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Summary 
Internet users need reliable transmissions for web browsing, 
email, file transfer, and database access. TCP is the dominant 
reliable transport protocol on top of which all of these services 
run. Since TCP is originally developed to be used on the wired 
network, it safely assumes that segment losses are due to 
congestion. This is not true for wireless media where, due to 
fading channels and user mobility, transmission errors are more 
frequent. It unconditionally reduces its flow when a packet loss is 
detected, assuming that it has occurred because of congestion in 
the network. This incorrect assumption in case of a packet loss 
occurring due to channel noise, adversely affects the performance 
of TCP. This paper focuses on the same problem of TCP related 
to random errors causing packet loss. Treatment for losses should 
be different for corruption and congestion to improve efficiency. 
The proposed Composite TCP (CTCP) utilizes the SACK 
information available from a receiver along with round trip time 
to avoid flow control when the loss is because of a random error. 
The performance b of Composite TCP is compared and analyzed 
with existing variants over networks with exhaustive simulations 
using ns-2. Simulation results indicate that the proposed protocol 
significantly improves performance. 
Key words: 
SACK TCP, congestion control, Round Trip Time, cwnd, 
ssthresh  

1. Introduction 

TCP/IP is a well-proven and accepted protocol suite, 
which has successfully ensured stable and robust network 
operations since evolution. These properties have made 
TCP/IP protocol suite an inseparable part of the Internet. 
The ongoing ramping up demand for Internet calls for new 
architectures and new technologies capable of providing 
high quality and high speed Internet services. TCP is the 
dominant reliable transport protocol, used for web 
browsing, email, file transfer etc[1]. Thus, TCP has an 
imperative role in the performance of the Internet.  
TCP provides reliable service along with end-to-end 
connectivity at the transport layer [2]. TCP increases the 
packets sending rate if no packet losses are encountered. 
Due to the inherent reliability of wired networks, there is 
an assumption made by TCP that any packet loss is due to 
congestion. To reduce congestion, TCP will start its 
congestion control mechanism whenever any packet loss is 
detected. Due to its extensive use in the Internet, it is 

advisable that TCP remains in use to offer reliable services 
for communications in wireless networks and in 
heterogeneous networks.  
In this paper, we propose a new approach to discriminate 
random losses from congestion induced losses. 
Retransmission and flow reduction are decoupled by 
identification of the type of the loss. Most of the 
congestion induced losses are multiple in nature. A single 
loss from the window can be attributed to random errors. 
Estimated delay of the connection is examined to affirm 
the cause of the loss. Remedial action is decided based on 
the type of loss to achieve improved network performance 
as well as robustness. The proposed scheme is evaluated 
with established existing versions of TCP by various 
simulations.  
The rest of the paper is organized as follows.  We explain 
existing TCP variants in the next section. A new algorithm 
called Composite TCP is explained with state transition 
diagram in Section 3. Simulation environment along with 
topologies are described in Section 4. The simulation 
results of conduct simulations are analyzed in Section 5. 
We conclude the paper in Section 6. 

