
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

176

Manuscript received April 5, 2019
Manuscript revised April 20, 2019

Software Testing Techniques for Parallel Systems: A Survey

Ahmed M. Alghamdi1* and Fathy E. Eassa2

King Abdulaziz University, Jeddah, KSA

Summary
High-Performance Computing (HPC) recently has become
important in several sectors, including the scientific and
manufacturing fields. The continuous growth in building more
powerful super machines has become noticeable, and the
Exascale supercomputer will be feasible in the next few years. As
a result, building massively parallel systems becomes even more
important to keep up with the upcoming Exascale-related
technologies. For building such systems, a combination of
programming models is needed to increase the system's
parallelism, especially dual and tri-level programming models to
increase parallelism in heterogeneous systems that include CPUs
and GPUs. However, building systems with different
programming models is error-prone and difficult, and are also
hard to test. Also, testing parallel applications is already a
difficult task because parallel errors are hard to detect due to the
non-determined behavior of the parallel application. Integrating
more than one programming model inside the same application
makes even it more difficult to test because this integration could
come with a new type of errors. We are surveying the existing
testing tools that test parallel systems to detect run-time errors.
We classify the reviewed testing tools in different categories and
sub-categories based on used testing techniques, targeted
programming models, and detected run-time errors. Despite the
effort of building testing tools for parallel systems, much work
still needs to be done, especially in testing heterogeneous and
multi-level programming models. Hopefully, these efforts will
meet the expected improvement in HPC systems and create more
error-free systems.
Keywords:
High-Performance Computing; Software Testing; Testing
Techniques; Testing Tools Classifications; Exascale Systems;
Programming Models;

1. Introduction

High-Performance Computing (HPC) currently is a part of
all scientific and manufacturing sectors driven by the
improvement of HPC machines, especially with the
growing attention to Exascale supercomputers, which has
been suggested to be feasible by 2022 by different studies
[1]. This continuous improvement poses the challenging
task of building massively parallel systems that can be used
in these super machines. Parallel applications have to be
error-free to satisfy the application's requirements and
benefits from the used programming model’s abilities and
features. It is very difficult to test such applications
because of their huge sizes, changeable behavior, and the

integration between different programming models in the
same application.

This paper tries to investigate different available testing
tools and techniques that detect run-time errors in parallel
applications that use programming models, including
homogeneous and heterogeneous systems. We will review
and study different tools and techniques and classify them
depending on different factors and characteristics. This
review will investigate what still needs to be done in
testing parallel systems and directions for future research
in this field. Also, we only study deeply some of the
reviewed testing tools and techniques based on their
relation to our subject.

The rest of this paper is structured as follows. Section 2
briefly gives an overview of some programming models,
their levels, and some run-time errors, as well as some
testing techniques, which will be discussed in Sections 3
and 4. Our classification for the reviewed testing tools will
be discussed in Sections 5 and 6. In Section 7, we will give
an overview of Exascale-related concepts and their effects
on the software testing. Finally, we will conclude our work
in Section 8.

2. Overview of Programming Models

In recent years, building massively parallel
supercomputing systems based on heterogeneous
architecture has been one of the top research topics.
Therefore, creating parallel programs becomes
increasingly important, but there is a lack of parallel
programming languages, and the majority of traditional
programming languages cannot support parallelism
efficiently. As a result, programming models have been
created to add parallelism to the programming languages.
Programming models are sets of instructions, operations,
and constructs used to support parallelism.

Today, there are various programming models that have
different features and are created for different purposes;
including message passing such as MPI [2] and shared
memory parallelism such as OpenMP [3]. In addition,
some programming models support heterogeneous systems,
which consisting of a Graphics Processing Unit (GPU)
coupled with a traditional CPU. Heterogeneous parallel

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

177

programming models are CUDA [4] and OpenCL [5],
which are low-level programming models, and OpenACC
[6] is a high-level heterogeneous programming model. In
this section, some of these programming models will be
discussed and explained.

2.1 MPI

Message-Passing Interface (MPI) [2] is a message-passing
library interface specification. In May 1994, the first
official version of MPI was released. MPI is a message-
passing parallel programming model that moves data from
a process address space to another process by using
cooperative operations on each process. The MPI aims to
establish a standard for writing message-passing programs
to be portable, efficient, and flexible. Also, MPI is a
specification, not a language or implementation, and all
MPI operations are expressed as functions, subroutines or
methods for programming languages including Fortran, C,
and C++. MPI has several implementations, including
open source implementations, such as Open MPI [7] and
MPICH [8]; and commercial implementations, such as
IBM Spectrum MPI [9] and Intel MPI [10]. MPI has
several features and advantages, including [11] and [12]:
• Standard: MPI is the only message-passing library

that can be considered a standard. It has been
supported on virtually all HPC platforms. Also, all
previous message-passing libraries have been replaced
by MPI.

• Portability: MPI can be implemented in several
platforms, hardware, systems, and programming
languages. Also, MPI can work perfectly with several
programming models and with heterogeneous
networks.

• Availability: Various versions of MPI
implementations from different vendors and
organization are available as open-source and
commercial implementations.

• Functionality: On MPI version 3.1, over 430 routines
have been defined, including the majority of the
previous versions of MPI.

The newest MPI standardization version 4.0 is currently
available, which aims to add new techniques, approaches,
or concepts to the MPI standard that will help MPI address
the needs of current and next-generation applications and
architectures. The new version extends to better support
hybrid programming models, including hybrid MPI+X
concerns and support for fault tolerance in MPI
applications.

2.2 OpenMP

OpenMP (Open Multi-Processing) [13] is a shared
memory programming model for Fortran and C/C++

programs. The first OpenMP version was released in
October 1997 by the OpenMP Architecture Review Board
(ARB) for Fortran. In the following year, OpenMP
supported C/C++ programs as well. The latest version,
OpenMP 5.0, was released in November 2018 with three
main API components that include compiler directives,
run-time library routines, and environment variables.
OpenMP has several features that include:
• Providing a standard for various shared memory

platforms and architectures as well as for several
hardware and software vendors.

• Providing the ability to implement both coarse-grain
and fine-grain parallelism.

