
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

54

Manuscript received March 5, 2019
Manuscript revised March 20, 2019

Proposed Architecture for a Parallel Hybrid-Testing Tool for a
Dual-Programming Model

Ahmed M. Alghamdi1* and Fathy E. Eassa2

King Abdulaziz University, Jeddah, KSA

Summary
Recently, building massively parallel systems has become
increasingly important with coming improvements of Exascale
related technologies. For building such systems, a combination of
programming models is needed to increase the system's
parallelism. One of these combinations is the dual-programming
model (MPI+X) that has different structures to increase
parallelism in heterogeneous systems that include CPUs and
GPUs. (MPI + OpenACC) has many advantages and features that
increase parallelism with respect to heterogeneous architecture
and support different platforms with more performance,
productivity and programmability. However, building parallel
systems with different programming models is even harder and is
more error-prone, which is not easy to test. Also, testing parallel
applications is a difficult task, because parallel errors are hard to
detect due to the non-determined behavior of the parallel
application. Even after detecting the errors and modifying the
source code, it is not easy to determine whether the errors have
been corrected or remain hidden. Furthermore, integrating two
different programming models inside the same application makes
it even more difficult to test.
We proposed a parallel hybrid-testing tool for detecting run-time
errors for systems implemented in C++ and (MPI + OpenACC).
The hybrid techniques combine static and dynamic testing
techniques for detecting real and potential run-time errors by
analyzing the source code during run time. Using parallel hybrid
techniques will enhance the testing time and cover a wide range
of errors. Finally, to the best of our knowledge, identifying and
classifying OpenACC errors has not been done before, and there
is no parallel testing tool designed to test applications
programmed by using the dual-programming model (MPI +
OpenACC) or the single-programming models like OpenACC.
Keywords:
Software Testing; Hybrid Testing Tool; OpenACC; MPI; Dual-
programming Model;

1. Introduction

Building massively parallel supercomputing systems based
on heterogeneous architecture has been one of the top
research topics in the past few years. Therefore, creating
parallel programs has also becomes increasingly important,
but there is a lack of parallel programming languages, and
the majority of traditional programming languages cannot
support parallelism efficiently. As a result, programming
models have been created to add parallelism to the

programming languages. Programming models are sets of
instructions, operations, and constructs used to support
parallelism.
Today, various programming models have different
features and have been created for different purposes,
including message passing such as MPI [1] and shared-
memory parallelism such as OpenMP [2]. Also, some
programming models support heterogeneous systems,
which consist of a Graphics Processing Unit (GPU)
coupled with a traditional CPU. Heterogeneous parallel
programming models are CUDA [3] and OpenCL [4],
which are considered low-level programming models and
OpenACC [5] as a high-level heterogeneous programming
model.
Testing parallel applications is a difficult task because
parallel errors are hard to detect due to the non-determined
behavior of the parallel application. Even after detecting
the errors and modifying the source code, it is not easy to
determine whether the errors have been corrected or
hidden. Integrating two different programming models
inside the same application makes testing even more
difficult to test. Despite the available testing tools that
detect static and dynamic errors, there is still a shortage of
such testing tools that detect run-time errors in systems
implemented in the high-level programming models.
This research aims to develop a parallel hybrid testing tool
for systems implemented in (MPI + OpenACC) dual
programming model with C++ programming language. The
hybrid techniques combine static and dynamic testing
techniques for detecting real and potential run-time errors
by analyzing the source code and during run time. Using
parallel hybrid techniques will enhance the testing time and
cover a wide range of errors.
The rest of this paper is structured as follows. Section 2
briefly gives an overview of some programming models
and some run-time errors. The related work will be
discussed in Section 3, the proposed architecture in
Section 4, discussion in Section 5 and finally the
conclusion with the future works in Section 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

55

2. Background

In this section, the main components involved in our
research will be displayed and discussed. This will include
the programming models that will be used in our research
and describing why they have been chosen. Also, some
run-time errors and testing techniques will also be
described and discussed in this section.

