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Abstract 
This article considers the two structure of stochastic Laspeyres 
price model. One is the standard regression model of simple 
Laspeyres price index. While the other is based on an extended 
approach to the simple version that incorporates a systematic 
change in relative prices to the simple model. In both versions, 
the error structure is first order serial correlation. We use the 
general form of hat matrix to detect the influential commodities 
in estimating the Laspeyres index number. The results show that 
the corresponding weights of consumer items have a larger 
influence on parameter estimates. The extended version of the 
Laspeyres model investigates the influential commodities more 
accurately than the simple one as it depends on both the weights 
and the parameter of AR(1) process. 
Keywords:  
Laspeyres index Numbers, Serial Correlation, Autoregressive 
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1. Introduction 

Sometimes we are dealing with the observations in 
regression analyses that greatly disturb the results 
obtained from the analysis. These observations are called 
the influential points that may have an impact to the 
model estimates, fitted values and thus the residuals. For 
detailed description of outliers in statistical data, see 
Barnett and Lewis [1]. Influence diagnostics are 
developed and studied by many authors including Belsley 
et al. [3], Cook [7], Cook and Weisberg [8], Draper and 
John [9], and Draper and Smith [10]. They observed the 
effect of initial observations on the estimation of model 
parameters. Some of these techniques are based on the 
values of hat matrix where the diagonal elements  are 
very worthwhile rational towards detecting influential 
observations. The properties of hat matrix are well 
discussed by Hoaglin and Welsch [11]. 
Several studies are available on the detection of influential 
observations in linear regression model when the errors 
are serially correlated. The important references in this 
context include the contribution of Puterman [15], 
Stemann and Trenkler [17], Barry et al. [2] and Özkale 
and Açar [14]. Puterman [15] investigated the impact of 
first transformed observation in linear regression model 

on the parameter estimates. Stemann and Trenkler [17] 
extended the approach of Puterman [15] to the regression 
model with more than one regressor and showed that the 
effect of the presence of a constant term on a leverage 
point when the magnitude of error correlation was large. 
Barry et al. [2] extended the study of influential 
observations to the regression model with AR(2) errors 
and developed the diagnostic technique using a hat matrix. 
Burney and Maqsood [5] used the analytical tools of hat 
matrix and DFBETA measures to identify the influential 
observations in estimating the Divisia price index number 
model with AR(1) errors. Maqsood and Burney [12] 
extended the approach to the simple Laspeyres price 
model with AR(2) errors.  
The stochastic regression model of index numbers are 
developed to estimate the indices and many times this 
modeling helps to detect the influential commodities in 
consumer basket. Burney and Maqsood [4] estimated the 
extended version of Paasches price model which is the 
extension of the work done by Selvanathan [16] on 
extended version of Laspeyres price index numbers. Their 
work assumed the errors are uncorrelated. Another 
significant contribution in this series by Clements and 
Izan [6] who initially extended the Divisia index to 
augment the model with a systematic component. In this 
paper, we consider the two version of Laspeyres price 
model. First is the simple Laspeyres price model used by 
Maqsood and Burney [12]. The other is the extended 
version of simple model that is obtained by incorporating 
the systematic change in relative prices to the model, 
which helps in controlling the variation due to using 
various unequally important commodities. The first 
objective of this paper is to estimate the parameters of 
underlying Laspeyres price models. On the other hand, the 
influential commodities are examined using the hat values. 
The paper is organized as follows. Section 2.1 and 2.2 
introduces respectively the simple Laspeyres price model 
and extended Laspeyres price model. The parameter 
estimators and the hat values are obtained for both the 
versions in their respective sections. An application is 
presented with reference to the price data of Pakistan in 
section 3. Section 4 presents the conclusion. 
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2. Stochasic Laspeyres Price Models 