• OpenMP has been implemented in several platforms,
hardware, systems, and programming languages.

OpenMP has been implemented in many compilers
including various vendors or open-source communities,
such as GNU Compiler Collection (GCC), Oracle
Developer Studio compilers, Intel Parallel Studio XE, as
well as other open-source and commercial compilers and
tools that support different versions of OpenMP.

2.3 CUDA

CUDA (Compute Unified Device Architecture) [14] is
a parallel computing platform and programming model
that supports the use of graphics processing units (GPU)
for general-purpose processing, which increases the
computing performance dramatically. This technique is
called General-Purpose computing on Graphics Processing
Units (GPGPU). The first version of CUDA was
introduced in November 2006 by NVIDIA Corporation
that only targeting NVIDIA GPUs, which can be
considered as a lack of portability. However, CUDA is
considered as one of the most widely used programming
models for GPUs, which are designed to support Fortran
and C/C++ programs. In March 2018, the latest CUDA
version 9.2 was released. CUDA has several features that
include enabling efficient use of the massive parallelism of
NVIDIA GPUs. CUDA is a low-level programming model
that gives the code the ability to read from an arbitrary
address in memory. That gives developers the ability to
know some details such as transfer between the host and
the memory of the device, temporary data storage, kernel
boot time mapping of threads, and parallelism.

2.4 OpenCL

OpenCL, which stands for Open Computing Language, is
an open standard for general-purpose parallel
programming of heterogeneous systems that include CPUs,
GPUs, and other processors [15]. Also, OpenCL is a low-
level programming model that is similar to CUDA that
supports several applications ranging from consumer and

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

178

embedded software to HPC solutions. However, OpenCL
is more complex and has a very low-level API that requires
significantly more code than CUDA [16]. The first
OpenCL 1.0 was released in December 2008 by the
Khronos™ Group, Inc., and the latest version was released
in May 2017. Also, OpenCL is compatible with C/C++
programming languages and has been implemented in
several platforms and companies, including NVIDIA
Corporation, Intel, IBM Corporation, Apple Inc., and
AMD as well as others. OpenCL has the key feature of
portability, which makes it possible to run any OpenCL
kernel on any conformant implementation.

2.5 OpenACC

In November 2011, OpenACC stands for open accelerators
and was released at the first time in the International
Conference for High-Performance Computing, Networking,
Storage, and Analysis [17]. OpenACC is a directive-based
open standard developed by Cray, CAPS, NVIDIA, and
PGI. They designed OpenACC to create simple high-level
parallel programming model for heterogeneous CPU/GPU
systems that are compatible with Fortran, C, and C++
programming languages. Also, OpenACC Standard
Organization defines OpenACC as "a user-driven
directive-based performance-portable parallel
programming model designed for scientists and engineers
interested in porting their codes to a wide variety of
heterogeneous HPC hardware platforms and architectures
with significantly less programming effort than required
with a low-level model." [6]. The latest version of
OpenACC was released in November 2018. OpenACC has
several features and advantages compared with other
heterogeneous parallel programming models, including:
• Portability: Unlike a programming model like CUDA

that works only on NVIDIA GPU accelerators,
OpenACC is portable across different types of GPU
accelerators, hardware, platforms, and operating
systems [6], [18].

• OpenACC is compatible with various compilers and
gives flexibility to the compiler implementations.

• It is a high-level programming model, which makes
targeting accelerators easier by hiding low-level
details. For generation of low-level GPU programs,
OpenACC relies on the compiler using the
programmer codes.

• Better performance with less programming effort,
which gives the ability to add GPU codes to existing
programs with less effort. That will lead to reducing
the programmer workload and improvement in
programmer productivity and achieving better
performance than OpenCL and CUDA [19].

• OpenACC allows users to specify three levels of
parallelism by using three clauses:

• Gangs: Coarse-grained Parallelism
• Workers: Medium-grained Parallelism
• Vector: Fine-grained Parallelism

OpenACC has both a strong and significant impact on the
HPC society as well as other scientific communities.
Jeffrey Vetter (HPC luminary and Joint Professor, Georgia
Institute of Technology) wrote: “OpenACC represents a
major development for the scientific community.
Programming models for open science by definition need
to be flexible, open and portable across multiple platforms.
OpenACC is well-designed to fill this need” [6].

3. Overview of Some Common Run-Time
Errors

There are several types of run-time errors that happen after
compilation and cannot be detected by the compilers,
which cause the program not to meet the user requirements.
These errors even sometimes have similar names, but they
are different in the reasons or causes. For example,
deadlock in MPI has different causes and behaviors
compared with OpenACC deadlocks. Also, run-time errors
in the dual-programming model are different. Also, some
run-time errors happen specifically in a particular
programming model. By investigating the documents of
the latest version of OpenACC 2.7 [20], we found that
OpenACC has a repetitive run-time error that if a variable
is not present on the current device, this will lead to a run-
time error. This case happened in a non-shared memory
device for different OpenACC clauses.

Similarly, if the data is not present, a run-time error is
issued in some routines. Furthermore, detecting such errors
is not easy, and to detect them in applications developed
by dual-programming model is even more complicated. In
the following, some popular run-time errors will be
displayed and discussed in general with some examples.

3.1 Deadlocks

A deadlock is a situation in which a program is in a waiting
state for an indefinite amount of time. In other words, one
or more threads in a group are blocked forever without
consuming CPU cycles. The deadlock has two types:
resource and communication deadlock. Resource deadlock
is a situation in which a thread waits for another thread
resource to proceed. Similarly, communication deadlock
occurs when some threads wait for some messages, but
they never receive these messages [21], [22]. The reasons
that cause deadlock are different depending on the used
programming models, system nature, and behavior. Once
the deadlock occurs it is not difficult to detect, but in some
cases, it is difficult to detect them beforehand, as they

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

179

occur under certain interleaving [23]. Finally, deadlocks in
any system could be a potential deadlock that may or may
not happen based on the execution environment and
sequence, or real deadlocks, which definitely will occur.

