
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019 

 

54 

Manuscript received March 5, 2019 
Manuscript revised March 20, 2019 

Proposed Architecture for a Parallel Hybrid-Testing Tool for a 
Dual-Programming Model 

Ahmed M. Alghamdi1* and  Fathy E. Eassa2 
 

King Abdulaziz University,  Jeddah, KSA 
 
Summary 
Recently, building massively parallel systems has become 
increasingly important with coming improvements of Exascale 
related technologies. For building such systems, a combination of 
programming models is needed to increase the system's 
parallelism. One of these combinations is the dual-programming 
model (MPI+X) that has different structures to increase 
parallelism in heterogeneous systems that include CPUs and 
GPUs. (MPI + OpenACC) has many advantages and features that 
increase parallelism with respect to heterogeneous architecture 
and support different platforms with more performance, 
productivity and programmability. However, building parallel 
systems with different programming models is even harder and is 
more error-prone, which is not easy to test. Also, testing parallel 
applications is a difficult task, because parallel errors are hard to 
detect due to the non-determined behavior of the parallel 
application. Even after detecting the errors and modifying the 
source code, it is not easy to determine whether the errors have 
been corrected or remain hidden. Furthermore, integrating two 
different programming models inside the same application makes 
it even more difficult to test.  
We proposed a parallel hybrid-testing tool for detecting run-time 
errors for systems implemented in C++ and (MPI + OpenACC). 
The hybrid techniques combine static and dynamic testing 
techniques for detecting real and potential run-time errors by 
analyzing the source code during run time. Using parallel hybrid 
techniques will enhance the testing time and cover a wide range 
of errors. Finally, to the best of our knowledge, identifying and 
classifying OpenACC errors has not been done before, and there 
is no parallel testing tool designed to test applications 
programmed by using the dual-programming model (MPI + 
OpenACC) or the single-programming models like OpenACC. 
Keywords: 
Software Testing; Hybrid Testing Tool; OpenACC; MPI; Dual-
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1. Introduction 

Building massively parallel supercomputing systems based 
on heterogeneous architecture has been one of the top 
research topics in the past few years. Therefore, creating 
parallel programs has also becomes increasingly important, 
but there is a lack of parallel programming languages, and 
the majority of traditional programming languages cannot 
support parallelism efficiently. As a result, programming 
models have been created to add parallelism to the 

programming languages. Programming models are sets of 
instructions, operations, and constructs used to support 
parallelism.   
Today, various programming models have different 
features and have been created for different purposes, 
including message passing such as MPI [1] and shared-
memory parallelism such as OpenMP [2]. Also, some 
programming models support heterogeneous systems, 
which consist of a Graphics Processing Unit (GPU) 
coupled with a traditional CPU. Heterogeneous parallel 
programming models are CUDA [3] and OpenCL [4], 
which are considered low-level programming models and 
OpenACC [5] as a high-level heterogeneous programming 
model. 
Testing parallel applications is a difficult task because 
parallel errors are hard to detect due to the non-determined 
behavior of the parallel application. Even after detecting 
the errors and modifying the source code, it is not easy to 
determine whether the errors have been corrected or 
hidden. Integrating two different programming models 
inside the same application makes testing even more 
difficult to test. Despite the available testing tools that 
detect static and dynamic errors, there is still a shortage of 
such testing tools that detect run-time errors in systems 
implemented in the high-level programming models.  
This research aims to develop a parallel hybrid testing tool 
for systems implemented in (MPI + OpenACC) dual 
programming model with C++ programming language. The 
hybrid techniques combine static and dynamic testing 
techniques for detecting real and potential run-time errors 
by analyzing the source code and during run time. Using 
parallel hybrid techniques will enhance the testing time and 
cover a wide range of errors. 
The rest of this paper is structured as follows. Section 2 
briefly gives an overview of some programming models 
and some run-time errors. The related work will be 
discussed in Section 3, the proposed architecture in 
Section 4, discussion in Section 5 and finally the 
conclusion with the future works in Section 6. 
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2. Background 

In this section, the main components involved in our 
research will be displayed and discussed. This will include 
the programming models that will be used in our research 
and describing why they have been chosen. Also, some 
run-time errors and testing techniques will also be 
described and discussed in this section.  

