
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

108

Manuscript received March 5, 2019
Manuscript revised March 20, 2019

Composite TCP: Refining Congestion Control

Bhavika Gambhava1† and C.K. Bhensdadia††,

† Charotar University of Science and Technology, India
†† Dharmsinh Desai University, India

Summary
Internet users need reliable transmissions for web browsing,
email, file transfer, and database access. TCP is the dominant
reliable transport protocol on top of which all of these services
run. Since TCP is originally developed to be used on the wired
network, it safely assumes that segment losses are due to
congestion. This is not true for wireless media where, due to
fading channels and user mobility, transmission errors are more
frequent. It unconditionally reduces its flow when a packet loss is
detected, assuming that it has occurred because of congestion in
the network. This incorrect assumption in case of a packet loss
occurring due to channel noise, adversely affects the performance
of TCP. This paper focuses on the same problem of TCP related
to random errors causing packet loss. Treatment for losses should
be different for corruption and congestion to improve efficiency.
The proposed Composite TCP (CTCP) utilizes the SACK
information available from a receiver along with round trip time
to avoid flow control when the loss is because of a random error.
The performance b of Composite TCP is compared and analyzed
with existing variants over networks with exhaustive simulations
using ns-2. Simulation results indicate that the proposed protocol
significantly improves performance.
Key words:
SACK TCP, congestion control, Round Trip Time, cwnd,
ssthresh

1. Introduction

TCP/IP is a well-proven and accepted protocol suite,
which has successfully ensured stable and robust network
operations since evolution. These properties have made
TCP/IP protocol suite an inseparable part of the Internet.
The ongoing ramping up demand for Internet calls for new
architectures and new technologies capable of providing
high quality and high speed Internet services. TCP is the
dominant reliable transport protocol, used for web
browsing, email, file transfer etc[1]. Thus, TCP has an
imperative role in the performance of the Internet.
TCP provides reliable service along with end-to-end
connectivity at the transport layer [2]. TCP increases the
packets sending rate if no packet losses are encountered.
Due to the inherent reliability of wired networks, there is
an assumption made by TCP that any packet loss is due to
congestion. To reduce congestion, TCP will start its
congestion control mechanism whenever any packet loss is
detected. Due to its extensive use in the Internet, it is

advisable that TCP remains in use to offer reliable services
for communications in wireless networks and in
heterogeneous networks.
In this paper, we propose a new approach to discriminate
random losses from congestion induced losses.
Retransmission and flow reduction are decoupled by
identification of the type of the loss. Most of the
congestion induced losses are multiple in nature. A single
loss from the window can be attributed to random errors.
Estimated delay of the connection is examined to affirm
the cause of the loss. Remedial action is decided based on
the type of loss to achieve improved network performance
as well as robustness. The proposed scheme is evaluated
with established existing versions of TCP by various
simulations.
The rest of the paper is organized as follows. We explain
existing TCP variants in the next section. A new algorithm
called Composite TCP is explained with state transition
diagram in Section 3. Simulation environment along with
topologies are described in Section 4. The simulation
results of conduct simulations are analyzed in Section 5.
We conclude the paper in Section 6.

2. Existing Variants of TCP

TCP has undergone many revisions in the past three
decades. Wired and wireless networks are notably different
in terms of bandwidth, speed, propagation delay, and
channel reliability [3].
The connotation of the diversity is that packet losses are
not only because of congestion, but can also result from
characteristics of wireless links. While TCP performs well
in wired networks, it might deteriorate performance
severely in wireless networks if it wrongly considers non-
congestion-related losses as a sign of congestion and
consequently invokes congestion control, as reported in
[3,4,5].
TCP ensures reliability by using a retransmission timer.
TCP increases the congestion window (cwnd) by one per
acknowledgement. Hence, it effectively doubles cwnd
during every round trip time (RTT). When cwnd reaches
slow start threshold (ssthresh), it enters congestion
avoidance phase. cwnd is increased by one per an RTT in
this phase. If data is not acknowledged prior to timer