2.1 OpenACC

In November 2011, OpenACC which stands for open
accelerators, was released for the first time in the
International Conference for High-Performance Computing,
Networking, Storage and Analysis [6]. OpenACC is a
directive-based open standard developed by Cray, CAPS,
NVIDIA and PGI. They design OpenACC to create simple
high-level parallel programming model for heterogeneous
CPU/GPU systems, that compatible with FORTRAN, C,
and C++ programming languages. Also, OpenACC
Standard Organization defines OpenACC as "a user-driven
directive-based performance-portable parallel
programming model designed for scientists and engineers
interested in porting their codes to a wide variety of
heterogeneous HPC hardware platforms and architectures
with significantly less programming effort than required
with a low-level model." [5]. The latest version of
OpenACC was released in November 2018. OpenACC has
several features and advantages comparing with other
heterogeneous parallel programming models including:
Portability: Unlike programming model like CUDA works
only on NVIDIA GPU accelerators, OpenACC is portable
across different type of GPU accelerators, hardware,
platforms, and operating systems.[8], [9]
OpenACC is compatible with various compilers and gives
flexibility to the compiler implementations.
High-level programming model, which makes targeting
accelerators easier, by hiding low-level details. For
generation low-level GPU programs, OpenACC relies on
the compiler using the programmer codes. [9]
Better performance with less programming effort, which
gives the ability to add GPU codes to existing programs
with less effort. This will lead to reduce the programmer
workload and improve programmer productivity and
achieving better performance than OpenCL and CUDA.
[8]
OpenACC allows users to specify three levels of
parallelism by using three clauses:
Gangs: Coarse-Grained Parallelism
Workers: Medium-grained Parallelism
Vector: Fine-Grained Parallelism
OpenACC has both a strong and significant impact on the
HPC society as well as other scientific communities.
Jeffrey Vetter (HPC luminary and Joint Professor Georgia

Institute of Technology) wrote: “OpenACC represents a
major development for the scientific community.
Programming models for open science by definition need
to be flexible, open and portable across multiple platforms.
OpenACC is well-designed to fill this need.” [5].

2.2 Message Passing Interface (MPI)

Message Passing Interface (MPI) [1] is a message-passing
library interface specification. In May 1994, the first
official version of MPI was released. MPI is a message-
passing parallel programming model that moves data from
a process address space to another process by using
cooperative operations on each process. The MPI aims to
establish a standard for writing message-passing programs
to be portable, efficient, and flexible. Also, MPI is a
specification, not a language or implementation, and all
MPI operations are expressed as functions, subroutine or
methods for programming languages including FORTRAN,
C, and C++. MPI has several features and advantages
including:
• Standard: MPI is the only message passing library that

can be considered a standard. It has been supported on
virtually all HPC platforms. Also, all previous message
passing libraries have been replaced by MPI.

• Portability: MPI can be implemented on several
platforms, hardware, systems, and programming
languages. Also, MPI can work correctly with several
programming models and work with heterogeneous
networks.

• Availability: Various versions of MPI
implementations from different vendors and
organization are available as open source and
commercial implementations.

• Functionality: On MPI version 3.1 there are over 430
routines has been defined including the majority of the
previous versions of MPI.

The new MPI standardization version 4.0 [1] is in progress,
which aims to add new techniques, approaches, or
concepts to the MPI standard that will help MPI address
the need of current and next-generation applications and
architectures. The new version will extend to better
support hybrid programming models including hybrid
MPI+X concerns and support for fault tolerance in MPI
applications.

2.3 Dual-Level Programming Model: (MPI +
OpenACC)

Integrating more than one programming model can
enhance parallelism, performance, and the ability to work
with heterogeneous platforms. Also, this combination will

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

56

help in moving to Exascale systems, which need more
powerful programming models that support massively-
parallel supercomputing systems. Hybrid programming
models can be classified as:

• Single-Level Programming Model: MPI
• Dual-Level Programming Model: MPI + X
• Tri-Level Programming Model: MPI + X + Y

In our research, the dual-programming model (MPI +
OpenACC) will be discussed. As mentioned earlier MPI
and OpenACC have various advantages, and by combining
them, we will enhance parallelism, performance and
reduce programming efforts as well as taking advantage of
heterogeneous GPU accelerators. That will be achieved by
using OpenACC that can be compiled into multiple device
types, including multiple vendors of GPUs and multi-core
CPUs as well as different hardware architecture. MPI will
be used to exchange the data between different nodes as
shown in Figure 1, which display how to use MPI for inter
GPU communication with OpenACC.

