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Summary 
High-Performance Computing (HPC) recently has become 
important in several sectors, including the scientific and 
manufacturing fields. The continuous growth in building more 
powerful super machines has become noticeable, and the 
Exascale supercomputer will be feasible in the next few years. As 
a result, building massively parallel systems becomes even more 
important to keep up with the upcoming Exascale-related 
technologies. For building such systems, a combination of 
programming models is needed to increase the system's 
parallelism, especially dual and tri-level programming models to 
increase parallelism in heterogeneous systems that include CPUs 
and GPUs. However, building systems with different 
programming models is error-prone and difficult, and are also 
hard to test. Also, testing parallel applications is already a 
difficult task because parallel errors are hard to detect due to the 
non-determined behavior of the parallel application. Integrating 
more than one programming model inside the same application 
makes even it more difficult to test because this integration could 
come with a new type of errors. We are surveying the existing 
testing tools that test parallel systems to detect run-time errors. 
We classify the reviewed testing tools in different categories and 
sub-categories based on used testing techniques, targeted 
programming models, and detected run-time errors. Despite the 
effort of building testing tools for parallel systems, much work 
still needs to be done, especially in testing heterogeneous and 
multi-level programming models. Hopefully, these efforts will 
meet the expected improvement in HPC systems and create more 
error-free systems.  
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1. Introduction 

High-Performance Computing (HPC) currently is a part of 
all scientific and manufacturing sectors driven by the 
improvement of HPC machines, especially with the 
growing attention to Exascale supercomputers, which has 
been suggested to be feasible by 2022 by different studies 
[1]. This continuous improvement poses the challenging 
task of building massively parallel systems that can be used 
in these super machines. Parallel applications have to be 
error-free to satisfy the application's requirements and 
benefits from the used programming model’s abilities and 
features. It is very difficult to test such applications 
because of their huge sizes, changeable behavior, and the 

integration between different programming models in the 
same application.  

This paper tries to investigate different available testing 
tools and techniques that detect run-time errors in parallel 
applications that use programming models, including 
homogeneous and heterogeneous systems. We will review 
and study different tools and techniques and classify them 
depending on different factors and characteristics. This 
review will investigate what still needs to be done in 
testing parallel systems and directions for future research 
in this field. Also, we only study deeply some of the 
reviewed testing tools and techniques based on their 
relation to our subject.   

The rest of this paper is structured as follows. Section 2 
briefly gives an overview of some programming models, 
their levels, and some run-time errors, as well as some 
testing techniques, which will be discussed in Sections 3 
and 4. Our classification for the reviewed testing tools will 
be discussed in Sections 5 and 6. In Section 7, we will give 
an overview of Exascale-related concepts and their effects 
on the software testing. Finally, we will conclude our work 
in Section 8.     

2. Overview of Programming Models 

In recent years, building massively parallel 
supercomputing systems based on heterogeneous 
architecture has been one of the top research topics. 
Therefore, creating parallel programs becomes 
increasingly important, but there is a lack of parallel 
programming languages, and the majority of traditional 
programming languages cannot support parallelism 
efficiently. As a result, programming models have been 
created to add parallelism to the programming languages. 
Programming models are sets of instructions, operations, 
and constructs used to support parallelism.  

Today, there are various programming models that have 
different features and are created for different purposes; 
including message passing such as MPI [2] and shared 
memory parallelism such as OpenMP [3]. In addition, 
some programming models support heterogeneous systems, 
which consisting of a Graphics Processing Unit (GPU) 
coupled with a traditional CPU. Heterogeneous parallel 
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programming models are CUDA [4] and OpenCL [5], 
which are low-level programming models, and OpenACC 
[6] is a high-level heterogeneous programming model. In 
this section, some of these programming models will be 
discussed and explained.   