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

109

Manuscript received March 5, 2019
Manuscript revised March 20, 2019

expiration, the TCP sender retransmits the data. TCP sets
back cwnd to one when Retransmission timeout (RTO)
occurs. It is due to the original design of TCP for wired
networks, where congestion was the prime cause of packet
losses.
A loss is detected by the arrival of three duplicate
acknowledgements (dupack) in Tahoe TCP [6]. Fast
retransmission of the lost packet is attempted without
waiting for a timeout.
TCP Reno introduced fast recovery, which halves cwnd on
the loss detection by dupacks[7]. TCP Reno can recover
from a single packet loss, but it is not capable of
recovering from multiple losses from the same window.
TCP New Reno improves its predecessor’s performance
by using the enhanced recovery procedure in the case
when multiple packets are lost [8].
Selective Acknowledgement (SACK) TCP uses header
options to convey SACK blocks to the transmitter[9]. Each
SACK block selectively acknowledges non-contiguous
segments. SACK TCP can avoid unnecessary
retransmissions from the knowledge of available data at the
receiver. New Reno TCP with SACK options are
commonly implemented in accepted operating systems.
TCP Vegas proactively tries to overcome the impact of
congestion [10]. It does not only rely on packet loss as a
signal of congestion. It estimates the unacknowledged data
in the buffer and senses congestion before the actual
packet loss. It calculates the optimal throughput by
maintaining the minimum RTT. TCP Vegas faces
problems of unrelenting congestion, rerouting and
discrepancy in flow rate [11].
Linux TCP [12] sender is managed by a state machine to
determine the actions on arrival of acknowledgements.
Linux TCP implements TCP enhancements proposed by
Internet Engineering Task Force (IETF), like ECN [13]
and D-SACK [14].
Forward Acknowledgements (FACK) aggressively
considers the unacknowledged data between the SACK
blocks as lost packets[15]. Although this approach may
result in improved TCP performance at times, it is
certainly belligerent if packets are reordered in the network.
TCP Fast Start [16] modifies TCP’s conventional slow
start. The sender caches some network parameters to shun
paying the slow start penalty for subsequent connections.
There is a risk involved if the cached information is stale.
AFStart TCP [17] approaches ssthresh rapidly as
compared to conventional slow start because cwnd is
initialized with 4 packets. An abrupt increase in cwnd
obtains the available resources, which may result in to
performance issues with other flows.
Novel Quick Start [18] initializes the value of cwnd to the
detected network bandwidth. Error in predicting bandwidth
is abridged in succeeding iterations. A sudden change in
cwnd may cause congestion.

An EQF (Explicit Queue-length Feedback) [19] uses the
length of the queue of the congested switch port as a
potential congestion to prompt the sender to control the
sending rate of the sender by invoking congestion control.