2.1 OpenACC 

In November 2011, OpenACC which stands for open 
accelerators, was released for the first time in the 
International Conference for High-Performance Computing, 
Networking, Storage and Analysis [6]. OpenACC is a 
directive-based open standard developed by Cray, CAPS, 
NVIDIA and PGI. They design OpenACC to create simple 
high-level parallel programming model for heterogeneous 
CPU/GPU systems, that compatible with FORTRAN, C, 
and C++ programming languages. Also, OpenACC 
Standard Organization defines OpenACC as "a user-driven 
directive-based performance-portable parallel 
programming model designed for scientists and engineers 
interested in porting their codes to a wide variety of 
heterogeneous HPC hardware platforms and architectures 
with significantly less programming effort than required 
with a low-level model." [5]. The latest version of 
OpenACC was released in November 2018. OpenACC has 
several features and advantages comparing with other 
heterogeneous parallel programming models including: 
Portability: Unlike programming model like CUDA works 
only on NVIDIA GPU accelerators, OpenACC is portable 
across different type of GPU accelerators, hardware, 
platforms, and operating systems.[8], [9]     
OpenACC is compatible with various compilers and gives 
flexibility to the compiler implementations.  
High-level programming model, which makes targeting 
accelerators easier, by hiding low-level details. For 
generation low-level GPU programs, OpenACC relies on 
the compiler using the programmer codes. [9] 
Better performance with less programming effort, which 
gives the ability to add GPU codes to existing programs 
with less effort. This will lead to reduce the programmer 
workload and improve programmer productivity and 
achieving better performance than OpenCL and CUDA. 
[8] 
OpenACC allows users to specify three levels of 
parallelism by using three clauses:  
Gangs: Coarse-Grained Parallelism  
Workers: Medium-grained Parallelism 
Vector: Fine-Grained Parallelism  
OpenACC has both a strong and significant impact on the 
HPC society as well as other scientific communities. 
Jeffrey Vetter (HPC luminary and Joint Professor Georgia 

Institute of Technology) wrote: “OpenACC represents a 
major development for the scientific community. 
Programming models for open science by definition need 
to be flexible, open and portable across multiple platforms. 
OpenACC is well-designed to fill this need.” [5].   

2.2 Message Passing Interface (MPI) 

Message Passing Interface (MPI) [1] is a message-passing 
library interface specification. In May 1994, the first 
official version of MPI was released. MPI is a message-
passing parallel programming model that moves data from 
a process address space to another process by using 
cooperative operations on each process. The MPI aims to 
establish a standard for writing message-passing programs 
to be portable, efficient, and flexible. Also, MPI is a 
specification, not a language or implementation, and all 
MPI operations are expressed as functions, subroutine or 
methods for programming languages including FORTRAN, 
C, and C++. MPI has several features and advantages 
including: 
• Standard: MPI is the only message passing library that 

can be considered a standard. It has been supported on 
virtually all HPC platforms. Also, all previous message 
passing libraries have been replaced by MPI. 

• Portability: MPI can be implemented on several 
platforms, hardware, systems, and programming 
languages. Also, MPI can work correctly with several 
programming models and work with heterogeneous 
networks.  

• Availability: Various versions of MPI 
implementations from different vendors and 
organization are available as open source and 
commercial implementations.  

• Functionality: On MPI version 3.1 there are over 430 
routines has been defined including the majority of the 
previous versions of MPI.   

The new MPI standardization version 4.0 [1] is in progress, 
which aims to add new techniques, approaches, or 
concepts to the MPI standard that will help MPI address 
the need of current and next-generation applications and 
architectures. The new version will extend to better 
support hybrid programming models including hybrid 
MPI+X concerns and support for fault tolerance in MPI 
applications. 

2.3 Dual-Level Programming Model: (MPI + 
OpenACC) 

Integrating more than one programming model can 
enhance parallelism, performance, and the ability to work 
with heterogeneous platforms. Also, this combination will 
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help in moving to Exascale systems, which need more 
powerful programming models that support massively-
parallel supercomputing systems. Hybrid programming 
models can be classified as:  

• Single-Level Programming Model: MPI 
• Dual-Level Programming Model: MPI + X 
• Tri-Level Programming Model: MPI + X + Y   

In our research, the dual-programming model (MPI + 
OpenACC) will be discussed. As mentioned earlier MPI 
and OpenACC have various advantages, and by combining 
them, we will enhance parallelism, performance and 
reduce programming efforts as well as taking advantage of 
heterogeneous GPU accelerators. That will be achieved by 
using OpenACC that can be compiled into multiple device 
types, including multiple vendors of GPUs and multi-core 
CPUs as well as different hardware architecture. MPI will 
be used to exchange the data between different nodes as 
shown in Figure 1, which display how to use MPI for inter 
GPU communication with OpenACC.   
 