3.2 Livelocks

Livelock is similar to deadlock, except that a livelock is a
situation that arises when two or more processes change
their state continuously in response to changes in other
processes. In other words, it occurs when one or more
threads continuously change their states (and hence
consume CPU cycles) in response to changes in states of
the other threads without doing any useful work. As a
result, none of the processes will make any progress and
will not be completed [24], [25]. In a livelock, the thread
might not be blocked forever, and it is hard to distinguish
between livelock and a long-running process. Also,
livelock can lead to performance and power consumption
problems because of the useless busy-wait cycles.

3.3 Race Condition

A race condition is a situation that might occur due to
executing processes by multiple threads and where the
sequence of execution for the threads makes a difference in
the result of the concurrent execution. The execution
timing and order will affect the program's correctness [26].
Some researchers do not differentiate between data race
and race condition, which will be explained in the data
race definition.

3.4 Data Race

A data race happened when there are two memory accesses
in the program both perform concurrently in two threads or
target the same location [27]. For example, at least one
read and one write may happen at the same memory
location at the same time. The race condition is a data race
that causes an error. However, the data race does not
always lead to a race condition.

3.5 Mismatching

Mismatching is a situation that happens in arguments with
one call, which can be detected locally and are sometimes
even detected by the compiler. Mismatching can take
several forms, including wrong type or number of
argument, arguments involving more than one call, or in
collective calls. Developers need to pay special attention
when comparing matched pairs of derived data types.

4. Overview of Testing Techniques

There are many techniques used in software testing, which
include static and dynamic as well as other techniques.
Static testing is the process of analyzing the source code
before the compilation phase for detecting static errors. It
handles the application source code only without launching
it, which gives us the ability to analyze the code in detail
and have full coverage. By contrast, the static analysis of
parallel application is complicated due to unpredicted
program behavior, which is parallel application nature [29],
[30]. However, it will be very useful to use static analysis
for detecting potential run-time errors and some real run-
time errors that are obvious from the source code, such as
some types of deadlocks and race condition.

Dynamic testing is the process of analyzing the system
during run-time for detecting dynamic (run-time) errors. It
demands launching programs that are sensitive to the
execution environment, and slow down the speed of
application execution. It is useful to use dynamic analysis
in a parallel application, which affords the flexibility to
monitor and detect each thread of the parallel application.
However, it is difficult to cover the whole parallel code
with tests, and after correcting the errors, it cannot be
confirmed whether errors are corrected or hidden.

Symbolic testing [31], [32] is a technique that allows the
automatic exploration of paths in a program. It works by
deriving a general representation of the program behavior
from the program code. The concrete inputs of the
program unit will be replaced with symbolic values, and
the execution of the program will be simulated so that
instead of values, all variables hold symbolic expressions.
Also, symbolic execution can analyze programs to
determine what inputs cause each part of the program to be
executed. This technique has been used to detect run-time
errors and creating testing tools. However, this technique
has several limitations such as path explosion, which
makes it impossible to scale with large programs.

Hybrid testing is combining more than one of the
mentioned testing techniques, which gives the ability to
cover a wider range of run-time errors. This combination
takes the advantages of two testing techniques, reduces
disadvantages, and reduces the testing time. The
combination of static and dynamic testing is the most used
hybrid testing techniques to detect run-time errors in
parallel systems using programming models. Finally, it is
the run-time error type and behavior that determine which
techniques will be used because some errors cannot be
detected by static analysis, and others cannot be detected
by dynamic techniques.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

180

5. Testing Techniques Classifications

In our study, 58 different testing tools and techniques have
been reviewed, varying from open-source to commercial
tools. Including different types of testing techniques,
targeted programming models discovered run-time errors
for different purposes when discovering the errors or
tracking the cause of these errors (debuggers). Only the
parallel systems-related testing has been included in our
study, where we are surveying the parallel systems testing
techniques. Also, we focus on the testing techniques used
to detect run-time errors that occur on parallel systems,
which include the explained run-time errors in Section 3.
We chose the tools and techniques in our study from more
than 100 testing tools and techniques. We eliminate any
tool or technique that does not meet our objectives. We
aim to survey testing tools and techniques that detect run-
time errors in parallel systems that use programming
models.

Integrating more than one programming model can
enhance parallelism, performance, and the ability to work
with heterogeneous platforms. Also, this combination will
help in moving to Exascale systems, which need more
powerful programming models that support massively
parallel supercomputing systems. Hybrid programming
models can be classified as:

• Single-Level Programming Model, which includes
an individual programming model such as MPI,
OpenMP, or CUDA.

• Dual-Level Programming Model, which is a
combination of two programming models working
together to enhance parallelism such as MPI +
OpenMP and MPI + CUDA. Many types of research
refer to this level of parallelism by MPI + X.

• Tri-Level Programming Model, which combines
three different programming models to work together
as a hybrid programming model. Some studies refer to
this level with MPI + X + Y.

As a result, we classify the used testing techniques into
four categories, which include Static, Dynamic, Hybrid,
and Symbolic testing techniques. Also, we classify these
techniques into two subcategories to determine the targeted
programming model level, where they are single- or dual-
level programming models. The following subsections will
discuss our classifications.

5.1 Static Testing Techniques

Six testing tools have been classified as testing tools that
use a static testing technique. These tools have used this
technique to detect run-time errors in the parallel program
that use programming models.

1. Single-Level Programming Model Testing Techniques

The testing tools [33], [34], and GPUVerify [35] have used
the static technique to detect data race in CUDA, OpenCL,
and OpenMP programming models individually. For
OpenMP, the testing tools [36], [37], ompVerify [38] have
been used to detect data race. Finally, MPI-Checker [39]
used static techniques to detect MPI mismatching errors.

2. Dual-Level Programming Model Testing Techniques

In the reviewed testing tools, there are no testing tools that
used static testing techniques for detecting run-time errors
in the dual-level programming model.