2.1. Simple Version 

The stochastic simple model of Laspeyres price index 
number model is defined as follows; 
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period price for ith commodity, tα  common trend in the 

prices of all commodities at time t, and itε  is the random 
component. The errors are assumed to be generated from 
the first order autoregressive scheme, that 
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Defining more compactly in matrix notation 
as VE 2' )E(  , 0)( σεεε == . Assuming V is known 
with symmetric and positive definite in nature, then the 
inverse of V can be decomposed using choleski 
decomposition to get QQV '1 =− , where Q is a lower 
triangular matrix and obtained by Burney and Maqsood 
[5]. This can be expressed more compactly in matrix form 
as follows 
 

)1()1()()1( ×××× += nTTTnTnT
o XP εγ     (3) 

 
Where X is an (nT×T) design matrix and γ  is the vector 

of parameters. oP and ε are, respectively (nT × 1) 
vectors of the observed Laspeyres index number and the 
errors It is well known that under the above assumption, 
the best linear unbiased estimator (BLUE) of γ  in model 
(3) could be obtained by the generalized least square 
(GLS) approach as given below 

( ) ( )oPVXXVX 111ˆ −−− ′′=γ  

The transformed model is obtained by multiplying both 
sides of equation (3) by Q, and then we apply the simple 
ordinary least square (OLS) estimator to the transformed 
data to obtain estimated generalized least square (EGLS). 
We have  
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The transformed matrix is given in Burney and 
Maqsood [5], and the price relative vector is given as 
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Where 

,  and o  is the vector of zero i.e. 

[ ]′= 0..00o . Substituting the results in 
equation (4) provides the estimator of γ , the familiar 
Laspeyres index number, written as 
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The next step is to have an idea about the presence of 
influential observations and its impact on Laspeyres 
regression model. For this purpose, we find the hat matrix 
for transformed data using the equation given below 

XXXXH ′′= −1)(   (7) 
We get 

niwh iitit ,...,1 , , ==   (8) 
 

We use the subscript of hat values ‘it,it’ due to a matrix of 
order nT × nT, where nT=N are the total number of 
observations. The diagonal elements of matrix i.e. 

niwh iitit ,...,1 , , == clearly show that the weights of 
commodities determine how much the important of 
particular commodity is in order to find the Laspeyres 
index number. They are not affected by the parameter of 
autoregressive process. The greater the value of weight, 
the more influential the commodity is, irrespective of the 
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time period. They are not affected by the parameter of 
autoregressive process. 

2.2. Extended Version 

We extend the simple Laspeyres price model in equation 
(2) as each price relative  is now written, as the sum of 
the common trend in all prices, tα , a systematic 

component iβ , and a random error term, i.e. 

itit
o

itP εβα ++=   i=1, ..., n, and t=1, . . ., T (9) 
 

Now rearranging equation and taking the mathematical 
expectation, we obtain the change in ith relative price 
as itE βα =− )P( o

it . This model is not identified. It can 

be seen by noting that an increase in tα for each t by any 

number k and a lowering of iβ for each i by the same k 
does not affect the right side of equation (9). To identify 
the model, we impose the constraint 
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This has the simple interpretation that a budget share 
weighted average of the systematic component of the 

relative price changes is 0. We write model (9) with the 
constraint (10) as follows 
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The matrix formulation of this model is same as 
represented by (3). The parameter vector γ now consist of 

both Laspeyres index number tα  and commodity-specific 

component iβ , so now with the order 1)1( ×−+ nT , 

and the design matrix X with order )1( −+× nTnT .  
We assume the error structure of extended model is same 
as we had for the simple Laspeyres model, described in 
equation (2). To apply the estimated generalized least 
squares (EGLS), we first transform the vector oP and the 

design matrix X to the new vector oo PQP ˆ*

= (given in 

equation (5)) and the matrix XQX ˆ,* = is obtained as  
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Using equation (4), we obtain EGLS estimator of tα same 

as in equation (6) and iβ  
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Where 22 )1)(1()1( φφ −−+−= Tk and 

t
o
itit pa α̂−= . The estimator of the systematic 

component of ith relative price change, , is the change 
in this relative price  averaged using AR(1) process 
with parameter . 
The diagonal entries of hat matrix are obtained using 
equation (7) to the transformed data to get 
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We see here in the extended model where we cumulate 
the component incorporating the effect of particular 
consumer item, the value of depends on both the 
weights and autoregressive parameter. The hat values 
highly depend on the value of φ . We observe the 
following approximations when  
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3. An Application 