 

Fig. 1  Multi GPU Programming with MPI and OpenACC [10] 

In order to write portable and scalable applications for 
heterogeneous architecture, the dual-programming model 
(MPI + OpenACC) can be practical. It inherits the 
advantages, such as high performance, scalability, and 
portability from MPI and programmability and portability 
from OpenACC [11]. However, this dual-programming 
model might introduce different types of run-time errors, 
which have different behaviors and causes. Also, some 
complexities and inefficiencies might happen including 
redundant data movement and excessive synchronization 
between the models, which need to be considered and take 
care of, but it is better than using CUDA or OpenCL, 
which is more complicated and harder to program, 
resulting in lower productivity. 

2.4 Common Run-Time Errors in Parallel 
Applications 

There are several types of run-time errors that happened 
after compilation and cannot be detected by the compilers, 
which cause the program not to meet the user requirements. 

These errors even sometimes have similar names, but they 
are different in the reasons that cause the run-time error or 
error behavior. For example, deadlock in MPI has different 
causes and behaviors comparing with OpenACC deadlocks. 
Also, run-time errors in the dual-programming model are 
different. Also, some run-time errors happened specifically 
in a particular programming model. By investigating the 
documents of the latest version of OpenACC 2.7 [12], we 
found that OpenACC has a repetitive run-time error that if 
a variable is not present on the current device, this will 
lead to run-time error. This case happened in non-shared 
memory devices for different OpenACC clauses. 
Similarly, if the data is not present, a run-time error is 
issued in some routines. Furthermore, detecting such errors 
is not easy to do, and to detect them in applications 
developed by dual-programming model even more 
complicated. In the following, some popular run-time 
errors will be displayed and discussed in general with some 
examples.  

2.4.1 Deadlock 

A deadlock is a situation in which a program is waiting for 
an indefinite amount of time. In other words, one or more 
threads in a group are permanently blocked without 
consuming CPU cycles. The deadlock has two types: 
resource and communication deadlock. Resource deadlock 
is a situation where a thread waits for another thread 
resource to proceed.  
Similarly, communication deadlock occurs when some 
threads wait for some messages but never receive them. 
The causes of deadlock are different depending on the 
programming model used, system nature, and behavior. 
Once the deadlock occurs, it is not difficult to detect, but in 
some cases, it is difficult to detect them before they happen, 
as they occur under certain interleaving [13]. Finally, 
deadlocks in any system could be either potential or real 
deadlocks. 

2.4.2 Livelock 

Livelock is similar to deadlock, except that livelock is a 
situation in which two or more processes change their state 
continuously in response to changes in the other processes. 
In other words, it occurs when one or more threads 
continuously change their states and consume CPU cycles 
in response to changes in state of the other threads without 
doing any useful work. As a result, none of the processes 
will make any progress and will not complete [14]. In a 
livelock, the thread might not be blocked forever, and it is 
hard to distinguish between livelock and long-running 
processes. Also, livelock can lead to performance and 
power consumption problems because of the useless busy-
wait cycles.    
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 2.4.3 Race Condition 

A race condition is a situation that might be occurred due 
to executing processes by multiple threads and where the 
sequence of execution for the threads makes a difference in 
the result of the concurrent execution. The execution 
timing and order will affect the program's correctness [15]. 
Also, it can happen when there are two memory accesses in 
the program both are performed concurrently by two 
threads or targeting the same location. For example, at 
least one read and one write may happen at the same 
memory location, at the same time. 