2.1 MPI 

Message-Passing Interface (MPI) [2] is a message-passing 
library interface specification. In May 1994, the first 
official version of MPI was released. MPI is a message-
passing parallel programming model that moves data from 
a process address space to another process by using 
cooperative operations on each process. The MPI aims to 
establish a standard for writing message-passing programs 
to be portable, efficient, and flexible. Also, MPI is a 
specification, not a language or implementation, and all 
MPI operations are expressed as functions, subroutines or 
methods for programming languages including Fortran, C, 
and C++. MPI has several implementations, including 
open source implementations, such as Open MPI [7] and 
MPICH [8]; and commercial implementations, such as 
IBM Spectrum MPI [9] and Intel MPI [10]. MPI has 
several features and advantages, including [11] and [12]:  
• Standard: MPI is the only message-passing library 

that can be considered a standard. It has been 
supported on virtually all HPC platforms. Also, all 
previous message-passing libraries have been replaced 
by MPI. 

• Portability: MPI can be implemented in several 
platforms, hardware, systems, and programming 
languages. Also, MPI can work perfectly with several 
programming models and with heterogeneous 
networks.  

• Availability: Various versions of MPI 
implementations from different vendors and 
organization are available as open-source and 
commercial implementations.  

• Functionality: On MPI version 3.1, over 430 routines 
have been defined, including the majority of the 
previous versions of MPI.  

The newest MPI standardization version 4.0 is currently 
available, which aims to add new techniques, approaches, 
or concepts to the MPI standard that will help MPI address 
the needs of current and next-generation applications and 
architectures. The new version extends to better support 
hybrid programming models, including hybrid MPI+X 
concerns and support for fault tolerance in MPI 
applications. 

2.2 OpenMP 

OpenMP (Open Multi-Processing) [13] is a shared 
memory programming model for Fortran and C/C++ 

programs. The first OpenMP version was released in 
October 1997 by the OpenMP Architecture Review Board 
(ARB) for Fortran. In the following year, OpenMP 
supported C/C++ programs as well. The latest version, 
OpenMP 5.0, was released in November 2018 with three 
main API components that include compiler directives, 
run-time library routines, and environment variables. 
OpenMP has several features that include: 
• Providing a standard for various shared memory 

platforms and architectures as well as for several 
hardware and software vendors.     

• Providing the ability to implement both coarse-grain 
and fine-grain parallelism. 

• OpenMP has been implemented in several platforms, 
hardware, systems, and programming languages.  

OpenMP has been implemented in many compilers 
including various vendors or open-source communities, 
such as GNU Compiler Collection (GCC), Oracle 
Developer Studio compilers, Intel Parallel Studio XE, as 
well as other open-source and commercial compilers and 
tools that support different versions of OpenMP.  

2.3 CUDA 

CUDA (Compute Unified Device Architecture) [14] is 
a  parallel computing platform and programming model 
that supports the use of graphics processing units (GPU) 
for general-purpose processing, which increases the 
computing performance dramatically. This technique is 
called General-Purpose computing on Graphics Processing 
Units (GPGPU). The first version of CUDA was 
introduced in November 2006 by NVIDIA Corporation 
that only targeting NVIDIA GPUs, which can be 
considered as a lack of portability. However, CUDA is 
considered as one of the most widely used programming 
models for GPUs, which are designed to support Fortran 
and C/C++ programs. In March 2018, the latest CUDA 
version 9.2 was released. CUDA has several features that 
include enabling efficient use of the massive parallelism of 
NVIDIA GPUs. CUDA is a low-level programming model 
that gives the code the ability to read from an arbitrary 
address in memory. That gives developers the ability to 
know some details such as transfer between the host and 
the memory of the device, temporary data storage, kernel 
boot time mapping of threads, and parallelism. 

2.4 OpenCL 

OpenCL, which stands for Open Computing Language, is 
an open standard for general-purpose parallel 
programming of heterogeneous systems that include CPUs, 
GPUs, and other processors [15]. Also, OpenCL is a low-
level programming model that is similar to CUDA that 
supports several applications ranging from consumer and 
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embedded software to HPC solutions. However, OpenCL 
is more complex and has a very low-level API that requires 
significantly more code than CUDA [16]. The first 
OpenCL 1.0 was released in December 2008 by the 
Khronos™ Group, Inc., and the latest version was released 
in May 2017. Also, OpenCL is compatible with C/C++ 
programming languages and has been implemented in 
several platforms and companies, including NVIDIA 
Corporation, Intel, IBM Corporation, Apple Inc., and 
AMD as well as others. OpenCL has the key feature of 
portability, which makes it possible to run any OpenCL 
kernel on any conformant implementation. 