3. Composite TCP

TCP performance is determined by its congestion control
mechanism, which restricts the amount of transmitted data
based on the estimated network capacity [20]. Congestion
control mechanisms are based on either loss or RTT. We
propose an algorithm which considers both the parameters
at the time of setting cwnd. Hence, we call it a Composite
TCP. Composite TCP (CTCP) utilizes SACK blocks along
with RTT to make a decision about the type of the loss.
In the proposed scheme, transmitter keeps track of
incoming SACK blocks, reported in duplicate
acknowledgements. Most of the congestive losses are
neither random nor sparse in nature. If all consecutive
segments are reported in SACK blocks of subsequent
acknowledgements following a loss, the loss indicated by
three dupacks may not be due to congestion but it may be a
random loss [21]. The presumed erroneous loss is also
confirmed by comparing current RTT with SRTT. SRTT
stands for Smoothed Round Trip Time. For each
connection, TCP maintains SRTT, which is the best
estimate of the round-trip time to the destination in
question. The loss is treated to be an erroneous loss if RTT
is smaller than or equal to SRTT. Congestion causes
queuing delay, which would result in higher RTT.
When there is a single loss in a window and RTT also does
not indicate congestion, then we can safely consider the
loss to be a random loss [21]. In the case of such scattered
losses, cwnd reduction can be avoided and only
retransmission is attempted to recover from the loss. If
subsequent loss takes place in the same window, a gap in
SACK information is reported by the receiver. This
indicates a possibility of another loss in the same window.
If there are multiple losses in the same window, congestion
can not be ruled out. Then the TCP sender changes the
values of ssthresh and cwnd in the fast recovery phase. If
the second loss is not detected, but RTT is found to be
larger than SRTT, then also conventional fast recovery is
followed. CTCP is designed to be conservative at the
slightest signal of congestion because network resources
are shared by many users and thus should be responsibly
utilized.
Slow start and congestion avoidance phases are same as
SACK TCP as shown in the state diagram of fig. 1.
Whenever three dupacks are obtained indicating a single
loss, then the fast retransmission is attempted. Delay of the
link is considered at this stage to make an important

https://www.ietf.org/

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019 110

Fig. 1 State diagram of CTCP

decision of choosing the next state. If RTT is found to be
lesser than SRTT, then cwnd reduction is shunned and the
fast recovery phase is ignored. However, larger RTT will
make the proposed algorithm revert back to the
conservative behavior of TCP to protect the network
against potential congestion. Timeout leads to slow start at
any point of time during data transfer.
The Composite TCP remains unchanged in the following
scenarios,

i) TCP sender does not detect any loss.
ii) If multiple losses are detected in a single

transmission window.
iii) RTT is found to be larger than SRTT.

The fast recovery phase of the CTCP sender is same as that
of SACK TCP. CTCP does not require any change at the
receiver side and at the intermediate terminals. Composite
TCP requires only sender side to incorporate modifications,
which makes is effortlessly deployable and interoperable
with senders and receivers, involving different TCP
versions.

4. Simulation Environment

The performance of Composite TCP is evaluated with
aforementioned TCP variants in terms of total number of
successfully delivered packets to the receiver. The
simulations are carried out in different network setups. The
experiments were performed on ns-2[22]. Reno TCP
(Reno) [7], Selective Acknowledgement TCP (SACK) [9],
Vegas TCP(Vegas) [10], Linux TCP(Linux) [12], Forward
acknowledgement TCP(FACK) [15] and Fast Start
TCP(FS) [16] are considered for assessment.
Three different topologies are employed to test the
performance of CTCP in all the possible scenarios. The
real networks can be of any of these types: 1. Errors
without congestion 2. Congestion without errors 3. Errors
with congestion.
The simulations are carried out in the presence of random
channel errors, commonly encountered in wireless links.
Different error-rates (0.00, 0.001, and 0.01) in terms of

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

111

percentage of packet losses are configured during
simulations to examine the impact on the performance.
0.00 is used to check the network performance in the
absence of errors, which will obviously be the best
performance offered by the link. Error rate 0.001 is
configured to see the behavior of the network in presence
of moderate errors. It is further increased to 0.01 to see
how the protocol withstands when severe errors occur over
the wireless links.
Application layer protocol, FTP traffic is generated for 100
seconds. Each packet is considered to be 1500 bytes for
ensuring compatibility with Ethernet. All the parameters
are mentioned in table 1.