Fig. 1 Multi GPU Programming with MPI and OpenACC [10]

In order to write portable and scalable applications for
heterogeneous architecture, the dual-programming model
(MPI + OpenACC) can be practical. It inherits the
advantages, such as high performance, scalability, and
portability from MPI and programmability and portability
from OpenACC [11]. However, this dual-programming
model might introduce different types of run-time errors,
which have different behaviors and causes. Also, some
complexities and inefficiencies might happen including
redundant data movement and excessive synchronization
between the models, which need to be considered and take
care of, but it is better than using CUDA or OpenCL,
which is more complicated and harder to program,
resulting in lower productivity.

2.4 Common Run-Time Errors in Parallel
Applications

There are several types of run-time errors that happened
after compilation and cannot be detected by the compilers,
which cause the program not to meet the user requirements.

These errors even sometimes have similar names, but they
are different in the reasons that cause the run-time error or
error behavior. For example, deadlock in MPI has different
causes and behaviors comparing with OpenACC deadlocks.
Also, run-time errors in the dual-programming model are
different. Also, some run-time errors happened specifically
in a particular programming model. By investigating the
documents of the latest version of OpenACC 2.7 [12], we
found that OpenACC has a repetitive run-time error that if
a variable is not present on the current device, this will
lead to run-time error. This case happened in non-shared
memory devices for different OpenACC clauses.
Similarly, if the data is not present, a run-time error is
issued in some routines. Furthermore, detecting such errors
is not easy to do, and to detect them in applications
developed by dual-programming model even more
complicated. In the following, some popular run-time
errors will be displayed and discussed in general with some
examples.

2.4.1 Deadlock

A deadlock is a situation in which a program is waiting for
an indefinite amount of time. In other words, one or more
threads in a group are permanently blocked without
consuming CPU cycles. The deadlock has two types:
resource and communication deadlock. Resource deadlock
is a situation where a thread waits for another thread
resource to proceed.
Similarly, communication deadlock occurs when some
threads wait for some messages but never receive them.
The causes of deadlock are different depending on the
programming model used, system nature, and behavior.
Once the deadlock occurs, it is not difficult to detect, but in
some cases, it is difficult to detect them before they happen,
as they occur under certain interleaving [13]. Finally,
deadlocks in any system could be either potential or real
deadlocks.

2.4.2 Livelock

Livelock is similar to deadlock, except that livelock is a
situation in which two or more processes change their state
continuously in response to changes in the other processes.
In other words, it occurs when one or more threads
continuously change their states and consume CPU cycles
in response to changes in state of the other threads without
doing any useful work. As a result, none of the processes
will make any progress and will not complete [14]. In a
livelock, the thread might not be blocked forever, and it is
hard to distinguish between livelock and long-running
processes. Also, livelock can lead to performance and
power consumption problems because of the useless busy-
wait cycles.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

57

 2.4.3 Race Condition

A race condition is a situation that might be occurred due
to executing processes by multiple threads and where the
sequence of execution for the threads makes a difference in
the result of the concurrent execution. The execution
timing and order will affect the program's correctness [15].
Also, it can happen when there are two memory accesses in
the program both are performed concurrently by two
threads or targeting the same location. For example, at
least one read and one write may happen at the same
memory location, at the same time.

2.5 Testing Techniques

There are many techniques used in software testing, which
include static, dynamic, as well as other techniques. Static
testing is the process of analyzing the source code before
compilation phase for detecting static errors. It handles the
application source code only without launching it, which
give us the ability to analyze the code in details and have
full coverage. In contrast, the static analysis of parallel
application is complicated due to the unpredicted program
behavior, which is parallel application nature [16]–[18].
However, it will be beneficial to use static analysis for
detecting potential run-time errors and some real run-time
errors that are obvious from the source code, such as some
types of deadlocks and race condition.
Dynamic testing is the process of analyzing the system
during run-time for detecting dynamic (run-time) errors. It
demands to launch programs, sensitive to the execution
environment, and slow down the speed of application
execution. It is useful to use dynamic analysis in the
parallel application, which gives the flexibility to monitor
and detect each thread of the parallel application. However,
it is difficult to cover the whole parallel code with tests,
and after correcting the errors, it cannot be confirmed that
errors are corrected or hidden.
 Finally, it is the error types and behaviors that determine
which techniques will be used, because static analysis and
others cannot detect dynamic techniques cannot detect
some errors. As a result, in our research, a hybrid
technique will be used for different purposes and reasons.
Furthermore, this hybrid technology will be working in
parallel to detect parallel run-time errors and analyzing the
application's threads.