5.2 Dynamic Testing Techniques

In our survey, there are 34 testing tools that use dynamic
testing techniques for detecting run-time errors in parallel
programs. These tools will be classified based on the
targeted programming models as follows:

1. Single-Level Programming Model Testing Techniques

Regarding detecting errors in the MPI programming model,
14 testing tools use a dynamic technique that targets MPI.
The testing tools MEMCHECKER [7], MUST [40], [41],
STAT [42], Nasty-MPI [43], and Intel Message Checker
[44] have been used to detect MPI run-time errors
including deadlocks, data race, and mismatching. For
detecting deadlocks and mismatching, the following tools
are used, including MPI-CHECK [45], GEM [46], and
Umpire [24]. The tools PDT [47], MAD [48], and [49] are
used to detect deadlocks and race conditions in MPI. For
deadlocks, MOPPER [50] and ISP [51] are used. Finally,
MPIRace-Check [52] has been used to detect race
condition in MPI.

For OpenMP run-time error detection, there are several
tools such as Intel Thread Checker [53] and Sun Thread
Analyzer [53] that detect deadlock and data races. Also,
VORD [54] and [55] are used to detect the data race in
OpenMP. RTED [56] is using dynamic testing to detect
deadlocks and race conditions in MPI and OpenMP
individually. Also, NR [57], RaceStand [58], eNR
Labeling [59], and [60] are for OpenMP data race
detection.

For detecting data race in CUDA using dynamic
techniques, the testing tool in [61] is used. Regarding data
race detection, there are several testing tools for different
programming models including; GUARD [62], RaceTM
[63] and KUDA [64] for CUDA. For detecting errors in
heterogeneous programming model by using dynamic

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

181

testing, WEFT [65] is used to detect deadlocks and race
conditions.

Finally, deadlocks detection in parallel programs using
UNDEAD [22], Sherlock [66], and ConLock [23], and
livelock detection can be seen in CBuster.

2. Dual-Level Programming Model Testing Techniques

For testing the hybrid MPI/OpenMP programming model
using dynamic testing, the testing tools MARMOT [67]
and [68] have been used for detecting deadlocks, race
conditions, and mismatching.

5.3 Symbolic Testing Techniques

In our study, there are six testing tools that use symbolic
techniques for detecting run-time errors for both single
and- dual-level programming models. These tools will be
classified by their programming models as the following:

1. Single-Level Programming Model Testing Techniques

KLEE-CL [31] used the symbolic technique for detecting
data race in the OpenCL programming model. Also, this
technique has been used in OAT [69] for detecting
deadlocks and data race in OpenMP. The testing tools
GKLEE [70], GKLEEP [71], and PUG [72] was used for
testing CUDA programming model to detect deadlocks,
data races, and race conditions using symbolic techniques.

2. Dual-Level Programming Model Testing Techniques

In the reviewed testing tools, there are no testing tools that
used symbolic techniques for detecting run-time errors in
the dual-level programming model.

5.4 Hybrid Testing Techniques

Several reviewed testing tools used hybrid testing
techniques, which combine static/dynamic testing or
combine static/symbolic testing. In our survey, seven tools
used hybrid testing techniques. These tools will be
classified into the following subsections by their
programming model levels.

1. Single-Level Programming Model Testing Techniques

In this subcategory, five testing tools targeted single-level
programming models that include OpenMP, CUDA, and
OpenCL. ARCHER [73] and Dragon [74] are testing tools
that use hybrid testing techniques to detect data race in
OpenMP programming model. GMRace [75], GRace [76],
[77], and SESA [78] use hybrid testing techniques to

detect data race in the CUDA programming model. Finally,
GRace is also used to test the OpenCL programming
model for detecting data race. All the previous testing tools
used static/dynamic hybrid testing techniques to detect run-
time errors except SESA, which used static/symbolic
hybrid testing techniques.

2. Dual-Level Programming Model Testing Techniques

Two testing tools used static/dynamic hybrid testing
techniques to detect run-time errors in the MPI/OpenMP
dual programming model. These tools are PARCOACH
[79] and [80], which used the hybrid model to detect
deadlocks and other run-time errors resulting from the dual
programming model. Even though combining two
programming model is beneficial, it creates complex run-
time errors that are difficult to detect and determine.

It is noticeable that five testing tools are classified as
debugging because we cannot determine the testing
techniques that have been used in those tools. These tools
are AutomaDeD [81], which is a tool that detects MPI
errors by comparing similarities and dissimilarities
between tasks. The second tool is ALLINEA DDT [82],
which is a commercial debugger that supports MPI,
OpenMP, and Pthreads. The third is TotalView [83],
which supports MPI, Pthreads, OpenMP, and CUDA.
Finally, PDT [47] and MPVisualizer [84] are detecting
deadlocks and race conditions in MPI. We note that these
five are debuggers that do not help to test or detect errors,
but can be used to find out the reasons behind errors. As a
result, we could not classify them based on the testing
techniques.

The following Table 1 displays the number of testing
techniques used for each programming model in the
reviewed testing tools. We notice that the dynamic
techniques have been mostly used to test MPI and
OpenMP for detecting run-time errors. Symbolic testing
has been used to detect run-time errors in CUDA. However,
OpenACC has not been targeted to be tested by any
reviewed testing tools.

Table 1: Relationship between the Used Testing Techniques and the
Targeted Programming Models

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

182

To summarize our classifications of the reviewed testing
tools, the following three figures will be displayed. Firstly,
Figure 1 displays the reviewed testing tools classified by
the used testing techniques, showing that the dynamic
testing techniques have been used more than other
techniques to detect run-time errors.

Fig. 1 Testing Tools Classified by Used Testing Techniques

Then, Figure 2 shows the testing tools for testing targeted
programming models. It is notable that MPI, OpenMP, and
CUDA have been tested in several testing tools, which are
considered the most targeted programming models in our
survey. However, OpenACC has not been targeted as a
tested programming model.

Fig. 2 Testing Tools Classified by Targeted Programming Models

Finally, several run-time errors have been detected in the
reviewed testing tools. Figure 3 shows a summary of these
errors. Deadlocks and data races are the most detected run-
time errors in the reviewed testing tools.

6. Discussion

As we reviewed and presented in the previous section,
there are several aspects that need to be discussed and
taken into consideration. Firstly, we only reviewed testing
tools that target parallel systems, especially systems that

use programming models. Our study tries to
comprehensively review tools that test parallel systems to
detect run-time errors because of its unpredictable
behavior and the causes behind them to occur. Usually,
compile-time errors can be detected by compilers and
reported to developers to be corrected. Furthermore,
detecting run-time errors in parallel systems is even more
complicated because of the different behaviors of the
programming models and their interaction with different
programming models.