2.5 Testing Techniques 

There are many techniques used in software testing, which 
include static, dynamic, as well as other techniques. Static 
testing is the process of analyzing the source code before 
compilation phase for detecting static errors. It handles the 
application source code only without launching it, which 
give us the ability to analyze the code in details and have 
full coverage. In contrast, the static analysis of parallel 
application is complicated due to the unpredicted program 
behavior, which is parallel application nature [16]–[18]. 
However, it will be beneficial to use static analysis for 
detecting potential run-time errors and some real run-time 
errors that are obvious from the source code, such as some 
types of deadlocks and race condition.   
Dynamic testing is the process of analyzing the system 
during run-time for detecting dynamic (run-time) errors. It 
demands to launch programs, sensitive to the execution 
environment, and slow down the speed of application 
execution. It is useful to use dynamic analysis in the 
parallel application, which gives the flexibility to monitor 
and detect each thread of the parallel application. However, 
it is difficult to cover the whole parallel code with tests, 
and after correcting the errors, it cannot be confirmed that 
errors are corrected or hidden. 
 Finally, it is the error types and behaviors that determine 
which techniques will be used, because static analysis and 
others cannot detect dynamic techniques cannot detect 
some errors. As a result, in our research, a hybrid 
technique will be used for different purposes and reasons. 
Furthermore, this hybrid technology will be working in 
parallel to detect parallel run-time errors and analyzing the 
application's threads.    

3. Related Works 

There are many studies have been done in software testing 
for HPC and parallel software. These studies are varied for 
different purposes and scopes. These variations include 
testing tools or detection of a specific type of error or for a 
different type of error. Some studies focus on using static 

testing techniques [19]–[21] to detect errors by analyzing 
the source code to find real as well as potential run-time 
errors [22], [23], dynamic testing techniques  [13], [24] to 
detect errors after execution and at run time, or hybrid-
testing techniques [25]–[27]. In addition, detecting errors 
in programming models also vary from the testing tool for 
single-level programming models to the tri-level 
programming model. Even in the same classification of 
programming model, there is variation in testing the 
programming models themselves because each 
programming model has a different type of error to detect 
as discussed earlier in Section 2.4.  
For detecting a specific type of error, there are many 
research works on detecting deadlock, livelock, and race 
condition by using different techniques. In deadlock 
detection, many tools and studies use static or dynamic 
testing techniques to detect deadlocks including resource 
and communication deadlocks. UNDEAD [28] is intended 
for deadlock detection and prevention, which helps to 
defeat deadlocks in production software with enhancing 
run-time performance and memory overheads. Regarding 
detecting data race, the hybrid test-driven approach has 
been introduced in [26] to detect data race in task-parallel 
programs. Finally, some livelock detection techniques have 
been proposed in [14], [29]. 
Regarding testing the programming model, many 
approaches have been introduced to test and detect errors 
in parallel software. Many studies have been done with 
single-level programming models such as MPI [24], [30], 
OpenMP [35]–[37],  and CUDA [35], [36], while some 
studies focus on dual-level programming models including 
(MPI + X) hybrid programming models, which include 
homogeneous and heterogeneous systems. One popular 
combination is (MPI + OpenMP), which appears in [29], 
[41] .  
Many existing HPC debuggers include both commercial 
and open-source versions. One commercial debugger is 
ALLINEA DDT [34], which supports C++, MPI, OpenMP, 
and Pthreads, and has been designed to work on all scales, 
including Petascale. The other is TotalView [33], which 
supports MPI, Pthreads, OpenMP and CUDA. However, 
these debuggers do not help to test or detect errors, but are 
used to find the reasons behind those errors.  Also, the 
developer needs to select the thread, process, and kernel to 
be investigated. 
In terms of open-source testing tools, ARCHER [27] is a 
data race detector for an OpenMP program that combines 
static and dynamic techniques to identify data race in large 
OpenMP applications. In addition, AutomaDeD [41] 
(Automata-based Debugging for Dissimilar Parallel Tasks) 
is a tool that detects MPI errors by comparing similarities 
and dissimilarities between tasks. MEMCHEKER [30] 
allows finding hard-to-catch memory errors in MPI 
applications such as overwriting of memory regions used 
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in non-blocking communication and one-sided 
communication. Furthermore, MUST [24] detects run-time 
errors in MPI and reports them to the developers, including 
MPI deadlock detection, data type matching, and detection 
of communication buffer overlaps.    
There are limited studies of OpenACC in testing and 
detecting static and dynamic errors. There are some studies 
regarding related OpenACC testing. In [42], they evaluate 
three commercial OpenACC compilers by creating a 
validation suite that contains 140 test cases for OpenACC 
2.0. They also check conformance, correctness, and 
completeness of certain compilers for the OpenACC 2.0 
new features. This test suite has been built on the same 
concept as the first OpenACC 1.0 validation test suite in 
[43], in which three commercial compilers were evaluated, 
including CAPS, PGI, and CRAY. Similarly, this 
OpenACC test suite was published in [44] for OpenACC 
version 2.5, which is the past version, to validate and 
verify compilers’ implementations of OpenACC features.    
Recently, another testing of the OpenACC application was 
published in [45], which considered detecting numerical 
differences that can occur due to computational differences 
on different OpenACC directives. They proposed a 
solution for that by generating code from the compiler to 
run each computer region on both the host CPU and the 
GPU. Then, the values computed on the host and GPU are 
compared using OpenACC data directives and clauses to 
determine what data to compare.  
Despite the efforts made in creating and proposing 
software-testing tools for parallel application, there is still 
much to be done, especially for OpenACC and dual-
programming models for heterogeneous systems. Finally, 
to the best of our knowledge, there is no parallel testing 
tool designed to test applications programmed by using 
OpenACC or the dual-programming model (MPI + 
OpenACC) to detect their run-time errors. 