3. Related Works

There are many studies have been done in software testing
for HPC and parallel software. These studies are varied for
different purposes and scopes. These variations include
testing tools or detection of a specific type of error or for a
different type of error. Some studies focus on using static

testing techniques [19]–[21] to detect errors by analyzing
the source code to find real as well as potential run-time
errors [22], [23], dynamic testing techniques [13], [24] to
detect errors after execution and at run time, or hybrid-
testing techniques [25]–[27]. In addition, detecting errors
in programming models also vary from the testing tool for
single-level programming models to the tri-level
programming model. Even in the same classification of
programming model, there is variation in testing the
programming models themselves because each
programming model has a different type of error to detect
as discussed earlier in Section 2.4.
For detecting a specific type of error, there are many
research works on detecting deadlock, livelock, and race
condition by using different techniques. In deadlock
detection, many tools and studies use static or dynamic
testing techniques to detect deadlocks including resource
and communication deadlocks. UNDEAD [28] is intended
for deadlock detection and prevention, which helps to
defeat deadlocks in production software with enhancing
run-time performance and memory overheads. Regarding
detecting data race, the hybrid test-driven approach has
been introduced in [26] to detect data race in task-parallel
programs. Finally, some livelock detection techniques have
been proposed in [14], [29].
Regarding testing the programming model, many
approaches have been introduced to test and detect errors
in parallel software. Many studies have been done with
single-level programming models such as MPI [24], [30],
OpenMP [35]–[37], and CUDA [35], [36], while some
studies focus on dual-level programming models including
(MPI + X) hybrid programming models, which include
homogeneous and heterogeneous systems. One popular
combination is (MPI + OpenMP), which appears in [29],
[41] .
Many existing HPC debuggers include both commercial
and open-source versions. One commercial debugger is
ALLINEA DDT [34], which supports C++, MPI, OpenMP,
and Pthreads, and has been designed to work on all scales,
including Petascale. The other is TotalView [33], which
supports MPI, Pthreads, OpenMP and CUDA. However,
these debuggers do not help to test or detect errors, but are
used to find the reasons behind those errors. Also, the
developer needs to select the thread, process, and kernel to
be investigated.
In terms of open-source testing tools, ARCHER [27] is a
data race detector for an OpenMP program that combines
static and dynamic techniques to identify data race in large
OpenMP applications. In addition, AutomaDeD [41]
(Automata-based Debugging for Dissimilar Parallel Tasks)
is a tool that detects MPI errors by comparing similarities
and dissimilarities between tasks. MEMCHEKER [30]
allows finding hard-to-catch memory errors in MPI
applications such as overwriting of memory regions used

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

58

in non-blocking communication and one-sided
communication. Furthermore, MUST [24] detects run-time
errors in MPI and reports them to the developers, including
MPI deadlock detection, data type matching, and detection
of communication buffer overlaps.
There are limited studies of OpenACC in testing and
detecting static and dynamic errors. There are some studies
regarding related OpenACC testing. In [42], they evaluate
three commercial OpenACC compilers by creating a
validation suite that contains 140 test cases for OpenACC
2.0. They also check conformance, correctness, and
completeness of certain compilers for the OpenACC 2.0
new features. This test suite has been built on the same
concept as the first OpenACC 1.0 validation test suite in
[43], in which three commercial compilers were evaluated,
including CAPS, PGI, and CRAY. Similarly, this
OpenACC test suite was published in [44] for OpenACC
version 2.5, which is the past version, to validate and
verify compilers’ implementations of OpenACC features.
Recently, another testing of the OpenACC application was
published in [45], which considered detecting numerical
differences that can occur due to computational differences
on different OpenACC directives. They proposed a
solution for that by generating code from the compiler to
run each computer region on both the host CPU and the
GPU. Then, the values computed on the host and GPU are
compared using OpenACC data directives and clauses to
determine what data to compare.
Despite the efforts made in creating and proposing
software-testing tools for parallel application, there is still
much to be done, especially for OpenACC and dual-
programming models for heterogeneous systems. Finally,
to the best of our knowledge, there is no parallel testing
tool designed to test applications programmed by using
OpenACC or the dual-programming model (MPI +
OpenACC) to detect their run-time errors.

