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Abstract 
Markov Decision Processes enable researchers to analyze the 
dynamics of a stochastic process whose transition mechanism is 
controlled over time. In this study, the solution to a portfolio 
allocation problem using a Markov Decision Process (MDP) is 
formulated. The main subject of interest would be to find an 
optimal policy that minimizes the associated cost. The two 
challenges faced were, uncertainty about the price of assets 
which follow a probabilistic model and a large state/action space 
that creates it difficult to apply orthodox techniques to solve. 
Stocks data is obtained from Karachi Stock Exchange - 100 
index (KSE-100) that have daily cumulative returns about 
49.98% in 2012. It is found that all portfolios allocations achieve 
by Markov Decision Process, have better daily cumulative 
returns as compared to benchmark KSE-100 index. Therefore, it 
is concluded that Markov decision process is better approach to 
calculate assets’ allocation in designing stocks portfolios. 
Keywords:  
Karachi Stock Exchange 100 Index, Markov Decision Process, 
Wealth fraction. 

1. Introduction 

Markov decision processes (MDPs) are results partly 
random and somewhat under the guidance of a decision 
maker. They are used in situations where modeling 
decision-making is provided through a mathematical 
framework. MDPs use dynamic programming and 
reinforcement learning to solve a wide range of 
optimization and real world problems. 
Bellman [1] was the first who introduced the term Markov 
Decision Process (MDP). Markov Decision process, with 
reference to stochastic scenario, was first studied by 
Shapley [8]. Afterwards, mathematical accurate action of 
this hypothesis came in view by Dubins & Savage [3], 
Shiryaev [9], Hinderer [6] and others. Dubins & Savage 
[3] wrote a book which covered the gambling model; 
however the fundamental ideas were basically the same. 
The model which was introduced by Blackwell [2] is used 
till date. Accurate action of discount problem was also 
firstly introduced by him for general state space. Heyman 
&Sobel [4], [5] and Stokey & Lucas [10] published books 
on application of MDP in the field of economics. Ingersoll 
[7] examined inter-temporal portfolio choice problem. 

The objective of this study is two fold. From a theoretical 
perspective, this research proposes a novel Markov 
decision processes method to incorporate uncertainty 
about the kind of return distribution to get an optimal 
blend among a risky and a risk-less asset. From an 
application perspective, this study characterizes the exante 
asset allocation decisions of investors who factor in 
distribution ambiguity into their model of portfolio.  
In section-2, a review of MDPs is presented,  in Section-3, 
the porposed approach along with experimental results are 
presented.  

2. Data & Methodology: 

In order to analyze the model, we consider daily adjusted 
stock prices from Bloomberg and interest rates are taken 
from official website of State Bank of Pakistan 
(www.sbp.org.pk) for the period Jan-Dec 2012. 
S is the set of all possible states in the model. The number 
of states in the model depends on how many risky assets 
(stocks) are present in the model. 
Number of states = 2X 
Where, X is the number of risky assets in the model. 

1+kα  be the decision take at the end of the day k, which 
will tell what fraction of the wealth will invest on the 
particular stock for the next day k + 1. These are many 
possible actions but we have to select such an action for 
each state which maximizes the wealth. On the basis of 
that fraction of the 

wealth ),...,,( 1,1,21,11 ++++ = kMkkk αααα , we have 
to take the decision for each stock either we buy or sell 
them for the next day. By using that we can also compute 
the wealth for the next day. 
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At the end of that particular day, wealth is computed as 
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Round D(A), represents round toward negative infinity, 
rounds the elements of A to the nearest integers less than 
or equal to A. 
The objective of this research is to find such a policy 
which maximizes the expected reward of performing that 
action in the state. A policy is optimal, if it makes 
nonetheless as much total rewards all other possible 
policies. The value function is defined as 
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Where ),( αsRk is the cost function or the belief state 
which defined a 

),,Pr(),,(),( kSi kkk siisCsR ααα ∑∈
=

 
With

 
),,( isC kk α is the cost if the next state is “i” and 

probability distribution over s is ),,Pr( ksi α . kα  
belongs to action space belong to action A in state S at 
decision epoch k, the decision maker will receive the cost 

)()(),( 1 kkk WUWUsC −= +α
 

Where U(x) represents the utility function 
After applying each action, we have to select such action 
for the state which gives maximum value to VT. In short, 
we have to achieve TV

nαααα ...,,, 321

max .  To get the maximum 

value, value iterations algorithms is used 

3. Application with Evaluation 

We take into consideration two different cases and 
evaluate their results (see TABLE 1). In the first scenario, 
two risky assets are taken into account for the period Jan- 
Dec 2012, in which we consider three portfolios. 