4. Proposed Architecture 

We propose a parallel hybrid-testing tool for the dual-
programming model (MPI + OpenACC) and C++ 
programming language as shown in Figure 2 and 3. This 
architecture has the flexibility to detect potential run-time 
errors and report them to the developer, detect them 
automatically by using assertion statements, and execute 
them to get a list of run-time errors or detecting dynamic 
errors. This architecture uses hybrid-testing techniques 
including static and dynamic testing.  
The source code includes C++ programming language and 
(MPI + OpenACC) as dual-programming models. The part 
that displayed in Figure 2 is responsible for detecting real 
and potential run-time errors by using static testing, 
producing a list of potential run-time errors for the 

developer. Also, this list could be an input to the assertion 
process that these potential errors will be automatically 
detected and avoided during dynamic testing. In addition, 
any real run-time errors also will be given to the developer 
with a warning message, as these errors must be corrected 
because they will definitely occur during run time. Also, 
these real run-time errors that have been discovered in the 
source code can be automatically corrected before the 
process move to the dynamic testing part, which reduces 
testing time and enhances testing performance. The static 
part of the architecture includes:  
• Lexical analyzer: which will take the source code 

that includes C++, MPI, and OpenACC as inputs. The 
analyzer will understand the source code because it 
has all the information related to the programming 
language and the determined programming models. 
Then, it will convert the application source code into 
tokens and further arrange them into tables of tokens. 
The output of this analyzer will be a token table, 
which includes token names and their respective types.    

• Parser: which is responsible for analyzing the syntax 
of the input source code and confirming the rules of 
formal grammar. This process will produce a 
structural representation of the input (Parser Tree) that 
shows the syntax relationship to each other, checking 
for correct syntax in the process.       

• State transit graph generator: which will generate a 
state graph for the user program, which includes C++, 
MPI, and OpenACC. This state graph will be 
represented by any suitable data structure such as a 
matrix or linked list. 

•  State graph comparator: takes the graph for the 
user program as an input and compares it with the 
state graphs of each programming language and model. 
This comparator has access to state graph libraries, 
which include the respective programming language 
and model with the correct grammar for each of them. 
As a result, any differences in these comparisons will 
be provided in a list of potential run-time errors, as 
well as some real run-time errors that can be detected 
by the static part of the architecture. The real run-time 
errors will be delivered to the developer to correct 
them because they undoubtedly occur if they do not be 
corrected. The potential run-time errors will be a 
move to the assertion language inserting and then 
instrumented to be considered in the dynamic part of 
the proposed architecture.  
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Fig. 2  Static Part of the Proposed Architecture 

The dynamic testing part of the proposed architecture is 
shown in Figure 3, which takes the source code and the 
assertion statements as an input and move them to the 
instrumental level. The instrumental will produce an 
instrumented source code as an output. The instrumented 
source code includes the user codes and the testing codes, 
both of which are written in the user code programming 
language. Two methods can do instrumentation. Firstly by 
adding the testing codes, assertion statements, to the source 
code which leads to greater code size as it will have both 
the user code and testing code. The second method is 
adding the assert statements calling API functions, and 
these functions will test the part of the code that needs to 
be tested. This method leads to a smaller code size in 
which any testing that needs a call statement will be written, 
and the function will do the test. It is noticeable when we 
have the same testing code for several parts of the user 
code; in the previous method this testing code would be 
repeated many times, while with this method it will be 
written only once and called multiple times. 
 