4. Proposed Architecture

We propose a parallel hybrid-testing tool for the dual-
programming model (MPI + OpenACC) and C++
programming language as shown in Figure 2 and 3. This
architecture has the flexibility to detect potential run-time
errors and report them to the developer, detect them
automatically by using assertion statements, and execute
them to get a list of run-time errors or detecting dynamic
errors. This architecture uses hybrid-testing techniques
including static and dynamic testing.
The source code includes C++ programming language and
(MPI + OpenACC) as dual-programming models. The part
that displayed in Figure 2 is responsible for detecting real
and potential run-time errors by using static testing,
producing a list of potential run-time errors for the

developer. Also, this list could be an input to the assertion
process that these potential errors will be automatically
detected and avoided during dynamic testing. In addition,
any real run-time errors also will be given to the developer
with a warning message, as these errors must be corrected
because they will definitely occur during run time. Also,
these real run-time errors that have been discovered in the
source code can be automatically corrected before the
process move to the dynamic testing part, which reduces
testing time and enhances testing performance. The static
part of the architecture includes:
• Lexical analyzer: which will take the source code

that includes C++, MPI, and OpenACC as inputs. The
analyzer will understand the source code because it
has all the information related to the programming
language and the determined programming models.
Then, it will convert the application source code into
tokens and further arrange them into tables of tokens.
The output of this analyzer will be a token table,
which includes token names and their respective types.

• Parser: which is responsible for analyzing the syntax
of the input source code and confirming the rules of
formal grammar. This process will produce a
structural representation of the input (Parser Tree) that
shows the syntax relationship to each other, checking
for correct syntax in the process.

• State transit graph generator: which will generate a
state graph for the user program, which includes C++,
MPI, and OpenACC. This state graph will be
represented by any suitable data structure such as a
matrix or linked list.

• State graph comparator: takes the graph for the
user program as an input and compares it with the
state graphs of each programming language and model.
This comparator has access to state graph libraries,
which include the respective programming language
and model with the correct grammar for each of them.
As a result, any differences in these comparisons will
be provided in a list of potential run-time errors, as
well as some real run-time errors that can be detected
by the static part of the architecture. The real run-time
errors will be delivered to the developer to correct
them because they undoubtedly occur if they do not be
corrected. The potential run-time errors will be a
move to the assertion language inserting and then
instrumented to be considered in the dynamic part of
the proposed architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

59

Fig. 2 Static Part of the Proposed Architecture

The dynamic testing part of the proposed architecture is
shown in Figure 3, which takes the source code and the
assertion statements as an input and move them to the
instrumental level. The instrumental will produce an
instrumented source code as an output. The instrumented
source code includes the user codes and the testing codes,
both of which are written in the user code programming
language. Two methods can do instrumentation. Firstly by
adding the testing codes, assertion statements, to the source
code which leads to greater code size as it will have both
the user code and testing code. The second method is
adding the assert statements calling API functions, and
these functions will test the part of the code that needs to
be tested. This method leads to a smaller code size in
which any testing that needs a call statement will be written,
and the function will do the test. It is noticeable when we
have the same testing code for several parts of the user
code; in the previous method this testing code would be
repeated many times, while with this method it will be
written only once and called multiple times.

Fig. 3 Dynamic Part of the Proposed Architecture

Further investigation of the instrumentation will be
considered in our future progress. The resulted
instrumented code will be compiled and linked, which
results in EXE codes including user executable code and
run-time subsystems. Finally, these EXE codes will be
executed and provide a list of run-time errors.