Fig. 3 Testing Tools Classified by Detected Run-Time Errors

Secondly, we classify the reviewed testing tools by the
testing techniques used to detect run-time errors. This
classification makes it easy to compare different
techniques and discovers their features in finding run-time
errors and their limitations as well. In this classification,
we also classify them into subcategories based on the level
of programming models used in the tested parallel systems.
We focus on the single- and dual-level programming
models because they are widely used in developing parallel
systems for different purposes compared to tri-level
programming models. Also, the lack of testing tools that
target tri-level programming models makes it hard to
review and classify the reviewed testing tools into three
subcategories. As a result, we classified our reviewed
testing tools into what we did in Section 3.

Finally, we noticed that dynamic testing techniques had
been used mainly for detecting run-time errors for different
programming models. Single-level programming models
have been targeted to be tested, especially MPI and
OpenMP because of their wide use and their history in
programming models. Regarding heterogeneous
programming models, CUDA is the most targeted
programming model in the reviewed testing tools, while
OpenACC has not been targeted in any testing tools,
despite their benefits and trending use. We believe that a
lot of work needs to be done in creating and developing
testing tools for massively parallel systems, especially

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

183

heterogeneous parallel systems, which will be needed
when the Exascale systems are applied in different fields.

7. Towards Exascale Testing

Over the next few years, an extreme level of computing
systems will be feasible by 2022, which leads to building
more powerful supercomputers [85]. Exascale systems are
expected to make a revolution in computer science and
engineering by providing at least one exaFLOPS, which
are 1018 floating-point operations per second [86]. In the
recent top 500 supercomputers list, SUMMIT is the top
supercomputer in the world by 200 pteaFOLPS [1], [87].
SUMMIT is an IBM-built supercomputer running at the
Department of Energy’s (DOE) Oak Ridge National
Laboratory (ORNL), USA. SUMMIT has 4,608 nodes,
each one equipped with two 22-core IBM POWER9™
CPUs, and six NVIDIA Tesla V100 GPUs. The nodes
are linked together with a dual-rail Mellanox EDR 100G
InfiniBand interconnect. Also, SUMMIT processes more
than ten petabytes of memory, paired with fast high-
bandwidth pathways for more efficiency in data movement
[87]. They claim that SUMMIT will take one step to
achieving Exascale computing by 2021[1].

As we noticed, high-performance computing has become
increasingly important, and Exascale supercomputers will
be feasible soon. Therefore, building massively parallel
supercomputing systems based on heterogeneous
architecture is even more important to increase parallelism.
The majority of the top 500 supercomputers in the world
use GPUs to enhance performance and parallelism. For
example, in the recent list, more than 78% of the top
supercomputers used NVIDIA accelerators, and 48% of
them used NVIDIA Tesla P100 [88].

The movement towards Exascale can be achieved by
hardware as well as software, as we noted in the previous
paragraph. The integration between more than one
programming models, which is a dual-level or tri-level
programming model, will help to achieve Exascale
computing. Furthermore, this improvement in computing
systems comes with cost and difficulties, regarding
building massively parallel systems, reducing energy
consumption as well as testing these systems. To create
massively parallel systems more than one programming
models are needed, especially heterogeneous programming
models to support the increasing use of GPUs in
supercomputers, as well as to benefit from their features.
For some systems, hybrid dual- or even tri-level
programming models will be benefited and useful.
However, testing parallel applications is not an easy task
because the natures of errors in parallel systems are hard to
detect due to the non-determined and unexpected behavior

of the parallel application. Even after detecting the errors
and modifying the source code, it is difficult to determine
whether the errors have been corrected or hidden.
Integrating different programming models inside the same
application make it even more difficult to test. Despite the
available testing tools that detect static and dynamic errors,
there is still a lack of such a testing tool that detects run-
time errors in parallel systems implemented in the
heterogeneous programming model.

8. Conclusion

Testing parallel systems that use heterogeneous
programming models has become increasingly important,
and the movement to Exascale systems makes it even more
important to avoid errors that could affect the system
requirements, not only errors that can be detected by
compilers, but also more critical errors that occur after
compilation and cannot be detected by the compilers. As a
result, testing tools have been built, and different testing
techniques have been used to detect static and run-time
errors in parallel systems. These tools and techniques are
targeting systems built by several types and levels of
programming models.

We studied more than 50 testing tools and classified them
according to the used testing techniques, the targeted
programming models, and the run-time errors. We tried to
discover the limitations and open areas for the researchers
in testing parallel systems, which can yield the opportunity
to focus on those areas. Before that, we gave an overview
of the testing techniques, popular programming models
and their different levels, and some common run-time
errors that affect parallel systems.

There is an increasing importance of parallel systems in the
Exascale era; but there is a shortfall in testing those
systems, especially parallel systems that use heterogeneous
programming models including high- and low-level
programming models. Despite efforts made to create and
propose software testing tools for parallel application,
there is still a lot to be done primarily for GPU-related
programming models and for dual- and tri-level
programming models for heterogeneous systems.
Heterogeneous systems can be hybrid CPUs/GPUs
architectures or different architectures of GPUs. We noted
that OpenACC has several advantages and benefits and has
been used widely in the past few years, but it has not
targeted any testing tools covered in our study. Finally, to
the best of our knowledge, there is no parallel testing tool
built to test applications programmed by using the dual-
programming model MPI + OpenACC or any tri-level
programming model.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

184

To conclude, there has been good effort in testing parallel
systems to detect run-time errors, but still not enough,
especially for systems using heterogeneous programming
models, as well as dual- and tri-level programming models.
The integration of different programming models in the
same system will need new testing techniques to detect
run-time errors in heterogeneous parallel systems, which
will be addressed in our future work. We believe that to
achieve good systems that can be used in Exascale
supercomputers, we should focus on testing those systems
because of their massively parallel natures as well as their
huge size, which add more difficulties and issues. Also,
these testing tools should integrate more than one testing
techniques and work in parallel to detect run-time errors by
creating testing threads, depending on the number of
application threads. As a result, using parallel hybrid
techniques will enhance testing time and cover a wide
range of run-time errors.