Table 1: Simulation parameters

4.1 Errors without congestion

Frequent errors on wireless links hamper TCP performance
by reducing data flow as discussed earlier. This topology
allows errors without any scope to congestion so as to
check the impact of random errors on TCP performance.
Fig. 2 shows an experiment scenario which evaluates the
performance of the network with errors only. Terminal 1
and terminal 3 are transmitter and destination respectively.
Intermediate node 2 is configured to act as a router. All the
links are duplex in nature with bandwidth 100 Mbps. The
propagation delay of the transmission lines is 50 msec. The
router is capable to transfer data to the receiver at the same
speed as the receiving from the transmitter. Equal
incoming and outgoing capacity at the router does give any
chance to congestion. The packets were corrupted at the
router based on the specified error rate and they were
discarded. All these packet losses are due to corruption.
This topology is used to illustrate a simple wireless
network and impact of errors on the same.

Fig. 2 Erroneous network topology

4.2 Congestion without errors

Fig. 3 describes a scenario with two senders (terminal 1
and terminal 2). As shown in the fig. 3, the bandwidth of
the link is 10 Mbps and propagation delay is 1 msec. The
bottleneck between intermediate node 3 and terminal 4, is
configured to operate at 2 Mbps data rate with 10ms
propagation delay. Intermediate node 3 is a router and
terminal 4 is the receiver. The queue size of the router is
50 and it drops packets when the queue is filled. These
parameters certainly create congestion at the router
because of total incoming traffic from senders is 20 Mbps
whereas the outgoing link is configured to be only of 2
Mbps. This environment was designed to be error free to
examine how congestion deteriorates the performance of
the network.

Fig. 3 Congested network topology

4.3 Errors with Congestion

Simulations are further performed on a topology shown in
fig. 4. Two senders (terminal 1 and terminal 2) are
connected to router1 (intermediate node 3) via 10 Mbps
transmission link and 1 msec propagation delay. The
bottleneck between router1 and router 2(intermediate node
4) is characterized to have 5Mbps data rate with 100ms
propagation delay. Source1 is sending data to destination
1(node 5) and source2 is transmitting to destination 2(node
6). Router2 is connected to receivers by link having
10Mbps bandwidth and 1ms Delay. Error model is active
at router1 to generate losses due to corruption. This
topology may experience packet losses because of
congestion or due to random errors. This network topology
simulates a heterogeneous network having wired and
wireless links together.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019 112

Fig. 4 Erroneous congested network topology

5. Simulation Results and Analysis

The results are scrutinized by considering the number of
packets successfully delivered over the simulation period
of 100 seconds. The error rate is varied from 0.00 to 0.001
and 0.01 in order to check the response of the network in
the absence of errors, in presence of moderate error rate
and in the presence of severe error rate. The results of
three topologies are discussed in this section.

Table 2. Number of delivered packets for erroneous network

5.1 Errors without congestion

As the incoming and outgoing link capacity is identical in
the topology of fig. 2, no packet is dropped because of
congestion.
The results are analyzed on the basis of number of packets
successfully delivered. The error rate was kept 0.00
initially to check the response of all variants in utopian
condition. CTCP is a modified version of SACK TCP. We
confirm here no actions by our proposed algorithm if no
errors are encountered. The error rate was then increased
moderately to 0.001. Most of these random losses were
successfully identified by CTCP. The same can be verified
by remarkable performance improvement as shown in table
II. The error rate was further increased to 0.01 to check
the response in the presence of highly error-prone links.
CTCP surpasses all other protocols once again as can be

observed from the last column of table II. The performance
gain in the number of successfully delivered packets varies
from 43.1% to 130.1% in CTCP as compared to other
protocols. The rationale behind this improvement is
detection of random losses by delaying fast recovery and
apt usage of RTT to rule out any possibility
of congestion. Reduction in cwnd was avoided, which
resulted in better utilization of the available bandwidth.

5.2 Congestion without errors

In order to examine compatibility with the existing
terrestrial wired network, the next set of experiments was
carried out in a congested environment without link
impairments. Incoming data flow at a router, as shown in
fig. 3, is much higher than the capacity of the outgoing link.
Multiple losses in a single transmitted window tend to be
present due to congestion. Therefore, there was no scope
for CTCP to avoid a reduction in cwnd. All TCP versions
perform more or less same. CTCP performs 1% better than
Reno TCP, while Vegas TCP delivers 2.4% more packets
as compared to CTCP. CTCP targets and tries to identify
scattered error losses, commonly present in a wireless link.
All TCP versions perform nearly same as seen in table III.
However, it is noteworthy that DTCP does not deteriorate
network performance when deployed in severely congested
environment.