2.5 OpenACC 

In November 2011, OpenACC stands for open accelerators 
and was released at the first time in the International 
Conference for High-Performance Computing, Networking, 
Storage, and Analysis [17]. OpenACC is a directive-based 
open standard developed by Cray, CAPS, NVIDIA, and 
PGI. They designed OpenACC to create simple high-level 
parallel programming model for heterogeneous CPU/GPU 
systems that are compatible with Fortran, C, and C++ 
programming languages. Also, OpenACC Standard 
Organization defines OpenACC as "a user-driven 
directive-based performance-portable parallel 
programming model designed for scientists and engineers 
interested in porting their codes to a wide variety of 
heterogeneous HPC hardware platforms and architectures 
with significantly less programming effort than required 
with a low-level model." [6]. The latest version of 
OpenACC was released in November 2018. OpenACC has 
several features and advantages compared with other 
heterogeneous parallel programming models, including:  
• Portability: Unlike a programming model like CUDA 

that works only on NVIDIA GPU accelerators, 
OpenACC is portable across different types of GPU 
accelerators, hardware, platforms, and operating 
systems [6], [18].     

• OpenACC is compatible with various compilers and 
gives flexibility to the compiler implementations.  

• It is a high-level programming model, which makes 
targeting accelerators easier by hiding low-level 
details. For generation of low-level GPU programs, 
OpenACC relies on the compiler using the 
programmer codes.  

• Better performance with less programming effort, 
which gives the ability to add GPU codes to existing 
programs with less effort. That will lead to reducing 
the programmer workload and improvement in 
programmer productivity and achieving better 
performance than OpenCL and CUDA [19]. 

• OpenACC allows users to specify three levels of 
parallelism by using three clauses:  

• Gangs: Coarse-grained Parallelism  
• Workers: Medium-grained Parallelism  
• Vector: Fine-grained Parallelism  

OpenACC has both a strong and significant impact on the 
HPC society as well as other scientific communities. 
Jeffrey Vetter (HPC luminary and Joint Professor, Georgia 
Institute of Technology) wrote: “OpenACC represents a 
major development for the scientific community. 
Programming models for open science by definition need 
to be flexible, open and portable across multiple platforms. 
OpenACC is well-designed to fill this need” [6].   

3. Overview of Some Common Run-Time 
Errors 

There are several types of run-time errors that happen after 
compilation and cannot be detected by the compilers, 
which cause the program not to meet the user requirements. 
These errors even sometimes have similar names, but they 
are different in the reasons or causes. For example, 
deadlock in MPI has different causes and behaviors 
compared with OpenACC deadlocks. Also, run-time errors 
in the dual-programming model are different. Also, some 
run-time errors happen specifically in a particular 
programming model. By investigating the documents of 
the latest version of OpenACC 2.7 [20], we found that 
OpenACC has a repetitive run-time error that if a variable 
is not present on the current device, this will lead to a run-
time error. This case happened in a non-shared memory 
device for different OpenACC clauses. 

Similarly, if the data is not present, a run-time error is 
issued in some routines. Furthermore, detecting such errors 
is not easy, and to detect them in applications developed 
by dual-programming model is even more complicated. In 
the following, some popular run-time errors will be 
displayed and discussed in general with some examples.  

3.1 Deadlocks 

A deadlock is a situation in which a program is in a waiting 
state for an indefinite amount of time. In other words, one 
or more threads in a group are blocked forever without 
consuming CPU cycles. The deadlock has two types: 
resource and communication deadlock. Resource deadlock 
is a situation in which a thread waits for another thread 
resource to proceed. Similarly, communication deadlock 
occurs when some threads wait for some messages, but 
they never receive these messages [21], [22]. The reasons 
that cause deadlock are different depending on the used 
programming models, system nature, and behavior. Once 
the deadlock occurs it is not difficult to detect, but in some 
cases, it is difficult to detect them beforehand, as they 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019 

 

179 

 

occur under certain interleaving [23]. Finally, deadlocks in 
any system could be a potential deadlock that may or may 
not happen based on the execution environment and 
sequence, or real deadlocks, which definitely will occur. 