Acknowledgments

This project was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah,
under grant No. (DG-015-611-1440). The authors,
therefore, gratefully acknowledge the DSR technical and
financial support.

References
[1] M. McCorkle, “ORNL Launches Summit Supercomputer,” The

U.S. Department of Energy’s Oak Ridge National Laboratory,
2018. [Online]. Available: https://www.ornl.gov/news/ornl-
launches-summit-supercomputer.

[2] Message Passing Interface Forum, “MPI Forum,” 2017. [Online].
Available: http://mpi-forum.org/docs/.

[3] OpenMP Architecture Review Board, “About OpenMP,” OpenMP
ARB Corporation, 2018. [Online]. Available:
https://www.openmp.org/about/about-us/.

[4] NVIDIA Corporation, “About CUDA,” 2015. [Online]. Available:
https://developer.nvidia.com/about-cuda.

[5] Khronos Group, “About OpenCL,” Khronos Group, 2017.
[Online]. Available: https://www.khronos.org/opencl/.

[6] OpenACC-standard.org, “About OpenACC,” OpenACC
Organization, 2017. [Online]. Available:
https://www.openacc.org/about.

[7] The Open MPI Organization, “Open MPI: Open Source High
Performance Computing,” 2018. [Online]. Available:
https://www.open-mpi.org/.

[8] MPICH Organization, “MPICH,” 2018. [Online]. Available:
http://www.mpich.org/.

[9] IBM Systems, “IBM Spectrum MPI,” 2018. [Online]. Available:
https://www.ibm.com/us-en/marketplace/spectrum-mpi.

[10] Intel Developer Zone, “Intel MPI Library,” 2018. [Online].
Available: https://software.intel.com/en-us/intel-mpi-library.

[11] E. Gabriel et al., “Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation,” pp. 97–104, 2004.

[12] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:Portable
Parallel Programming with the Message-Passing Interface. 2014.

[13] B. Barney, “OpenMP,” Lawrence Livermore National Laboratory,

2018. [Online]. Available:
https://computing.llnl.gov/tutorials/openMP/#Introduction.

[14] M. Harris, “CUDA,” GPGPU.org, 2018. [Online]. Available:
http://gpgpu.org/developer/cuda.

[15] Khronos OpenCL Working Group, “The OpenCLTM
Specification,” 2018.

[16] Khronos Group, “OpenCL,” NVIDIA Corporation, 2010. [Online].
Available: https://developer.nvidia.com/opencl.

[17] SC11, “the International Conference for High Performance
Computing, Networking, Storage and Analysis,” 2011. [Online].
Available: http://sc11.supercomputing.org/.

[18] A. Fu, D. Lin, and R. Miller, “Introduction to OpenACC,” 2016.
[19] J. A. Herdman, W. P. Gaudin, O. Perks, D. A. Beckingsale, A. C.

Mallinson, and S. A. Jarvis, “Achieving portability and
performance through OpenACC,” Proc. WACCPD 2014 1st Work.
Accel. Program. Using Dir. - Held Conjunction with SC 2014 Int.
Conf. High Perform. Comput. Networking, Storage Anal., no. July
2013, pp. 19–26, 2015.

[20] OpenACC Standards, “The OpenACC Application Programming
Interface version 2.7,” 2018.

[21] K. Shankari and N. G. B. Amma, “Clasp: Detecting potential
deadlocks and its removal by iterative method,” in IC-GET 2015 -
Proceedings of 2015 Online International Conference on Green
Engineering and Technologies, 2016.

[22] J. Zhou, S. Silvestro, H. Liu, Y. Cai, and T. Liu, “UNDEAD :
Detecting and Preventing Deadlocks in Production Software,” in
Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, 2017, pp. 729–740.

[23] Y. Cai and Q. Lu, “Dynamic Testing for Deadlocks via
Constraints,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 825–
842, 2016.

[24] M. K. Ganai, “Dynamic Livelock Analysis of Multi-threaded
Programs,” in Runtime Verification, 2013, pp. 3–18.

[25] Y. Lin and S. S. Kulkarni, “Automatic Repair for Multi-threaded
Programs with Deadlock / Livelock using Maximum
Satisfiability,” ISSTA Int. Symp. Softw. Test. Anal., pp. 237–247,
2014.

[26] J. F. Münchhalfen, T. Hilbrich, J. Protze, C. Terboven, and M. S.
Müller, “Classification of common errors in OpenMP
applications,” Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8766, pp. 58–
72, 2014.

[27] M. Cao, “Efficient , Practical Dynamic Program Analyses for
Concurrency Correctness,” The Ohio State University, 2017.

[28] B. Krammer and M. M. Resch, “Runtime Checking of MPI
Applications with MARMOT,” in Performance Computing, 2006,
vol. 33, pp. 1–8.

[29] A. Karpov and E. Ryzhkov, “Adaptation of the technology of the
static code analyzer for developing parallel programs,” Program
Verification Systems, 2018. [Online]. Available:
https://www.viva64.com/en/a/0019/.

[30] A. A. Sawant, P. H. Bari, and P. . Chawan, “Software Testing
Techniques and Strategies,” J. Eng. Res. Appl., vol. 2, no. 3, pp.
980–986, 2012.

[31] P. Collingbourne, C. Cadar, and P. H. J. Kelly, “Symbolic Testing
of OpenCL Code,” in Hardware and Software: Verification and
Testing, 2012, pp. 203–218.

[32] C. Cadar and K. Sen, “Symbolic execution for software testing,”
Commun. ACM, vol. 56, no. 2, p. 82, Feb. 2013.

[33] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, “An Extended
Polyhedral Model for SPMD Programs and Its Use in Static Data
Race Detection,” 2017, pp. 106–120.

[34] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, “An Extended
Polyhedral Model for SPMD Programs and Its Use in Static Data
Race Detection,” in 23rd International Workshop on Languages
and Compilers for Parallel Computing, 2016, vol. 9519, pp. 106–
120.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

185

[35] E. Bardsley et al., “Engineering a Static Verification Tool for
GPU Kernels,” in International Conference on Computer Aided
Verification, 2014, pp. 226–242.