2. Existing Variants of TCP  

TCP has undergone many revisions in the past three 
decades. Wired and wireless networks are notably different 
in terms of bandwidth, speed, propagation delay, and 
channel reliability [3].  
The connotation of the diversity is that packet losses are 
not only because of congestion, but can also result from 
characteristics of wireless links. While TCP performs well 
in wired networks, it might deteriorate performance 
severely in wireless networks if it wrongly considers non-
congestion-related losses as a sign of congestion and 
consequently invokes congestion control, as reported in 
[3,4,5]. 
TCP ensures reliability by using a retransmission timer. 
TCP increases the congestion window (cwnd) by one  per 
acknowledgement. Hence, it effectively doubles cwnd 
during every round trip time (RTT). When cwnd reaches 
slow start threshold (ssthresh), it enters congestion 
avoidance phase. cwnd is increased by one per an RTT in 
this phase. If data is not acknowledged prior to timer 
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expiration, the TCP sender retransmits the data. TCP sets 
back cwnd to one when Retransmission timeout (RTO) 
occurs. It is due to the original design of TCP for wired 
networks, where congestion was the prime cause of packet 
losses. 
A loss is detected by the arrival of three duplicate 
acknowledgements (dupack) in Tahoe TCP [6]. Fast 
retransmission of the lost packet is attempted without 
waiting for a timeout.  
TCP Reno introduced fast recovery, which halves cwnd on 
the loss detection by dupacks[7]. TCP Reno can recover 
from a single packet loss, but it is not capable of 
recovering from multiple losses from the same window. 
TCP New Reno improves its predecessor’s  performance 
by using the enhanced recovery procedure  in the case 
when multiple packets are lost [8].  
Selective Acknowledgement (SACK) TCP uses header 
options to convey SACK blocks to the transmitter[9]. Each 
SACK block selectively acknowledges non-contiguous 
segments. SACK TCP can avoid unnecessary 
retransmissions from the knowledge of available data at the 
receiver. New Reno TCP with SACK options are 
commonly implemented in accepted operating systems.  
TCP Vegas proactively tries to overcome the impact of 
congestion [10]. It does not only rely on packet loss as a 
signal of congestion. It estimates the unacknowledged data 
in the buffer and senses congestion before the actual 
packet loss. It calculates the optimal throughput by 
maintaining the minimum RTT. TCP Vegas faces 
problems of unrelenting congestion, rerouting and 
discrepancy in flow rate [11]. 
Linux TCP [12] sender is managed by a state machine to 
determine the actions on arrival of acknowledgements. 
Linux TCP implements TCP enhancements proposed by 
Internet Engineering Task Force (IETF), like ECN [13] 
and D-SACK [14]. 
Forward Acknowledgements (FACK) aggressively 
considers the unacknowledged data between the SACK 
blocks as lost packets[15]. Although this approach may 
result in improved TCP performance at times, it is 
certainly belligerent if packets are reordered in the network. 
TCP Fast Start [16] modifies TCP’s conventional slow 
start. The sender caches some network parameters to shun 
paying the slow start penalty for subsequent connections. 
There is a risk involved if the cached information is stale.  
AFStart TCP [17] approaches ssthresh rapidly as 
compared to conventional slow start because cwnd is 
initialized with 4 packets. An abrupt increase in cwnd 
obtains the available resources, which may result in to 
performance issues with other flows.  
Novel Quick Start [18] initializes the value of cwnd to the 
detected network bandwidth. Error in predicting bandwidth 
is abridged in succeeding iterations. A sudden change in 
cwnd may cause congestion. 

An EQF (Explicit Queue-length Feedback) [19] uses the 
length of the queue of the congested switch port as a 
potential congestion to prompt the sender to control the 
sending rate of the sender by invoking congestion control. 

3. Composite TCP  

TCP performance is determined by its congestion control 
mechanism, which restricts the amount of transmitted data 
based on the estimated network capacity [20]. Congestion 
control mechanisms are based on either loss or RTT. We 
propose an algorithm which considers both the parameters 
at the time of setting cwnd. Hence, we call it a Composite 
TCP. Composite TCP (CTCP) utilizes SACK blocks along 
with RTT to make a decision about the type of the loss.  
In the proposed scheme, transmitter keeps track of 
incoming SACK blocks, reported in duplicate 
acknowledgements. Most of the congestive losses are 
neither random nor sparse in nature. If all consecutive 
segments are reported in SACK blocks of subsequent 
acknowledgements following a loss, the loss indicated by 
three dupacks may not be due to congestion but it may be a 
random loss [21]. The presumed erroneous loss is also 
confirmed by comparing current RTT with SRTT. SRTT 
stands for Smoothed Round Trip Time. For each 
connection, TCP maintains SRTT, which is the best 
estimate of the round-trip time to the destination in 
question. The loss is treated to be an erroneous loss if RTT 
is smaller than or equal to SRTT. Congestion causes 
queuing delay, which would result in higher RTT. 
When there is a single loss in a window and RTT also does 
not indicate congestion, then we can safely consider the 
loss to be a random loss [21]. In the case of such scattered 
losses, cwnd reduction can be avoided and only 
retransmission is attempted to recover from the loss. If 
subsequent loss takes place in the same window, a gap in 
SACK information is reported by the receiver. This 
indicates a possibility of another loss in the same window. 
If there are multiple losses in the same window, congestion 
can not be ruled out. Then the TCP sender changes the 
values of ssthresh and cwnd in the fast recovery phase. If 
the second loss is not detected, but RTT is found to be 
larger than SRTT, then also conventional fast recovery is 
followed. CTCP is designed to be conservative at the 
slightest signal of congestion because network resources 
are shared by many users and thus should be responsibly 
utilized. 
Slow start and congestion avoidance phases are same as 
SACK TCP as shown in the state diagram of fig. 1. 
Whenever three dupacks are obtained indicating a single 
loss, then the fast retransmission is attempted. Delay of the 
link is considered at this stage to make an important 
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Fig. 1  State diagram of CTCP 

 
decision of choosing the next state. If RTT is found to be 
lesser than SRTT, then cwnd reduction is shunned and the 
fast recovery phase is ignored. However, larger RTT will 
make the proposed algorithm revert back to the 
conservative behavior of TCP to protect the network 
against potential congestion. Timeout leads to slow start at 
any point of time during data transfer.  
The Composite TCP remains unchanged in the following 
scenarios, 

i) TCP sender does not detect any loss. 
ii) If multiple losses are detected in a single 

transmission window. 
iii) RTT is found to be larger than SRTT.  