5.3 Errors with Congestion

Real networks are likely to suffer from errors and
congestion together. Most of heterogeneous networks
experience packet losses due to congestion as well as
errors. The same was tested on topology shown in fig. 4 to
examine all the possibilities. The error rate was increased
to 0.001 to evaluate behavior in a realistic environment.
X axis displays variant of TCP and Y axis presents number
of successfully delivered packets in fig. 5. Nearly the same
number of packets is delivered by all variants of TCP,
whenever there was no error present in the network as
shown in the fig. 5. The error was increased to 0.001 to
evaluate behavior in a realistic environment. CTCP
transfers highest number of packets followed by Vegas
TCP. CTCP delivered 6.7% and 19.3% more packets than
Vegas TCP and Linux TCP, respectively. When error rate
was further increased to 0.01 to observe the impact of
highly noisy wireless links, CTCP outperformed all other
schemes considered for experiments. CTCP’s performance
was found to be 42.7% and 103.5% higher than Vegas
TCP and Linux TCP, respectively. It can be observed from
the fig. 5 that CTCP performs better when higher error rate
was encountered. It validates CTCP’s ability to
discriminate the kind of losses and treat them accordingly.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019

113

Table 3. Number of delivered Packets for error free congested network

Fig. 5 Number of delivered Packets for erroneous and congested network

6. Conclusion

TCP’s inherent shortcoming in distinguishing the random
losses from congestive losses is addressed in this paper.
Composite TCP (CTCP) uses loss based and rate based
parameters to decide the cause of the loss. Random losses
are recovered by fast retransmissions without cutting down
cwnd. Thus, CTCP improves performance by efficient
utilization of the bandwidth.
Error rate, delay and congestion are used as the parameters
to evaluate the performance of CTCP over different
topologies. Simulation experiments are conducted to
compare CTCP with other TCP variants. Simulation results
point out substantial performance enhancement from
43.1% to 130.1% in the presence of errors in CTCP as
compared to other TCP variants. Behavior of CTCP is at
par with other variants for congested networks.
CTCP is an alternative implementation that interoperates
with any other valid implementation of TCP. CTCP
proposes changes only at the sender part of TCP, while
keeping header, routers and receiver implementation
unchanged.

Acknowledgment

The authors would like to express their cordial thanks to
Dr. Brijesh Bhatt and Dr. Nikhil Kothari for their valuable
advice.

References
[1] M. Duke, E. Blanton, A. Zimmermann, R. Braden and W.

Eddy, “A roadmap for transmission control protocol (TCP)”,
RFC 7414, 2015.

[2] Y. Tian, K. Xu and N. Ansari, “TCP in wireless
environments: problems and solutions”, IEEE
Communications Magazine, 43(3), 2005, S27~S32.

[3] Xiaomei Yu, “A new mechanism to enhance transfer
performance over wired-cum-wireless networks”, IEEE
International Symposium on IT in Medicine & Education,
2009.

[4] Z. Fu, P.Zerfos, H. Luo, S. Lu, L. Zhang, M. Gerla, “The
Impact of Multihop Wireless Channel on TCP Throughput
and Loss”, IEEE INFOCOM'03, San Francisco, March 2003.

[5] Z. Fu, X. Meng, and S. Lu, “How Bad TCP can Perform in
Mobile Ad-Hoc Networks”, IEEE Symposium on
Computers and Communications,Italy, July 2002.

[6] V. Jacobson, “Congestion avoidance and control”, ACM
SIGCOMM computer communication review, vol. 18, no. 4,
1988, 314~329.