We take the monthly price data of Pakistan used by 
Maqsood and Burney (2014). The data is collected and 
published by the Pakistan Bureau of Statistics (PBS). The 
period of data is for ten fiscal years from July 2001 to 
June 2011, consisting of 374 consumer commodities that 
are further classified in ten commodity groups. The prices 
of first year from July 2001 to June 2002 are taken as base 
year prices and the prices of subsequent months are 
compared with prices of corresponding month of base 
year. The first phase of computation requires the 
estimation of parameter vector based on observed price 
data. Both versions of price models provide the same 
estimates of Laspeyres index numbers. These estimates of 
Laspeyres indices and commodity-specific components 
for ten groups along withtheir standard errors are 
presented in Maqsood and Burney [13].  
After estimating the parameter vector based on observed 
price data, the residuals are obtained and plotted against 
observation numbers in figure 1(a) for simple Laspeyres 
case and in figure 1(b) for extended Laspeyres case. These 
graphs show the jumps along the constant central line. 
These have the longer ups and down as the time proceed 
far from the base period; however, these exhibit the 
stationary situation. The residuals parallel to the first 
thousand observations are comparatively less than the 
residuals recorded for the last thousands observations. In 
other words, the index number estimates corresponding to 

months that are close to base period are much more 
accurate and hence, with the smaller values of biasdness. 
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Fig. 1  Plot of residual series from (a) simple Laspeyres price model (b) 
extended Laspeyres price model 

Table 1: Summary of results ADF test value, DW statistic, fitting of 
AR(1) process to residual series of simple and extended Laspeyres price 

models 
 Simple Version Extended 

Version 
ADF Test Statistic 
DW Statistic 
AR parameter ( ) 
AIC 
RMSE 

-108.718 (0.001) 
0.906 

0.5472 
-1.7429 
0.4183 

-115.717 (0.001) 
0.996 

0.5021 
-2.4279 
0.2970 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 
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Table 2: Significant hat values corresponding to commodities for simple 
Laspeyres price model (cut-off value= 0.00534) 

S.Nos. Item Nos. Items ih  

1 2 Wheat flour fine/superior. 0.0134 

2 3 Wheat flour bag 0.0377 

3 16 Cooking oil (dalda) 0.0069 

4 17 Vegetable ghee tin 0.0126 
5 18 Vegetable ghee (loose) 0.0141 

6 19 Sugar refined 0.0195 

7 25 Tea loose kenya av.qlty 250g 0.0057 
8 26 Milk fresh (unboiled) 0.0653 
9 70 Toffee (hilal) 0.0101 

10 71 Chowkelate candy (small size) 0.0099 

11 86 Beef with bone av.qlty. 0.0161 

12 87 Mutton av.qlty. 0.0109 
13 88 Chicken farm broiler (live) 0.0092 

14 91 Onion 0.0058 

15 167 House rent index 0.2343 

16 176 Elect.charges 301 - 1000 uni 0.0106 
17 177 Elect.charges above 1000 uni 0.0274 
18 180 Gas chrg 6.7438 - 10.1157mmb 0.0093 

19 181 Gas chrg10.1157 - 13.4876mmb 0.0068 
20 206 Household servant female p/t 0.0119 
21 227 Petrol super 0.0173 

22 266 Telephone charges local call 0.0083 

23 268 Tel charges out side city 0.0083 

24 286 School fee primary eng.med. 0.0081 
25 287 School fee 2nd-ry  eng.med. 0.0081 

26 310 Washing soap nyl(135-160gms) 0.0054 

27 333 Haircut charges for men 0.0067 
28 374 Doctor (mbbs) clinic fee 0.0100 

 
Table 3: Significant hat values corresponding to commodities for 

extended Laspeyres price model (cut-off value= 0.00238 

S. No. Item Nos. Items Weights 
AR(1) Process 

ih (t>1) 