3.2 Livelocks 

Livelock is similar to deadlock, except that a livelock is a 
situation that arises when two or more processes change 
their state continuously in response to changes in other 
processes. In other words, it occurs when one or more 
threads continuously change their states (and hence 
consume CPU cycles) in response to changes in states of 
the other threads without doing any useful work. As a 
result, none of the processes will make any progress and 
will not be completed [24], [25]. In a livelock, the thread 
might not be blocked forever, and it is hard to distinguish 
between livelock and a long-running process. Also, 
livelock can lead to performance and power consumption 
problems because of the useless busy-wait cycles.    

3.3 Race Condition 

A race condition is a situation that might occur due to 
executing processes by multiple threads and where the 
sequence of execution for the threads makes a difference in 
the result of the concurrent execution. The execution 
timing and order will affect the program's correctness [26]. 
Some researchers do not differentiate between data race 
and race condition, which will be explained in the data 
race definition.    

3.4 Data Race 

A data race happened when there are two memory accesses 
in the program both perform concurrently in two threads or 
target the same location [27]. For example, at least one 
read and one write may happen at the same memory 
location at the same time. The race condition is a data race 
that causes an error. However, the data race does not 
always lead to a race condition. 

3.5 Mismatching 

Mismatching is a situation that happens in arguments with 
one call, which can be detected locally and are sometimes 
even detected by the compiler. Mismatching can take 
several forms, including wrong type or number of 
argument, arguments involving more than one call, or in 
collective calls. Developers need to pay special attention 
when comparing matched pairs of derived data types. 

4. Overview of Testing Techniques 

There are many techniques used in software testing, which 
include static and dynamic as well as other techniques. 
Static testing is the process of analyzing the source code 
before the compilation phase for detecting static errors. It 
handles the application source code only without launching 
it, which gives us the ability to analyze the code in detail 
and have full coverage. By contrast, the static analysis of 
parallel application is complicated due to unpredicted 
program behavior, which is parallel application nature [29], 
[30]. However, it will be very useful to use static analysis 
for detecting potential run-time errors and some real run-
time errors that are obvious from the source code, such as 
some types of deadlocks and race condition.   

Dynamic testing is the process of analyzing the system 
during run-time for detecting dynamic (run-time) errors. It 
demands launching programs that are sensitive to the 
execution environment, and slow down the speed of 
application execution. It is useful to use dynamic analysis 
in a parallel application, which affords the flexibility to 
monitor and detect each thread of the parallel application. 
However, it is difficult to cover the whole parallel code 
with tests, and after correcting the errors, it cannot be 
confirmed whether errors are corrected or hidden. 

Symbolic testing [31], [32] is a technique that allows the 
automatic exploration of paths in a program. It works by 
deriving a general representation of the program behavior 
from the program code. The concrete inputs of the 
program unit will be replaced with symbolic values, and 
the execution of the program will be simulated so that 
instead of values, all variables hold symbolic expressions. 
Also, symbolic execution can analyze programs to 
determine what inputs cause each part of the program to be 
executed. This technique has been used to detect run-time 
errors and creating testing tools. However, this technique 
has several limitations such as path explosion, which 
makes it impossible to scale with large programs.  