Table 1(a): Portfolio with listed companies. Names of the companies are 
available at www.kse100.net  

Portfolio name Companies 
Portfolio 2a FCCL     SNBL 
Portfolio 2b NETSOL    POL 
Portfolio 2c APL    HBL 
Portfolio 3a FCCL    LPCL    LUCK 
Portfolio 3b SNBL   MEBL   AGTL 
Portfolio 3c BAHL   MEBL   OGDC 
Portfolio 3d AHCL   APL   BAHL 

 

 

 

 

Table 1(b): Company names with abbreviations 
Company Name Symbol 

AL-Ghazi Tractors Ltd. AGTL 
Arif Habib Corporation Limited AHCL 

Attock Petroleum Ltd APL 
Bank AL-Habib Limited BAHL 

Fauji Cement Company Ltd. FCCL 
Habib Bank Ltd HBL 

Jahangir Siddiqui Co.Ltd. JSCL 
Lafarge Pakistan Cement Ltd LPCL 

Lucky Cement Limited LUCK 
Meezan Bank Ltd. MEBL 
Netsol Technologie NETSOL 
Oil & Gas Dev.Co OGDC 

Pakistan Oilfields Ltd. POL 
Sonari Bank Limited SNBL 

 
For simplicity we name these portfolios as 2a, 2b and 2c. 
For portfolio 2a, it was noticed that it had higher 
cumulative returns as compare to benchmark KSE-100 
index during this period. Portfolio 2b resulted in one 
higher asset and the other lower in comparison with 
benchmark. While in 2c, we found that both risky assets 
were lower than KSE - 100 index. When working on the 
second scenario, with three risky assets, we make four 
portfolios and label them as 3a, 3b, 3c and 3d. In first 
portfolio 3a, the cumulative return of all three risky assets 
is higher than benchmark. Portfolio 3b contains the assets 
in which two of the stocks have higher cumulative return 
than KSE - 100, while one stock has lower. In portfolio 3c, 
it was considered that two stocks have less cumulative 
return but one has higher. The last portfolio 3d consists of 
stocks which have lower cumulative return compare to 
benchmark. 
We assign the state for each day by observing the closing 
price of the risky asset on that particular day. If we 
consider the case of two risky assets then we have 4 states 
(see TABLE 2).  

Table 2: State allocation for the case of two risky assets 
S1 S2 S3 S4 

    
DD DU UD UU 

 
If prices of both risky assets fall on any particular day, 
then state will be S1, S2 state represents that the first asset 
has fallen down while second has risen; S3 represents first 
asset moves upwards, while seconds goes down. S4 
represents both assets move upwards. 
In the case of three risky assets we have 8 states (see table 
3). 

Table 3: State allocation for the case of three risky assets 
S1 S2 S3 S4 S5 S6 S7 S8 

DDD DDU DUD DUU UDD UDU UUD UUU 
 
If the prices of all of the three risky assets fall on any 
particular day, then its state will be S1. S2 state represents 
that first and second assets have fallen down while third 
has raised, S3 represents that first and third assets move 
upwards while second goes down. S4 represents that the 

http://www.kse100.net/
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first asset has fallen, while both the second and third 
assets move upwards and so on. 
If we have n risky asset then dimension of each action is 
n+1 for this model. By using these weights we can assign 
how many share we have to buy or sell of each stocks for 
the next day. 
We define log(X) as our utility function, so it means 

reward is log return of the wealth. For a day k, if the state 

is Si and we select action αj , then the cost function is 

represent as; 
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4. Discussion of Results 