5. Discussion

There are many available tools, and studies have been
done to detect run-time errors that occur in parallel
systems that use MPI, CUDA, and OpenMP programming
models. However, even though OpenACC can work in
heterogeneous architecture, hardware, and platforms, as
well as being used by non-computer science specialists, it
can easily have several errors. There is no research or
testing tool that detects OpenACC run-time errors. Also,
OpenACC is increasingly being used in different research
fields as one of the main programming models that target
Exascale systems. Recently, OpenACC has been used in
five of 13 applications to accelerate top supercomputer
performance at the World Summit. Three of the top five
HPC applications are using OpenACC as well. Therefore,
this increase in using OpenACC will generate more errors
that need to be detected.
In our tool, we consider hybrid-testing techniques,
including static and dynamic testing. This combination
takes advantage of two testing techniques, reduces
disadvantages, and reduces testing time. The first part of
the hybrid technique is a static testing technique that
analyzes the source code before compilation to detect
static errors. Some of the run-time errors can also be
detected from the source code and should be sent to
developers to be resolved because they will occur
definitely at run time. In addition, potential run-time errors
might or might not occur after compilation and during run-
time based on the execution behavior. The cause of these
potential errors can be detected from the source code
before compilation by using static testing. However, if
these errors have not been detected, they will become run-
time errors. As a result, the developers should be warned
about these errors and consider them.
The second part of the hybrid technique is a dynamic
testing technique for errors that happen during run-time by
instrumenting and analyzing the system during run-time.
This is challenging because different factors and
complicated scenarios can cause these errors. In addition,
testing parallel programs is a difficult task because of the
nature of such programs and their behavior. This will add
more work to the testing tool in terms of covering every
possible scenario of the test cases and data. Furthermore,
these dynamic techniques are sensitive to the execution
environment and can thus affect the system execution time.
Finally, the run-time error type and behavior determines
what techniques will be used because static analysis and
other methods cannot detect dynamic technique errors.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

60

6. Conclusion and Future work

High-performance computing has become increasingly
important, and the Exascale supercomputers will be
feasible by 2020; therefore, building massively parallel
supercomputing systems based on a heterogeneous
architecture has become even more important to increase
parallelism. Using hybrid programming models for
creating parallel systems has several advantages and
benefits, but mixing parallel models within the same
application leads to more complex codes. Testing such
complex applications is a difficult task and needs new
techniques for detecting run-time errors.
We proposed a parallel hybrid testing tool for detecting
run-time errors for systems implemented in C++ and (MPI
+ OpenACC). This proposed solution integrates static and
dynamic testing techniques for building a new hybrid
testing tool for parallel systems. This allows us to take
advantages of both previously mentioned techniques for
detecting some of the dynamic errors from the source code
by using the static testing techniques, which will enhance
the system execution time. Also, our system will work in
parallel to detect run-time errors, by creating testing
threads depending on the number of the application threads.
In our future work, we will implement our architecture and
evaluate its ability to detect OpenACC run-time errors,
also identifying and detecting run-time errors from the
dual-programming model (MPI + OpenACC). Our
experiments will be conducted using an AZIZ
supercomputer, which is one of the top ten supercomputers
in the Kingdom of Saudi Arabia. In June 2016, AZIZ was
ranked No. 359 among the top 500 supercomputers in the
world.

Acknowledgments

This work was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah,
under grant No. (DG1440 - 12 - 611). The authors,
therefore, acknowledge with thanks DSR technical and
financial support.

References
[1] Message Passing Interface Forum, “MPI Forum,” 2017.

[Online]. Available: http://mpi-forum.org/docs/.
[2] OpenMP Architecture Review Board, “About OpenMP,”

OpenMP ARB Corporation, 2018. [Online]. Available:
https://www.openmp.org/about/about-us/.

[3] NVIDIA Corporation, “About CUDA,” 2015. [Online].
Available: https://developer.nvidia.com/about-cuda.

[4] Khronos Group, “About OpenCL,” Khronos Group, 2017.
[Online]. Available: https://www.khronos.org/opencl/.

[5] OpenACC-standard.org, “About OpenACC,” OpenACC
Organization, 2017. [Online]. Available:
https://www.openacc.org/about.

[6] SC11, “the International Conference for High Performance
Computing, Networking, Storage and Analysis,” 2011.
[Online]. Available: http://sc11.supercomputing.org/.