Hybrid testing is combining more than one of the 
mentioned testing techniques, which gives the ability to 
cover a wider range of run-time errors. This combination 
takes the advantages of two testing techniques, reduces 
disadvantages, and reduces the testing time. The 
combination of static and dynamic testing is the most used 
hybrid testing techniques to detect run-time errors in 
parallel systems using programming models. Finally, it is 
the run-time error type and behavior that determine which 
techniques will be used because some errors cannot be 
detected by static analysis, and others cannot be detected 
by dynamic techniques.   
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5. Testing Techniques Classifications 

In our study, 58 different testing tools and techniques have 
been reviewed, varying from open-source to commercial 
tools. Including different types of testing techniques, 
targeted programming models discovered run-time errors 
for different purposes when discovering the errors or 
tracking the cause of these errors (debuggers). Only the 
parallel systems-related testing has been included in our 
study, where we are surveying the parallel systems testing 
techniques. Also, we focus on the testing techniques used 
to detect run-time errors that occur on parallel systems, 
which include the explained run-time errors in Section 3. 
We chose the tools and techniques in our study from more 
than 100 testing tools and techniques. We eliminate any 
tool or technique that does not meet our objectives. We 
aim to survey testing tools and techniques that detect run-
time errors in parallel systems that use programming 
models.    

Integrating more than one programming model can 
enhance parallelism, performance, and the ability to work 
with heterogeneous platforms. Also, this combination will 
help in moving to Exascale systems, which need more 
powerful programming models that support massively 
parallel supercomputing systems. Hybrid programming 
models can be classified as:  

• Single-Level Programming Model, which includes 
an individual programming model such as MPI, 
OpenMP, or CUDA.  

• Dual-Level Programming Model, which is a 
combination of two programming models working 
together to enhance parallelism such as MPI + 
OpenMP and MPI + CUDA. Many types of research 
refer to this level of parallelism by MPI + X.  

• Tri-Level Programming Model, which combines 
three different programming models to work together 
as a hybrid programming model. Some studies refer to 
this level with MPI + X + Y.    

As a result, we classify the used testing techniques into 
four categories, which include Static, Dynamic, Hybrid, 
and Symbolic testing techniques. Also, we classify these 
techniques into two subcategories to determine the targeted 
programming model level, where they are single- or dual- 
level programming models. The following subsections will 
discuss our classifications.  

5.1 Static Testing Techniques  

Six testing tools have been classified as testing tools that 
use a static testing technique. These tools have used this 
technique to detect run-time errors in the parallel program 
that use programming models.   

1. Single-Level Programming Model Testing Techniques 

The testing tools [33], [34], and GPUVerify [35] have used 
the static technique to detect data race in CUDA, OpenCL, 
and OpenMP programming models individually. For 
OpenMP, the testing tools [36], [37], ompVerify [38] have 
been used to detect data race. Finally, MPI-Checker [39] 
used static techniques to detect MPI mismatching errors.   

2. Dual-Level Programming Model Testing Techniques 

In the reviewed testing tools, there are no testing tools that 
used static testing techniques for detecting run-time errors 
in the dual-level programming model. 

5.2 Dynamic Testing Techniques  

In our survey, there are 34 testing tools that use dynamic 
testing techniques for detecting run-time errors in parallel 
programs. These tools will be classified based on the 
targeted programming models as follows:  

1. Single-Level Programming Model Testing Techniques 

Regarding detecting errors in the MPI programming model, 
14 testing tools use a dynamic technique that targets MPI. 
The testing tools MEMCHECKER [7], MUST [40], [41], 
STAT [42], Nasty-MPI [43], and Intel Message Checker 
[44] have been used to detect MPI run-time errors 
including deadlocks, data race, and mismatching. For 
detecting deadlocks and mismatching, the following tools 
are used, including MPI-CHECK [45], GEM [46], and 
Umpire [24]. The tools PDT [47], MAD [48], and [49] are 
used to detect deadlocks and race conditions in MPI. For 
deadlocks, MOPPER [50] and ISP [51] are used. Finally, 
MPIRace-Check [52] has been used to detect race 
condition in MPI.   

For OpenMP run-time error detection, there are several 
tools such as Intel Thread Checker [53] and Sun Thread 
Analyzer [53] that detect deadlock and data races. Also, 
VORD [54] and [55] are used to detect the data race in 
OpenMP. RTED [56] is using dynamic testing to detect 
deadlocks and race conditions in MPI and OpenMP 
individually. Also, NR [57], RaceStand [58], eNR 
Labeling [59], and [60] are for OpenMP data race 
detection.  