An emerging objective function (policy) has been defined 
which maximizes the expected reward of performing that 
action in the state. This policy is optimal if it makes 
nonetheless as much total reward as all other possible 
policies. After applying value iteration we get the action 
for each state which maximizes the cumulative return of 
the particular portfolio. In other words, it shows with 
which proportion of wealth will be divided for next day, if 
currently it is on any particular state (see TABLE 4 to 10). 
The proportion of wealth allocated to each stock in all 
portfolios which were calculated by using MDP has 
shown outstanding results. It evaluates that the all 
portfolios have better daily cumulative returns as 
compared to the benchmark, which is approximately 
48.98% for the period Jan-Dec 2012. The cumulative 
return of the portfolios 2a, 2b and 2c redundant the 
cumulative return of benchmark by 162.01%, 92.3% and 
3.84% respectively. Whereas portfolios 3a, 3b, 3c and 3d 
dominate benchmark by 323.34%, 133.54%, 83.38% and 
29.8% respectively. Histograms of returns distribution of 
all portfolios show that they are positively skewed. It is 
also analyzed that returns distribution exhibits Leptokurtic 
properties i.e. sharper than normal distribution and bears 
fat tails. 

 

Fig. 1  Portfolio 2a 

Table 4: Wealth allocation for each state for Portfolio 2a. With 
Cumulative return is 162.01%.   

 FCCL SNBL Saving Account 
S1 0 1 0 
S2 1 0 0 
S3 1 0 0 
S4 0 1 0 

 

 

Fig. 2 :Portfolio 2b 

Table 5: Wealth allocation for each state for Portfolio 2b, With 
Cumulative return 92.3%. 

 NETSOL POL Saving Account 
S1 1 0 0 
S2 0 0 1 
S3 1 0 0 
S4 1 0 0 

 

 

Fig 3:Portfolio 2c 

Table 6 Wealth allocation for each state for Portfolio 2c. With 
Cumulative return 3.84%. 

 APL HBL Saving Acc 
S1 1 0 0 
S2 0 1 0 
S3 0 1 0 
S4 0 1 0 
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Fig. 4 :Portfolio 3a 

Table 7: Wealth allocation for each state for Portfolio 3a, with 
Cumulative return 323.34%. 

 FCCL LPCL LUCK Saving Account 
S1 1 0 0 0 
S2 0 1 0 0 
S3 0 0 1 0 
S4 0 0 0 1 
S5 0.1 0.9 0 0 
S6 0 1 0 0 
S7 0 1 0 0 
S8 0 0 1 0 

 

 

Fig. 5 :Portfolio 3b 

Table 8: Wealth allocation for each state for Portfolio 3b, with 
Cumulative return 133.54% 

 JSCL MEBL AGTL Saving Account 
S1 1 0 0 0 
S2 0 1 0 0 
S3 1 0 0 0 
S4 0 0 0 1 
S5 0.1 0 0 0.9 
S6 0 1 0 0 
S7 1 0 0 0 
S8 0.7 0.3 0 0 

 

 

Fig. 6 :Portfolio 3c 

Table 9: Wealth allocation for each state for Portfolio 3c, with 
Cumulative return 83.38%. 

 BAHL MEBL OGDC Saving Account 
S1 0 1 0 0 
S2 0 0 1 0 
S3 0 1 0 0 
S4 0 0 1 0 
S5 0 1 0 0 
S6 0 1 0 0 
S7 1 0 0 0 
S8 0 1 0 0 

 

 

Fig 7:Portfolio 3d 

Table 10: Wealth allocation for each state for Portfolio 3d, with 
Cumulative return 29.8% 

 AHCL APL BAHL Saving Account 
S1 1 0 0 0 
S2 0 0 0 1 
S3 1 0 0 0 
S4 1 0 0 0 
S5 0 1 0 0 
S6 0 0 1 0 
S7 0 1 0 0 
S8 1 0 0 0 

5. Conclusion: 

It has been found that, all portfolios obtained by Markov 
Decision Process (MDP), results in better daily 
cumulative returns as compared to benchmark (KSE-100 
index). Histograms of the returns of all Portfolio assets are 
positively skewed and follow Leptokurtic distribution. 
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To out-perform benchmark is a tough task. Therefore, 
considering the results, we conclude that the Markov 
decision process is one of best approach which decides 
the next day portfolio allocation by observing the current 
state. 
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