[7] A. Fu, D. Lin, and R. Miller, “Introduction to OpenACC,”
2016.

[8] J. A. Herdman, W. P. Gaudin, O. Perks, D. A. Beckingsale,
A. C. Mallinson, and S. A. Jarvis, “Achieving portability
and performance through OpenACC,” Proc. WACCPD
2014 1st Work. Accel. Program. Using Dir. - Held
Conjunction with SC 2014 Int. Conf. High Perform.
Comput. Networking, Storage Anal., no. July 2013, pp. 19–
26, 2015.

[9] M. Daga, Z. S. Tschirhart, and C. Freitag, “Exploring
Parallel Programming Models for Heterogeneous
Computing Systems,” in 2015 IEEE International
Symposium on Workload Characterization, 2015, pp. 98–
107.

[10] J. Kraus and P. Messmer, “Multi GPU programming with
MPI,” in GPU Technology Conference, 2014.

[11] J. Kim, S. Lee, and J. S. Vetter, “IMPACC: A Tightly
Integrated MPI+OpenACC Framework Exploiting Shared
Memory Parallelism,” in Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and
Distributed Computing - HPDC ’16, 2016, pp. 189–201.

[12] OpenACC Standards, “The OpenACC Application
Programming Interface version 2.7,” 2018.

[13] Y. Cai and Q. Lu, “Dynamic Testing for Deadlocks via
Constraints,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp.
825–842, 2016.

[14] Y. Lin and S. S. Kulkarni, “Automatic Repair for Multi-
threaded Programs with Deadlock / Livelock using
Maximum Satisfiability,” ISSTA Int. Symp. Softw. Test.
Anal., pp. 237–247, 2014.

[15] J. F. Münchhalfen, T. Hilbrich, J. Protze, C. Terboven, and
M. S. Müller, “Classification of common errors in OpenMP
applications,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.
8766, pp. 58–72, 2014.

[16] A. Karpov and E. Ryzhkov, “Adaptation of the technology
of the static code analyzer for developing parallel
programs,” Program Verification Systems, 2018. [Online].
Available: https://www.viva64.com/en/a/0019/.

[17] A. A. Sawant, P. H. Bari, and P. . Chawan, “Software
Testing Techniques and Strategies,” J. Eng. Res. Appl., vol.
2, no. 3, pp. 980–986, 2012.

[18] A. Karpov, “Testing parallel programs,” Program
Verification Systems, 2018. [Online]. Available:
https://www.viva64.com/en/a/0031/.

[19] J. Jaeger, E. Saillard, P. Carribault, and D. Barthou,
“Correctness Analysis of MPI-3 Non-Blocking
Communications in PARCOACH,” in Proceedings of the
22nd European MPI Users’ Group Meeting on ZZZ -
EuroMPI ’15, 2015, pp. 1–2.

[20] N. Ng and N. Yoshida, “Static deadlock detection for
concurrent Go by global session graph synthesis,” CC 2016
Proc. 25th Int. Conf. Compil. Constr., vol. 1, no. 212, pp.
174–184, 2016.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

61

[21] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, “An
Extended Polyhedral Model for SPMD Programs and Its
Use in Static Data Race Detection,” 2017, pp. 106–120.

[22] E. Saillard, P. Carribault, and D. Barthou, “Static/Dynamic
validation of MPI collective communications in multi-
threaded context,” ACM SIGPLAN Not., vol. 50, no. 8, pp.
279–280, Jan. 2015.

[23] A. T. Do-Mai, T. D. Diep, and N. Thoai, “Race condition
and deadlock detection for large-scale applications,” in
Proceedings - 15th International Symposium on Parallel and
Distributed Computing, ISPDC 2016, 2017, pp. 319–326.

[24] RWTH Aachen University, “MUST: MPI Runtime Error
Detection Tool,” 2018.

[25] E. Saillard, “Static / Dynamic Analyses for Validation and
Improvements of Multi-Model HPC Applications . To cite
this version : HAL Id : tel-01228072 DOCTEUR DE L ’
UNIVERSITÉ DE BORDEAUX Analyse statique /
dynamique pour la validation et l ’ amélioration des
applicat,” University of Bordeaux, 2015.