 

Fig. 3  Dynamic Part of the Proposed Architecture 

Further investigation of the instrumentation will be 
considered in our future progress. The resulted 
instrumented code will be compiled and linked, which 
results in EXE codes including user executable code and 
run-time subsystems. Finally, these EXE codes will be 
executed and provide a list of run-time errors.     

5. Discussion  

There are many available tools, and studies have been 
done to detect run-time errors that occur in parallel 
systems that use MPI, CUDA, and OpenMP programming 
models. However, even though OpenACC can work in 
heterogeneous architecture, hardware, and platforms, as 
well as being used by non-computer science specialists, it 
can easily have several errors. There is no research or 
testing tool that detects OpenACC run-time errors. Also, 
OpenACC is increasingly being used in different research 
fields as one of the main programming models that target 
Exascale systems. Recently, OpenACC has been used in 
five of 13 applications to accelerate top supercomputer 
performance at the World Summit. Three of the top five 
HPC applications are using OpenACC as well. Therefore, 
this increase in using OpenACC will generate more errors 
that need to be detected.  
In our tool, we consider hybrid-testing techniques, 
including static and dynamic testing. This combination 
takes advantage of two testing techniques, reduces 
disadvantages, and reduces testing time. The first part of 
the hybrid technique is a static testing technique that 
analyzes the source code before compilation to detect 
static errors. Some of the run-time errors can also be 
detected from the source code and should be sent to 
developers to be resolved because they will occur 
definitely at run time. In addition, potential run-time errors 
might or might not occur after compilation and during run-
time based on the execution behavior. The cause of these 
potential errors can be detected from the source code 
before compilation by using static testing. However, if 
these errors have not been detected, they will become run-
time errors. As a result, the developers should be warned 
about these errors and consider them.  
The second part of the hybrid technique is a dynamic 
testing technique for errors that happen during run-time by 
instrumenting and analyzing the system during run-time. 
This is challenging because different factors and 
complicated scenarios can cause these errors. In addition, 
testing parallel programs is a difficult task because of the 
nature of such programs and their behavior. This will add 
more work to the testing tool in terms of covering every 
possible scenario of the test cases and data. Furthermore, 
these dynamic techniques are sensitive to the execution 
environment and can thus affect the system execution time. 
Finally, the run-time error type and behavior determines 
what techniques will be used because static analysis and 
other methods cannot detect dynamic technique errors.   
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6. Conclusion and Future work 

High-performance computing has become increasingly 
important, and the Exascale supercomputers will be 
feasible by 2020; therefore, building massively parallel 
supercomputing systems based on a heterogeneous 
architecture has become even more important to increase 
parallelism. Using hybrid programming models for 
creating parallel systems has several advantages and 
benefits, but mixing parallel models within the same 
application leads to more complex codes. Testing such 
complex applications is a difficult task and needs new 
techniques for detecting run-time errors. 
We proposed a parallel hybrid testing tool for detecting 
run-time errors for systems implemented in C++ and (MPI 
+ OpenACC). This proposed solution integrates static and 
dynamic testing techniques for building a new hybrid 
testing tool for parallel systems. This allows us to take 
advantages of both previously mentioned techniques for 
detecting some of the dynamic errors from the source code 
by using the static testing techniques, which will enhance 
the system execution time. Also, our system will work in 
parallel to detect run-time errors, by creating testing 
threads depending on the number of the application threads. 
In our future work, we will implement our architecture and 
evaluate its ability to detect OpenACC run-time errors, 
also identifying and detecting run-time errors from the 
dual-programming model (MPI + OpenACC). Our 
experiments will be conducted using an AZIZ 
supercomputer, which is one of the top ten supercomputers 
in the Kingdom of Saudi Arabia. In June 2016, AZIZ was 
ranked No. 359 among the top 500 supercomputers in the 
world.   
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