[7] M. Allman, V. Paxson, and E. Blanton, “TCP congestion
control”, RFC 5681, 2009.

[8] T. Henderson, S. Floyd, A. Gurtov and Y. Nishida, “The
NewReno modification to TCP's fast recovery algorithm”,
RFC 6582, 2012.

[9] S. Floyd, M. Jamshid, M. Matt and P. Matthew., “An
extension to the selective acknowledgement (SACK) option
for TCP”, RFC 2883, 2000.

[10] U. Hengartner, B. Jürg and G. Thomas, “TCP Vegas
revisited”, In: Proc of Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies, vol.
3, 2000, 1546~1555.

[11] K. Srijith, J. Lillykutty and A. Ananda, “TCP Vegas-A:
solving the fairness and rerouting issues of TCP Vegas”, In:
Proc. of IEEE conference on Performance, Computing and
Communications, 2003, 309~316.

[12] P. Sarolahti, and A. Kuznetsov, “Congestion Control in
Linux TCP”, In: USENIX Annual Technical Conference,
FREENIX Track, 2002, 49~62.

[13] K. Ramakrishnan, S. Floyd and D. Black, “The addition of
explicit congestion notification (ECN) to IP”, RFC 3168,
2001.

[14] E. Blanton and M. Allman, “Using TCP duplicate selective
acknowledgement (DSACKs) and stream control
transmission protocol (SCTP) duplicate transmission
sequence numbers (TSNs) to detect spurious
retransmissions”, RFC 3708, 2004.

[15] M. Mathis and J. Mahdavi, “Forward acknowledgement:
Refining TCP congestion control”, ACM SIGCOMM
Computer Communication Review, vol. 26, no. 4, 1996,
281~291.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiaomei%20Yu.QT.&newsearch=true

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.3, March 2019 114

[16] V. Padmanabhan and R. Katz, “TCP fast start: A technique
for speeding up web transfers”, In: Proc. IEEE Globecom,
1998.

[17] Y. Zhang, N. Ansari, W. Mingquan and H. Yu, “AFStart:
An adaptive fast TCP slow start for wide area networks”, In:
Proc of IEEE International Conference on Communications,
2012, 1260~1264.

[18] D. Zhang, K. Zheng, D. Zhao, X. dong Song, and X. Wang,
“Novel quick start (QS) method for optimization of TCP”,
Wireless Networks, pp. 211-222, 2016.

[19] Y. Lu, X. Fan and Lei Qian, “EQF: An explicit queue-
length feedback for TCP congestion control in datacenter
networks”, In: Proc. of Fifth International Conference on
Advanced Cloud and Big Data, 2017, 69~74.

[20] Y. Narasimha Reddy, P V S. Srinivas, “A Combined TCP-
friendly Rate control with WFQ Approach for Congestion
Control for MANET”, International Journal of Computer
Network and Information Security(IJCNIS), Vol.10, No.6,
pp.52-59, 2018.DOI: 10.5815/ijcnis.2018.06.05

[21] N. Kothari, K. Dasgupta, “Performance Enhancement of
SACK TCP Protocol for wireless Network by Delaying Fast
Recovery”, WOCN 2006.

[22] http://www.isi.edu/nsnam/ns/,Network Simulator ns-2.

Bhavika Gambhava has completed her
B.E. from L.D.College of Engineering in
2004 and M.E. from Dharmsinh Desai
University in 2006. She is a research
scholar at Charotar University of Science
& Technology, Changa, India.

C. K. Bhensdadia is a professor and head
of computer engineering department,
Dharmsinh Desai University, India. He is
one of the 15 members of All India Board
of Information Technology Education
(AICTE). He plays a key role in curriculum
design of various universities. He has
contributed significantly towards projects
for rural development for Department of

Information Technology, Ministry of Communication and IT,
Government of India and has also worked for consultancy project
of a European country.