For detecting data race in CUDA using dynamic 
techniques, the testing tool in [61] is used. Regarding data 
race detection, there are several testing tools for different 
programming models including; GUARD [62], RaceTM 
[63] and  KUDA [64] for CUDA. For detecting errors in 
heterogeneous programming model by using dynamic 
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testing, WEFT [65] is used to detect deadlocks and race 
conditions.   

Finally, deadlocks detection in parallel programs using 
UNDEAD [22], Sherlock [66], and ConLock [23], and 
livelock detection can be seen in CBuster.  

2. Dual-Level Programming Model Testing Techniques 

For testing the hybrid MPI/OpenMP programming model 
using dynamic testing, the testing tools MARMOT [67] 
and [68] have been used for detecting deadlocks, race 
conditions, and mismatching.   

5.3 Symbolic Testing Techniques  

In our study, there are six testing tools that use symbolic 
techniques for detecting run-time errors for both single 
and- dual-level programming models. These tools will be 
classified by their programming models as the following:  

1. Single-Level Programming Model Testing Techniques 

KLEE-CL [31] used the symbolic technique for detecting 
data race in the OpenCL programming model. Also, this 
technique has been used in OAT [69] for detecting 
deadlocks and data race in OpenMP. The testing tools 
GKLEE [70], GKLEEP [71], and PUG [72] was used for 
testing CUDA programming model to detect deadlocks, 
data races, and race conditions using symbolic techniques.   

2. Dual-Level Programming Model Testing Techniques 

In the reviewed testing tools, there are no testing tools that 
used symbolic techniques for detecting run-time errors in 
the dual-level programming model.  

5.4 Hybrid Testing Techniques  

Several reviewed testing tools used hybrid testing 
techniques, which combine static/dynamic testing or 
combine static/symbolic testing. In our survey, seven tools 
used hybrid testing techniques. These tools will be 
classified into the following subsections by their 
programming model levels.     

1. Single-Level Programming Model Testing Techniques 

In this subcategory, five testing tools targeted single-level 
programming models that include OpenMP, CUDA, and 
OpenCL. ARCHER [73] and Dragon [74] are testing tools 
that use hybrid testing techniques to detect data race in 
OpenMP programming model. GMRace [75], GRace [76], 
[77], and SESA [78] use hybrid testing techniques to 

detect data race in the CUDA programming model. Finally, 
GRace is also used to test the OpenCL programming 
model for detecting data race. All the previous testing tools 
used static/dynamic hybrid testing techniques to detect run-
time errors except SESA, which used static/symbolic 
hybrid testing techniques.   

2. Dual-Level Programming Model Testing Techniques 

Two testing tools used static/dynamic hybrid testing 
techniques to detect run-time errors in the MPI/OpenMP 
dual programming model. These tools are PARCOACH 
[79] and [80], which used the hybrid model to detect 
deadlocks and other run-time errors resulting from the dual 
programming model. Even though combining two 
programming model is beneficial, it creates complex run-
time errors that are difficult to detect and determine.    
 
It is noticeable that five testing tools are classified as 
debugging because we cannot determine the testing 
techniques that have been used in those tools. These tools 
are AutomaDeD [81], which is a tool that detects MPI 
errors by comparing similarities and dissimilarities 
between tasks. The second tool is ALLINEA DDT [82], 
which is a commercial debugger that supports MPI, 
OpenMP, and Pthreads. The third is TotalView [83], 
which supports MPI, Pthreads, OpenMP, and CUDA. 
Finally, PDT [47] and MPVisualizer [84] are detecting 
deadlocks and race conditions in MPI. We note that these 
five are debuggers that do not help to test or detect errors, 
but can be used to find out the reasons behind errors. As a 
result, we could not classify them based on the testing 
techniques.     

The following Table 1 displays the number of testing 
techniques used for each programming model in the 
reviewed testing tools. We notice that the dynamic 
techniques have been mostly used to test MPI and 
OpenMP for detecting run-time errors. Symbolic testing 
has been used to detect run-time errors in CUDA. However, 
OpenACC has not been targeted to be tested by any 
reviewed testing tools.  