[36] R. Nakade, E. Mercer, P. Aldous, and J. McCarthy, “Model-
Checking Task Parallel Programs for Data-Race,” in NASA
Formal Methods Symposium NFM 2008, 2018, pp. 367–382.

[37] Y. Zhang, E. Duesterwald, and G. R. Gao, “Concurrency Analysis
for Shared Memory Programs with Textually Unaligned Barriers,”
in Languages and Compilers for Parallel Computing, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 95–109.

[38] V. Basupalli et al., “ompVerify: Polyhedral Analysis for the
OpenMP Programmer,” in International Workshop on OpenMP
IWOMP 2011, 2011, pp. 37–53.

[39] A. Droste, M. Kuhn, and T. Ludwig, “MPI-checker,” in
Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC - LLVM ’15, 2015, pp. 1–10.

[40] RWTH Aachen University, “MUST: MPI Runtime Error
Detection Tool,” 2018.

[41] T. Hilbrich, M. Schulz, B. R. de Supinski, and M. S. Müller,
“MUST: A Scalable Approach to Runtime Error Detection in MPI
Programs,” in Tools for High Performance Computing 2009,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 53–66.

[42] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P.
Miller, and M. Schulz, “Stack Trace Analysis for Large Scale
Debugging,” in 2007 IEEE International Parallel and Distributed
Processing Symposium, 2007, pp. 1–10.

[43] R. Kowalewski and K. Fürlinger, “Nasty-MPI: Debugging
Synchronization Errors in MPI-3 One-Sided Applications,” in
European Conference on Parallel Processing Euro-Par 2016,
2016, pp. 51–62.

[44] V. Samofalov, V. Krukov, B. Kuhn, S. Zheltov, A. Konovalov,
and J. DeSouza, “Automated Correctness Analysis of MPI
Programs with Intel Message Checker,” in Proceedings of the
International Conference ParCo 2005, 2005, pp. 901–908.

[45] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and Y. Zou,
“MPI-CHECK: a Tool for Checking Fortran 90 MPI Programs,”
Concurr. Comput. Pract. Exp., vol. 15, no. 2, pp. 93–100, 2003.

[46] A. Humphrey, C. Derrick, G. Gopalakrishnan, and B. Tibbitts,
“GEM: Graphical Explorer of MPI Programs,” in 2010 39th
International Conference on Parallel Processing Workshops,
2010, pp. 161–168.

[47] C. Clemencon, J. Fritscher, and R. Ruhl, “Visualization,
Execution Control and Replay of Massively Parallel Programs
within Annai’s Debugging Tool,” in High-Performance
Computing Symposium (HPCS’95), 1995, pp. 393–404.

[48] D. Kranzlmueller, C. Schaubschlaeger, and J. Volkert, “A Brief
Overview of the MAD Debugging Activities,” in The Fourth
International Workshop on Automated Debugging (AADEBUG
2000), 2000.

[49] A. T. Do-Mai, T. D. Diep, and N. Thoai, “Race condition and
deadlock detection for large-scale applications,” in Proceedings -
15th International Symposium on Parallel and Distributed
Computing, ISPDC 2016, 2017, pp. 319–326.

[50] V. Forejt, S. Joshi, D. Kroening, G. Narayanaswamy, and S.
Sharma, “Precise Predictive Analysis for Discovering
Communication Deadlocks in MPI Programs,” ACM Trans.
Program. Lang. Syst., vol. 39, no. 4, pp. 1–27, Aug. 2017.

[51] G. Gopalakrishnan, R. M. Kirby, S. Vakkalanka, A. Vo, and Y.
Yang, “ISP (In-situ Partial Order): a dynamic verifier for MPI
Programs,” University of Utah, School of Computing, 2009.
[Online]. Available: http://formalverification.cs.utah.edu/ISP-
release/.

[52] M.-Y. Park, S. J. Shim, Y.-K. Jun, and H.-R. Park, “MPIRace-
Check: Detection of Message Races in MPI Programs,” in
International Conference on Grid and Pervasive Computing GPC
2007, 2007, pp. 322–333.

[53] C. Terboven, “Comparing Intel Thread Checker and Sun Thread

Analyzer,” in Parallel Computing: Architectures, Algorithms and
Applications, 2007, vol. 38, pp. 669–676.

[54] Y.-J. Kim, S. Song, and Y.-K. Jun, “VORD: A Versatile On-the-
fly Race Detection Tool in OpenMP Programs,” Int. J. Parallel
Program., vol. 42, no. 6, pp. 900–930, Dec. 2014.

[55] Y.-J. Kim, M.-H. Kang, O.-K. Ha, and Y.-K. Jun, “Efficient Race
Verification for Debugging Programs with OpenMP Directives,”
in International Conference on Parallel Computing Technologies
PaCT 2007, 2007, pp. 230–239.

[56] G. R. Luecke et al., “The Importance of Run-Time Error
Detection,” in Tools for High Performance Computing 2009,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 145–
155.

[57] M.-H. Kang, O.-K. Ha, S.-W. Jun, and Y.-K. Jun, “A Tool for
Detecting First Races in OpenMP Programs,” in International
Conference on Parallel Computing Technologies PaCT 2009,
2009, pp. 299–303.

[58] M. Metzger, X. Tian, and W. Tedeschi, “User-Guided Dynamic
Data Race Detection,” Int. J. Parallel Program., vol. 43, no. 2, pp.
159–179, Apr. 2015.

[59] O.-K. Ha, S.-S. Kim, and Y.-K. Jun, “Efficient Thread Labeling
for Monitoring Programs with Nested Parallelism,” in
International Conference on Future Generation Communication
and Networking FGCN 2010, 2010, pp. 227–237.

[60] E.-K. Ryu, K.-S. Ha, and K.-Y. Yoo, “A Practical Method for On-
the-Fly Data Race Detection,” in International Workshop on
Applied Parallel Computing PARA 2002, 2002, pp. 264–273.

[61] M. Boyer, K. Skadron, and W. Weimer, “Automated Dynamic
Analysis of CUDA Programs,” in Third Workshop on Software
Tools for MultiCore Systems (STMCS), 2008.