1 3 Wheat flour bag 0.037 0.046 
2 19 Sugar refined 0.019 0.028 
3 26 Milk fresh (unboiled) 0.065 0.073 
4 86 Beef with bone av.qlty. 0.016 0.025 
5 167 House rent index 0.234 0.241 
6 177 Elect.charges above 1000 unit 0.027 0.036 
7 227 Petrol super 0.017 0.026 

 
To check the stationary scenario of residual series we 
apply Augmented Dickey Fuller (ADF) test. The test 
statistic values with p values are presented in table 1. The 
results show the small p values, indicating towards the 
rejection of null hypothesis of unit root and hence the 
stationary series. The presence of autocorrelation effect in 
these residual series is examined by the Durbin Watson 

(DW) statistics, reported in table 1. The DW statistics are 
significantly different from the standard value of 2, 
implying the existence of first order serial correlation in 
both residual series. 
Confirming the serial correlation in the residual series, we 
estimate the AR(1) models using Yule Walker method. 
The estimated values of the autoregressive parameters are 
displayed in table 1. The accuracy measures Akaike 
information criterion (AIC) and Root mean square error 
(RMSE) are also computed to see the performance of 
fitting of an AR(1) process to the residual series. Both 
AIC and RMSE values for extended version are less than 
the values for simple version. It might reveal that the 
residuals from extended Laspeyres model can be well 
captured more accurately than the residuals from simple 
model. 
The next task is to find the influential commodities to 
estimate Laspeyres index numbers. For simple Laspeyres 
price model, table 2 presents the hat values for various 
items exceeding the threshold value 0.005348. The largest 
hat value 0.2343 is corresponding to house rent index, 
implying its importance in estimating the Laspeyres index 
number. The other leading commodities includes milk 
fresh with 0653.0=ih , wheat flour bag with 

0377.0=ih , and electric charges for the consumption 

of above thousand units with 0274.0=ih . The same 
items remain significant for the extended Laspeyres 
model with AR(1) error process. Apart from these items, 
sugar refined, beef with bones, and petrol super are 
proved principal commodities with hat values greater than 
0.023817 (see table 3). For extended Laspeyres price 
model, all 374 consumer commodities fall in significant 
zone for t=1 and only 7 items found significant for t>1. 
These seven significant items are listed in table 3. 
The extended version of Laspeyres price model filters out 
with more important commodities those are influential to 
estimate the underlying index number. It might be due to 
the reason that the hat values of simple version only 
depends on the weights of commodities, while of 
extended version depends not only on weights but also on 
AR(1) parameter  and k (the function of ). These 
seven items, named described earlier, are the core 
commodities alongwith the higher weights. Therefore, to 
monitor and control the prices of these core items should 
be of much more concern to the price regulatory authority 
in order to reduce the impact of price fluctuations 
particularly for the poor community of country. 

4. Conclusion 

In this paper, we considered the two versions of stochastic 
Laspeyres price model. First was the simple standard 
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model and the second was based on the extended 
approach to the simple version. The extended version was 
obtained by augmenting the simple model with a 
systematic component that is responsible to explore the 
variation in underlying index numbers due to using 
various unequally important commodities. The estimators 
of the model parameters are obtained using GLS approach 
and we found the familiar Laspeyres index number from 
both versions of the models. Hence, the extended 
approach does not affect the estimates of Laspeyres index 
numbers as we got the same values for index number 
estimates. 
The main task of the paper was to explore the influential 
commodities to estimate Laspeyres index numbers in 
serially correlated error models. A total of 28 
commodities based on their weights were found 
significant in case of simple model (see table 2). In 
extended model, we observed all 374 consumer items 
significant for t=1 and only 7 items for t>1. This is 
noteworthy finding of this research that the extended 
version not only improves the method of parameter 
estimation but also investigates the core commodities 
more accurately. This is due to its hat values depend on 
both the weights of commodities and the parameter of 
AR(1) error process. By this conclusion, it might be 
possible to improve our results further when we would 
consider the higher order autoregressive process for the 
error structure. 
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