Table 1: Relationship between the Used Testing Techniques and the 
Targeted Programming Models 
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To summarize our classifications of the reviewed testing 
tools, the following three figures will be displayed. Firstly, 
Figure 1 displays the reviewed testing tools classified by 
the used testing techniques, showing that the dynamic 
testing techniques have been used more than other 
techniques to detect run-time errors. 

 

Fig. 1  Testing Tools Classified by Used Testing Techniques 

Then, Figure 2 shows the testing tools for testing targeted 
programming models. It is notable that MPI, OpenMP, and 
CUDA have been tested in several testing tools, which are 
considered the most targeted programming models in our 
survey. However, OpenACC has not been targeted as a 
tested programming model.  

 

Fig. 2  Testing Tools Classified by Targeted Programming Models 

Finally, several run-time errors have been detected in the 
reviewed testing tools. Figure 3 shows a summary of these 
errors. Deadlocks and data races are the most detected run-
time errors in the reviewed testing tools.  

6. Discussion 

As we reviewed and presented in the previous section, 
there are several aspects that need to be discussed and 
taken into consideration. Firstly, we only reviewed testing 
tools that target parallel systems, especially systems that 

use programming models. Our study tries to 
comprehensively review tools that test parallel systems to 
detect run-time errors because of its unpredictable 
behavior and the causes behind them to occur. Usually, 
compile-time errors can be detected by compilers and 
reported to developers to be corrected. Furthermore, 
detecting run-time errors in parallel systems is even more 
complicated because of the different behaviors of the 
programming models and their interaction with different 
programming models.  

 

Fig. 3  Testing Tools Classified by Detected Run-Time Errors 

Secondly, we classify the reviewed testing tools by the 
testing techniques used to detect run-time errors. This 
classification makes it easy to compare different 
techniques and discovers their features in finding run-time 
errors and their limitations as well. In this classification, 
we also classify them into subcategories based on the level 
of programming models used in the tested parallel systems. 
We focus on the single- and dual-level programming 
models because they are widely used in developing parallel 
systems for different purposes compared to tri-level 
programming models. Also, the lack of testing tools that 
target tri-level programming models makes it hard to 
review and classify the reviewed testing tools into three 
subcategories. As a result, we classified our reviewed 
testing tools into what we did in Section 3.   

Finally, we noticed that dynamic testing techniques had 
been used mainly for detecting run-time errors for different 
programming models. Single-level programming models 
have been targeted to be tested, especially MPI and 
OpenMP because of their wide use and their history in 
programming models. Regarding heterogeneous 
programming models, CUDA is the most targeted 
programming model in the reviewed testing tools, while 
OpenACC has not been targeted in any testing tools, 
despite their benefits and trending use. We believe that a 
lot of work needs to be done in creating and developing 
testing tools for massively parallel systems, especially 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019 

 

183 

 

heterogeneous parallel systems, which will be needed 
when the Exascale systems are applied in different fields.  

7. Towards Exascale Testing 

Over the next few years, an extreme level of computing 
systems will be feasible by 2022, which leads to building 
more powerful supercomputers [85]. Exascale systems are 
expected to make a revolution in computer science and 
engineering by providing at least one exaFLOPS, which 
are 1018 floating-point operations per second [86]. In the 
recent top 500 supercomputers list, SUMMIT is the top 
supercomputer in the world by 200 pteaFOLPS [1], [87]. 
SUMMIT is an IBM-built supercomputer running at the 
Department of Energy’s (DOE) Oak Ridge National 
Laboratory (ORNL), USA. SUMMIT has 4,608 nodes, 
each one equipped with two 22-core IBM POWER9™ 
CPUs, and six NVIDIA Tesla V100 GPUs. The nodes 
are linked together with a dual-rail Mellanox EDR 100G 
InfiniBand interconnect. Also, SUMMIT processes more 
than ten petabytes of memory, paired with fast high-
bandwidth pathways for more efficiency in data movement 
[87]. They claim that SUMMIT will take one step to 
achieving Exascale computing by 2021[1].  