[62] V. Mekkat, A. Holey, and A. Zhai, “Accelerating Data Race
Detection Utilizing On-Chip Data-Parallel Cores,” in
International Conference on Runtime Verification, 2013, pp.
201–218.

[63] S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Rotteler,
“Using hardware transactional memory for data race detection,” in
2009 IEEE International Symposium on Parallel & Distributed
Processing, 2009, pp. 1–11.

[64] C. Bekar, T. Elmas, S. Okur, and S. Tasiran, “KUDA: GPU
accelerated split race checker,” in Workshop on Determinism and
Correctness in Parallel Programming (WoDet), 2012.

[65] R. Sharma, M. Bauer, and A. Aiken, “Verification of producer-
consumer synchronization in GPU programs,” ACM SIGPLAN
Not., vol. 50, no. 6, pp. 88–98, 2015.

[66] M. Eslamimehr and J. Palsberg, “Sherlock: scalable deadlock
detection for concurrent programs,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of
Software Engineering - FSE 2014, 2014, pp. 353–365.

[67] B. Krammer, T. Hilbrich, V. Himmler, B. Czink, K. Dichev, and
M. S. Müller, “MPI Correctness Checking with Marmot,” in Tools
for High Performance Computing, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 61–78.

[68] T. Hilbrich, M. S. Müller, and B. Krammer, “MPI Correctness
Checking for OpenMP/MPI Applications,” Int. J. Parallel
Program., vol. 37, no. 3, pp. 277–291, 2009.

[69] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z. Yang,
“Symbolic Analysis of Concurrency Errors in OpenMP
Programs,” in 2013 42nd International Conference on Parallel
Processing, 2013, pp. 510–516.

[70] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.
Rajan, “GKLEE: Concolic Verification and Test Generation for
GPUs Guodong,” in Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming -
PPoPP ’12, 2012, p. 215.

[71] K. Kojima, A. Imanishi, and A. Igarashi, “Automated Verification
of Functional Correctness of Race-Free GPU Programs,” J. Autom.
Reason., vol. 60, no. 3, pp. 279–298, Mar. 2018.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

186

[72] G. Li and G. Gopalakrishnan, “Scalable SMT-based verification of
GPU kernel functions,” in Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software
engineering - FSE ’10, 2010, p. 187.

[73] Lawrence Livermore National Laboratory, University of Utah, and
RWTH Aachen University, “ARCHER,” GitHub, 2018. [Online].
Available: https://github.com/PRUNERS/archer.

[74] O. Hernandez, C. Liao, and B. Chapman, “Dragon: A Static and
Dynamic Tool for OpenMP,” in International Workshop on
OpenMP Applications and Tools WOMPAT 2004, 2005, pp. 53–
66.

[75] Mai Zheng, V. T. Ravi, Feng Qin, and G. Agrawal, “GMRace:
Detecting Data Races in GPU Programs via a Low-Overhead
Scheme,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp.
104–115, Jan. 2014.

[76] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal, “GRace: a low-
overhead mechanism for detecting data races in GPU programs,”
ACM SIGPLAN Not., vol. 46, no. 8, p. 135, Sep. 2011.

[77] Z. Dai, Z. Zhang, H. Wang, Y. Li, and W. Zhang, “Parallelized
Race Detection Based on GPU Architecture,” in Advanced
Computer Architecture. Communications in Computer and
Information Science, Springer, Berlin, Heidelberg, 2014, pp. 113–
127.

[78] P. Li, G. Li, and G. Gopalakrishnan, “Practical Symbolic Race
Checking of GPU Programs,” in SC14: International Conference
for High Performance Computing, Networking, Storage and
Analysis, 2014, pp. 179–190.

[79] E. Saillard, P. Carribault, and D. Barthou, “PARCOACH:
Combining static and dynamic validation of MPI collective
communications,” Int. J. High Perform. Comput. Appl., vol. 28,
no. 4, pp. 425–434, 2014.

[80] H. Ma, L. Wang, and K. Krishnamoorthy, “Detecting Thread-
Safety Violations in Hybrid OpenMP/MPI Programs,” in 2015
IEEE International Conference on Cluster Computing, 2015, pp.
460–463.

[81] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H.
Ahn, and M. Schulz, “AutomaDeD: Automata-based debugging
for dissimilar parallel tasks,” in IFIP International Conference on
Dependable Systems & Networks (DSN), 2010, pp. 231–240.

[82] Allinea Software Ltd, “ALLINEA DDT,” ARM HPC Tools, 2018.
[Online]. Available: https://www.arm.com/products/development-
tools/hpc-tools/cross-platform/forge/ddt.

[83] R. W. S. Inc., “TotalView for HPC,” 2018. [Online]. Available:
https://www.roguewave.com/products-services/totalview.

[84] A. P. Claudio, J. D. Cunha, and M. B. Carmo, “Monitoring and
debugging message passing applications with MPVisualizer,” in
Proceedings 8th Euromicro Workshop on Parallel and
Distributed Processing, 2000, pp. 376–382.

[85] J. Carretero et al., “Energy-efficient Algorithms for Ultrascale
Systems,” Supercomput. Front. Innov., vol. 2, no. 2, Apr. 2015.

[86] P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov,
“Technologies for exascale systems,” IBM J. Res. Dev., vol. 55, no.
5, p. 14:1-14:12, Sep. 2011.

[87] The U.S. Department of Energy’s Oak Ridge National Laboratory,
“SUMMIT,” 2018. [Online]. Available:
https://www.olcf.ornl.gov/olcf-resources/compute-
systems/summit/.

[88] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “TOP500
List - June 2018,” TOP 500 Organization, 2018. [Online].
Available: https://www.top500.org/lists/2018/06/.

	1. Single-Level Programming Model Testing Techniques
	2. Dual-Level Programming Model Testing Techniques
	1. Single-Level Programming Model Testing Techniques
	2. Dual-Level Programming Model Testing Techniques
	1. Single-Level Programming Model Testing Techniques
	2. Dual-Level Programming Model Testing Techniques
	1. Single-Level Programming Model Testing Techniques
	2. Dual-Level Programming Model Testing Techniques

