm 

K-means Singular Value Decomposition (KSVD) is well 
known dictionary learning algorithm. Elad et.al [29] 
performed image denoising via KSVD algorithm. In [29], 
the standard test noisy images with known noise process are 
selected for performance evaluation. In [29], the error based 
Orthogonal Matching Pursuit (OMP) is used to find the 
sparse approximation. OMP is maximum projection-based 
algorithm where the atom that produces maximum 
projection with residual is picked for sparse representation. 
However, it is shown in [28] that this approach fails at high 
noise levels or where noise power is greater than power of 
the clean signal. It is due to fact that, in such scenario, the 
atom matches the noise process is picked. The sparse 
representation of KSVD is given by: 

  𝑫𝑫� = argmin
𝑫𝑫

‖𝑫𝑫‖0 𝑠𝑠. 𝑡𝑡 ‖𝒙𝒙 − 𝑫𝑫𝑫𝑫‖22 ≤  𝜀𝜀                     (4) 

Here  ||. ||2  and ||. ||0   represents ℓ2  and ℓ0  norms, ε 
represents the approximation error. In optimization problem 
(4) the denoising is achieved by minimizing the residual 
power equal to the noise power. This method is effective 
when noise intensity is known and when noise process is 
assumed to be AWGN. In this paper, we evaluate the blind 
denoising performance of [29] on real-world noisy images 
of Renoir dataset [27] and compare its convergence 
performance with correlation based denoising approach 
discussed in previous section.  
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4. Complexity Analysis 

In this section, the computational complexity of proposed 
blind denoising framework is discussed. In this framework 
we vary the dictionary subspace to find the convergence 
point and evaluate the stability performance of algorithms. 
Complexity of algorithm increases with increasing size of 
the dictionary subspace.  Complexity of the algorithm is 
given by 𝑂𝑂(𝑀𝑀𝑊𝑊𝑏𝑏𝐷𝐷𝐷𝐷𝐷𝐷).  Where 𝑀𝑀 is patch size, 𝐷𝐷  is 
number of dictionary atoms, I is the number of iterations and 
𝐷𝐷 is number of nonzero entries in each sparse coefficient 
vector, 𝑊𝑊𝑏𝑏 is the size of dictionary subspace. Then in order 
to select the most appropriate atom the autocorrelation 
sequences are calculated. Then these autocorrelation 
sequences are analyzed. The atom that reduces the 
autocorrelation most is selected for sparse approximation. It 
then compares the calculated autocorrelation sequences 
with that of contaminating noise and determines the atom to 
be picked. The computational complexity of K-SVD [29] is 
almost same except that it does not find autocorrelation 
sequences. Hence, the correlation based approach is slightly 
complex than KSVD [28]. 

5. Simulation and Results 

In this section, we evaluate and compare the performance of 
correlation-based sparse representation algorithm with 
maximum projection-based algorithm in blind denoising of 
real-world images. The performance is evaluated in terms 
PSNR and SSIM. We randomly select ten real-world noisy 
images from Renoir data set as shown in Fig. 1. The image 
is divided into 8×8 fully overlapping patches. Then, we 
select multiple dictionary subspaces of size 10, 20, 30 and 
40 for sparse representation. For each subspace we 
determine sparse representation and dictionary update stage. 
We iterate sparse representation and dictionary learning 
algorithm five times. After completion of five iterations, we 
reconstruct the image from denoised patches. Finally, we 
calculate the PSNR and SSIM, by using ground truth images 
(given in Renoir data set [27]) of all noisy images. We 
perform the same denoising steps using KSVD [29] 
algorithm with same parameters for fair comparison. 
 

 

Fig. 1  Real-World Images from Renoir Dataset [1] 

In Fig. 2, we plot the average PSNR results of correlation-based 
approach and KSVD image denoising algorithm. Fig. 1 clearly 
indicates that as we increase the size of dictionary subspace the 
performance of correlation-based algorithm keeps improving for 
blind denoising of real-world noisy images. Whereas, the 
performance of KSVD degrades with the increasing dictionary 
subspace. This is due to fact that residual obtained in correlation-
based approach is closer to real camera noise. Whereas, residual 
obtained from KSVD [29] contains remnants from clean image. 
 

 

Fig. 2  Average PSNR after blind denoising.  

 

Fig. 3  Average SSIM after blind denoising.  

Fig.3 shows the average PSNR results of KSVD and 
correlation based denoising approach for blind denoising of 
real-world noisy images from Renoir dataset. It shows that 
structures are better restored with correlation-based 
approach. However, as dictionary subspace increases it 
overfits the data. 
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Fig. 4  PSNR of 10 randomly selected Renoir images 

Fig. 4 shows the heat map of PSNR values obtained by KSVD [29] 
and correlation-based approach. The PSNR values of almost all 
images keeps improving with increasing the dictionary subspace 
in correlation-based approach. It is due to fact that the correlation-
based approach converges slowly and larger the dictionary 
subspace better the correlation estimation.  

6. Conclusion 

In this paper, blind denoising is performed on real-world noisy 
images. As real noise is more complex than AWGN, therefore, 
testing algorithms on AWGN with known intensity does not 
manifest real performance of the algorithm. Hence, we selected 
real-world noisy images from well-known data set [27]. We 
evaluated the convergence performance of low rank approximation 
methods with varying dictionary subspaces. Correlation-based and 
maximum projection-based sparse representations are iterated few 
times with multiple dictionary subspaces. Results show that for 
real world-noisy images the PSNR performance of correlation-
based approach keeps improving with increasing dictionary 
subspace as compared to maximum projection-based algorithm. 
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