As we noticed, high-performance computing has become 
increasingly important, and Exascale supercomputers will 
be feasible soon. Therefore, building massively parallel 
supercomputing systems based on heterogeneous 
architecture is even more important to increase parallelism. 
The majority of the top 500 supercomputers in the world 
use GPUs to enhance performance and parallelism. For 
example, in the recent list, more than 78% of the top 
supercomputers used NVIDIA accelerators, and 48% of 
them used NVIDIA Tesla P100 [88].  

The movement towards Exascale can be achieved by 
hardware as well as software, as we noted in the previous 
paragraph. The integration between more than one 
programming models, which is a dual-level or tri-level 
programming model, will help to achieve Exascale 
computing. Furthermore, this improvement in computing 
systems comes with cost and difficulties, regarding 
building massively parallel systems, reducing energy 
consumption as well as testing these systems. To create 
massively parallel systems more than one programming 
models are needed, especially heterogeneous programming 
models to support the increasing use of GPUs in 
supercomputers, as well as to benefit from their features. 
For some systems, hybrid dual- or even tri-level 
programming models will be benefited and useful. 
However, testing parallel applications is not an easy task 
because the natures of errors in parallel systems are hard to 
detect due to the non-determined and unexpected behavior 

of the parallel application. Even after detecting the errors 
and modifying the source code, it is difficult to determine 
whether the errors have been corrected or hidden. 
Integrating different programming models inside the same 
application make it even more difficult to test. Despite the 
available testing tools that detect static and dynamic errors, 
there is still a lack of such a testing tool that detects run-
time errors in parallel systems implemented in the 
heterogeneous programming model.  

8. Conclusion 

Testing parallel systems that use heterogeneous 
programming models has become increasingly important, 
and the movement to Exascale systems makes it even more 
important to avoid errors that could affect the system 
requirements, not only errors that can be detected by 
compilers, but also more critical errors that occur after 
compilation and cannot be detected by the compilers. As a 
result, testing tools have been built, and different testing 
techniques have been used to detect static and run-time 
errors in parallel systems. These tools and techniques are 
targeting systems built by several types and levels of 
programming models.  

We studied more than 50 testing tools and classified them 
according to the used testing techniques, the targeted 
programming models, and the run-time errors. We tried to 
discover the limitations and open areas for the researchers 
in testing parallel systems, which can yield the opportunity 
to focus on those areas. Before that, we gave an overview 
of the testing techniques, popular programming models 
and their different levels, and some common run-time 
errors that affect parallel systems.    

There is an increasing importance of parallel systems in the 
Exascale era; but there is a shortfall in testing those 
systems, especially parallel systems that use heterogeneous 
programming models including high- and low-level 
programming models. Despite efforts made to create and 
propose software testing tools for parallel application, 
there is still a lot to be done primarily for GPU-related 
programming models and for dual- and tri-level 
programming models for heterogeneous systems. 
Heterogeneous systems can be hybrid CPUs/GPUs 
architectures or different architectures of GPUs. We noted 
that OpenACC has several advantages and benefits and has 
been used widely in the past few years, but it has not 
targeted any testing tools covered in our study. Finally, to 
the best of our knowledge, there is no parallel testing tool 
built to test applications programmed by using the dual-
programming model MPI + OpenACC or any tri-level 
programming model.   
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To conclude, there has been good effort in testing parallel 
systems to detect run-time errors, but still not enough, 
especially for systems using heterogeneous programming 
models, as well as dual- and tri-level programming models. 
The integration of different programming models in the 
same system will need new testing techniques to detect 
run-time errors in heterogeneous parallel systems, which 
will be addressed in our future work. We believe that to 
achieve good systems that can be used in Exascale 
supercomputers, we should focus on testing those systems 
because of their massively parallel natures as well as their 
huge size, which add more difficulties and issues. Also, 
these testing tools should integrate more than one testing 
techniques and work in parallel to detect run-time errors by 
creating testing threads, depending on the number of 
application threads. As a result, using parallel hybrid 
techniques will enhance testing time and cover a wide 
range of run-time errors.  
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