The fast recovery phase of the CTCP sender is same as that 
of SACK TCP. CTCP does not require any change at the 
receiver side and at the intermediate terminals. Composite 
TCP requires only sender side to incorporate modifications, 
which makes is effortlessly deployable and interoperable 
with senders and receivers, involving different TCP 
versions. 

4. Simulation Environment  

The performance of Composite TCP is evaluated with 
aforementioned TCP variants in terms of total number of 
successfully delivered packets to the receiver. The 
simulations are carried out in different network setups. The 
experiments were performed on ns-2[22]. Reno TCP 
(Reno) [7], Selective Acknowledgement TCP (SACK) [9], 
Vegas TCP(Vegas) [10], Linux TCP(Linux) [12], Forward 
acknowledgement TCP(FACK) [15] and Fast Start 
TCP(FS) [16] are considered for assessment.  
Three different topologies are employed to test the 
performance of CTCP in all the possible scenarios. The 
real networks can be of any of these types: 1. Errors 
without congestion 2. Congestion without errors 3. Errors 
with congestion.  
The simulations are carried out in the presence of random 
channel errors, commonly encountered in wireless links. 
Different error-rates (0.00, 0.001, and 0.01) in terms of 
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percentage of packet losses are configured during 
simulations to examine the impact on the performance. 
0.00 is used to check the network performance in the 
absence of errors, which will obviously be the best 
performance offered by the link. Error rate 0.001 is 
configured to see the behavior of the network in presence 
of moderate errors. It is further increased to 0.01 to see 
how the protocol withstands when severe errors occur over 
the wireless links. 
Application layer protocol, FTP traffic is generated for 100 
seconds. Each packet is considered to be 1500 bytes for 
ensuring compatibility with Ethernet. All the parameters 
are mentioned in table 1.  

Table 1: Simulation parameters 

 

4.1 Errors without congestion  

Frequent errors on wireless links hamper TCP performance 
by reducing data flow as discussed earlier. This topology 
allows errors without any scope to congestion so as to 
check the impact of random errors on TCP performance. 
Fig. 2 shows an experiment scenario which evaluates the 
performance of the network with errors only. Terminal 1 
and terminal 3 are transmitter and destination respectively. 
Intermediate node 2 is configured to act as a router. All the 
links are duplex in nature with bandwidth 100 Mbps. The 
propagation delay of the transmission lines is 50 msec. The 
router is capable to transfer data to the receiver at the same 
speed as the receiving from the transmitter. Equal 
incoming and outgoing capacity at the router does give any 
chance to congestion. The packets were corrupted at the 
router based on the specified error rate and they were 
discarded. All these packet losses are due to corruption. 
This topology is used to illustrate a simple wireless 
network and impact of errors on the same.  

 

Fig. 2  Erroneous network topology 

4.2 Congestion without errors  

Fig. 3 describes a scenario with two senders (terminal 1 
and terminal 2). As shown in the fig. 3, the bandwidth of 
the link is 10 Mbps and propagation delay is 1 msec. The 
bottleneck between intermediate node 3 and terminal 4, is 
configured to operate at 2 Mbps data rate with 10ms 
propagation delay. Intermediate node 3 is a router and 
terminal 4 is the receiver. The queue size of the router is 
50 and it drops packets when the queue is filled. These 
parameters certainly create congestion at the router 
because of total incoming traffic from senders is 20 Mbps 
whereas the outgoing link is configured to be only of 2 
Mbps. This environment was designed to be error free to 
examine how congestion deteriorates the performance of 
the network. 

 

Fig. 3 Congested network topology 

4.3 Errors with Congestion 

Simulations are further performed on a topology shown in 
fig. 4. Two senders (terminal 1 and terminal 2) are 
connected to router1 (intermediate node 3) via 10 Mbps 
transmission link and 1 msec propagation delay. The 
bottleneck between router1 and router 2(intermediate node 
4) is characterized to have 5Mbps data rate with 100ms 
propagation delay. Source1 is sending data to destination 
1(node 5) and source2 is transmitting to destination 2(node 
6).  Router2 is connected to receivers by link having 
10Mbps bandwidth and 1ms Delay. Error model is active 
at router1 to generate losses due to corruption. This 
topology may experience packet losses because of 
congestion or due to random errors. This network topology 
simulates a heterogeneous network having wired and 
wireless links together. 
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Fig. 4  Erroneous congested network topology 

5. Simulation Results and Analysis  

The results are scrutinized by considering the number of 
packets successfully delivered over the simulation period 
of 100 seconds. The error rate is varied from 0.00 to 0.001 
and 0.01 in order to check the response of the network in 
the absence of errors, in presence of moderate error rate 
and in the  presence of severe error rate. The results of 
three topologies are discussed in this section. 