[26] R. Surendran, “Debugging, Repair, and Synthesis of Task-
Parallel Programs,” RICE UNIVERSITY, 2017.

[27] Lawrence Livermore National Laboratory, University of
Utah, and RWTH Aachen University, “ARCHER,” GitHub,
2018. [Online]. Available:
https://github.com/PRUNERS/archer.

[28] J. Zhou, S. Silvestro, H. Liu, Y. Cai, and T. Liu,
“UNDEAD : Detecting and Preventing Deadlocks in
Production Software,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated
Software Engineering, 2017, pp. 729–740.

[29] M. K. Ganai, “Dynamic Livelock Analysis of Multi-
threaded Programs,” in Runtime Verification, 2013, pp. 3–
18.

[30] The Open MPI Organization, “Open MPI: Open Source
High Performance Computing,” 2018. [Online]. Available:
https://www.open-mpi.org/.

[31] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z.
Yang, “Symbolic Analysis of Concurrency Errors in
OpenMP Programs,” in 2013 42nd International Conference
on Parallel Processing, 2013, pp. 510–516.

[32] E. Saillard, P. Carribault, and D. Barthou, “Static Validation
of Barriers and Worksharing Constructs in OpenMP
Applications,” in Using and Improving OpenMP for
Devices, Tasks, and More, vol. 8766, 2014, pp. 73–86.

[33] R. W. S. Inc., “TotalView for HPC,” 2018. [Online].
Available: https://www.roguewave.com/products-
services/totalview.

[34] Allinea Software Ltd, “ALLINEA DDT,” ARM HPC Tools,
2018. [Online]. Available:
https://www.arm.com/products/development-tools/hpc-
tools/cross-platform/forge/ddt.

[35] R. Sharma, M. Bauer, and A. Aiken, “Verification of
producer-consumer synchronization in GPU programs,”
ACM SIGPLAN Not., vol. 50, no. 6, pp. 88–98, 2015.

[36] Mai Zheng, V. T. Ravi, Feng Qin, and G. Agrawal,
“GMRace: Detecting Data Races in GPU Programs via a
Low-Overhead Scheme,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 1, pp. 104–115, Jan. 2014.

[37] H. Ma, L. Wang, and K. Krishnamoorthy, “Detecting
Thread-Safety Violations in Hybrid OpenMP/MPI

Programs,” in 2015 IEEE International Conference on
Cluster Computing, 2015, pp. 460–463.

[38] E. Saillard, P. Carribault, and D. Barthou, “MPI Thread-
Level Checking for MPI+OpenMP Applications,” in
EuroPar, vol. 9233, 2015, pp. 31–42.

[39] B. Klemme, “Software Testing of Parallel Programming
Frameworks,” University of New Mexico, 2016.

[40] T. Hilbrich, M. S. Müller, and B. Krammer, “MPI
Correctness Checking for OpenMP/MPI Applications,” Int.
J. Parallel Program., vol. 37, no. 3, pp. 277–291, 2009.

[41] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D.
H. Ahn, and M. Schulz, “AutomaDeD: Automata-based
debugging for dissimilar parallel tasks,” in IFIP
International Conference on Dependable Systems &
Networks (DSN), 2010, pp. 231–240.

[42] J. Yang, “A VALIDATION SUITE FOR HIGH-LEVEL
DIRECTIVE-BASED PROGRAMMING MODEL FOR
ACCELERATORS A VALIDATION SUITE FOR HIGH-
LEVEL DIRECTIVE-BASED PROGRAMMING MODEL
FOR,” University of Houston, 2015.

[43] C. Wang, R. Xu, S. Chandrasekaran, B. Chapman, and O.
Hernandez, “A validation testsuite for OpenACC 1.0,” in
Proceedings of the International Parallel and Distributed
Processing Symposium, IPDPS, 2014, pp. 1407–1416.

[44] K. Friedline, S. Chandrasekaran, M. G. Lopez, and O.
Hernandez, “OpenACC 2.5 Validation Testsuite Targeting
Multiple Architectures,” 2017, pp. 557–575.

[45] K. Ahmad and M. Wolfe, “Automatic Testing of OpenACC
Applications,” in 4th International Workshop on
Accelerator Programming Using Directives, vol. 10732,
2018, pp. 145–159.