Table 2. Number of delivered packets for erroneous network 

 
 

5.1 Errors without congestion  

As the incoming and outgoing link capacity is identical in 
the topology of fig. 2, no packet is dropped because of 
congestion. 
The results are analyzed on the basis of number of packets 
successfully delivered. The error rate was kept 0.00 
initially to check the response of all variants in utopian 
condition. CTCP is a modified version of SACK TCP. We 
confirm here no actions by our proposed algorithm if no 
errors are encountered. The error rate was then increased 
moderately to 0.001. Most of these random losses were 
successfully identified by CTCP. The same can be verified 
by remarkable performance improvement as shown in table 
II.  The error rate was further increased to 0.01 to check 
the response in the presence of highly error-prone links. 
CTCP surpasses all other protocols once again as can be 

observed from the last column of table II. The performance 
gain in the number of successfully delivered packets varies 
from 43.1% to 130.1% in CTCP as compared to other 
protocols. The rationale behind this improvement is 
detection of random losses by delaying fast recovery and 
apt usage of RTT to rule out any possibility 
of congestion. Reduction in cwnd was avoided, which 
resulted in better utilization of the available bandwidth. 

5.2 Congestion without errors  

In order to examine compatibility with the existing 
terrestrial wired network, the next set of experiments was 
carried out in a congested environment without link 
impairments. Incoming data flow at a router, as shown in 
fig. 3, is much higher than the capacity of the outgoing link. 
Multiple losses in a single transmitted window tend to be 
present due to congestion. Therefore, there was no scope 
for CTCP to avoid a reduction in cwnd. All TCP versions 
perform more or less same. CTCP performs 1% better than 
Reno TCP, while Vegas TCP delivers 2.4% more packets 
as compared to CTCP. CTCP targets and tries to identify 
scattered error losses, commonly present in a wireless link. 
All TCP versions perform nearly same as seen in table III. 
However, it is noteworthy that DTCP does not deteriorate 
network performance when deployed in severely congested 
environment. 

5.3 Errors with Congestion  

Real networks are likely to suffer from errors and 
congestion together. Most of heterogeneous networks 
experience packet losses due to congestion as well as 
errors. The same was tested on topology shown in fig. 4 to 
examine all the possibilities. The error rate was increased 
to 0.001 to evaluate behavior in a realistic environment. 
X axis displays variant of TCP and Y axis presents number 
of successfully delivered packets in fig. 5. Nearly the same 
number of packets is delivered by all variants of TCP, 
whenever there was no error present in the network as 
shown in the fig. 5.  The error was increased to 0.001 to 
evaluate behavior in a realistic environment. CTCP 
transfers highest number of packets followed by Vegas 
TCP. CTCP delivered 6.7% and 19.3% more packets than 
Vegas TCP and Linux TCP, respectively. When error rate 
was further increased to 0.01 to observe the impact of 
highly noisy wireless links, CTCP outperformed all other 
schemes considered for experiments. CTCP’s performance 
was found to be 42.7% and 103.5% higher than Vegas 
TCP and Linux TCP, respectively. It can be observed from 
the fig. 5 that CTCP performs better when higher error rate 
was encountered. It validates CTCP’s ability to 
discriminate the kind of losses and treat them accordingly. 
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Table 3. Number of delivered Packets for error free congested network 

 
 

 

 

Fig. 5 Number of delivered Packets for erroneous and congested network 

6. Conclusion 

TCP’s inherent shortcoming in distinguishing the random 
losses from congestive losses is addressed in this paper. 
Composite TCP (CTCP) uses loss based and rate based 
parameters to decide the cause of the loss. Random losses 
are recovered by fast retransmissions without cutting down 
cwnd. Thus, CTCP improves performance by efficient 
utilization of the bandwidth.  
Error rate, delay and congestion are used as the parameters 
to evaluate the performance of CTCP over different 
topologies. Simulation experiments are conducted to 
compare CTCP with other TCP variants. Simulation results 
point out substantial performance enhancement from 
43.1% to 130.1% in the presence of errors in CTCP as 
compared to other TCP variants. Behavior of CTCP is at 
par with other variants for congested networks. 
CTCP is an alternative implementation that interoperates 
with any other valid implementation of TCP. CTCP 
proposes changes only at the sender part of TCP, while 
keeping header, routers and receiver implementation 
unchanged. 
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