
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

201

Manuscript received April 5, 2019

Manuscript revised April 20, 2019

Learning Model Transformation Rules from Examples: The

GAILP System

Hamdi A. Al-Jamimi and Moataz A. Ahmed,

aljamimi@kfupm.edu.sa moataz@kfupm.edu.sa
King Fahd University of Petroleum and Minerals Dhahran, 31261, Kingdom of Saudi Arabia

Summary
Learning by examples refers to acquiring knowledge and

experience to generalize theory from existing examples. Inductive

logic programming (ILP) uses inductive inference to generate

hypotheses from examples given with a background knowledge.

ILP systems have been successfully applied in a number of real-

world domains. Several ILP systems were introduced in the

literature. Each system uses different search strategies and

heuristics; however, most systems employed a single predicate

learning approach, which is not applicable in many learning

problems. In this paper, we present GAILP, an ILP system that

overcomes this limitation. GAILP employs genetic algorithms to

discover various aspects of combinations to induce a set of

hypotheses. It appraises such combinations in different ways to

extract the most generic ones. The paper presents a thorough

evaluation of the foundational aspects of the learning capability of

GAILP. Two experiments were conducted to learn software model

transformation rules. Experimental results reveal that GAILP is

superior to a prominent ILP system, namely ALEPH, in different

aspects; and specifically in learning multi-predicates

incrementally. We used a case study of tasks from the automated

software engineering domain. The results obtained for the “class

packaging” task showed that the accuracy of GAILP was 0.88

comparing with 0.83 achieved by ALEPH. Similarly, for

“introducing Façade interface” task, the accuracy obtained using

GAILP and ALEPH were 0.90 and 0.66 respectively.

Key words:
Inductive logic programming; inductive learning; model

transformation; generalization.

1. Introduction

Learning by examples refers to acquiring knowledge

and experience to generalize theory from existing examples,

i.e., observations. The examples represent a significant

source of knowledge as they reflect the experience acquired

by experts and practitioners. Inductive learning is a model

building process where the data are analyzed to discover

hidden patterns and draw conclusions from the available

data. Thus, the induced patterns do not only describe the

given examples, but also similar situations. Accordingly,

they can be used to make estimation about unseen instances.

The inductive learning programs have substantial

applications in several science and engineering domains

[1]–[3]. ILP has been employed successfully in extracting

comprehensible and accurate rules in both scientific and

industrial problems such as bioinformatics [4], medicine

[5]–[7] as well as in other areas like web semantic [8], [9]

and software engineering [10], [11] . They can be utilized

in two basic modes: (i) as interactive tools for knowledge

acquisition from explicit examples, and (ii) as part of an

expert system in which other components provide the

required learning examples for the inductive program.

Inductive logic programming (ILP) uses inductive

inference to generate hypotheses from examples presented

with the background knowledge. ILP systems can

automatically construct first-order rules from background

knowledge and training examples. ILP is defined as a

subfield of machine learning (ML) which utilizes logic

programming to represent the examples, background

knowledge and induced hypotheses [12], [13]. Different

ILP systems have been introduced in the literature. They

differ in the way to learn from the given examples. However,

some limitations were reported about the current ILP

systems. For instance, ALEPH [14] and some other ILP

systems [15] require manual declarations of the modes in

advance to the learning process. Mode declaration means

identifying in details the predicates that are expected to

appear in the induced hypothesis. However, it is not

practical in all cases to predefine such modes [16].

The ILP learning problem can be viewed as a search

problem for rules that deduce the training examples [13].

ILP represents the given data and learning problem in first-

order logic. Input data for learning can be represented by

sets of positive, and negative examples in addition to

background knowledge describing the given examples. The

power of using the background knowledge is that it gives

the domain experts the opportunity to select and integrate

the appropriate knowledge that describes the given

examples and the undertaken domain. The general ILP

learning problem can be defined as follows:

Given a background knowledge B containing

definitions of predicates and a set of positive 𝐸+ and

negative 𝐸− examples where 𝐸 = 𝐸+⋃ 𝐸− .
Find a hypothesis H such that ∀𝑒+ ∈ 𝐸+ s.t. 𝐵 ∪
𝐻 ⊨ 𝑒 and ∀ 𝑒+ ∈ 𝐸− s.t. 𝐵 ∪ 𝐻 ⊭ 𝑒− i.e., the

background theory together with the hypothesis

entails all positive examples and none of the negative

examples.

mailto:aljamimi@kfupm.edu.sa
mailto:moataz@kfupm.edu.sa

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

202

The generalization induces a generic hypothesis that covers

the positive examples with sidestep the negative ones. That

is, ILP attempts to find a hypothesis which is consistent with

the positive and negative examples of given facts

(background knowledge). In ILP terminology, a rule covers

the set of facts if it is consistent with every positive and

negative example. H is a complete w.r.t. the background

knowledge and the given examples in case it covers all

instances in E+ set. In another way, H is defined as a

consistent w.r.t. the background knowledge and the given

examples if it does not cover any negative example. We

have recently presented a brief proposal of new genetic

algorithms (GA) based ILP system, namely GAILP, to

overcome some of the limitations of previous systems such

as mode declaration, and requirement of negative examples

[17]. In this paper, we discuss the technical details and the

validity of GAILP. We present the capability of GAILP and

compare its performance against the most prominent system

currently available in the literature namely ALEPH. The

results confirmed the incremental learning ability of GAILP

to detect the suitable order of predicates and to revise the

knowledge theory through utilizing the positive examples.

GAILP was also shown to support the learning of multiple

predicates. This ability distinguishes GAILP from other

systems which only consider an iterative procedure for

learning the rules one by one where the order is provided

manually.

This paper is organized as follows: Section 2 presents a

motivational example illustrating the main ILP concepts

and focusing on the limitation of most ILP systems. It also

presents the fundamental aspects of GAILP system. Section

3 introduces the experiment setup including the rules

generation methodology, the data and evaluation

measurements. The induction results are discussed in

Section 4, while Section 5 concludes the paper and gives

some directions for further research.

2. GAILP: the Challenge and Solution

2.1 A Motivational Example

In the following, we present a real-world scenario that

illustrates the concept of our model. Consider a task of

learning concepts of family relationships namely aunt(X, Y)

and uncle-in-law(X, Y). The former states that person X is

an aunt of person Y, while the latter states that person X is

uncle-in-law of person Y. The training examples consist of

positive examples and negative examples. Each positive

example is a fact of the predicate aunt or uncle-in-law that

is known to be true, while each negative example indicates

a pair of people are not connected by the aforementioned

relationships. This task will be used as a running example

throughout this paper. Fig. 1 shows an example of family

relations, while Table 1 demonstrates the representation of

the relations in first-order logic form. The background

knowledge includes parent, brother, and husband

relationships, which are represented by two predicates. The

output of an ILP algorithm could be the following “learnt”

rules expressed as a Horn clause.

aunt (X, Y) :- brother (Z, X), parent (Z, Y), female(X)

uncle-in-law(X,Y):- aunt(Z,Y), husband(X,Z)

The first declarative rule simply states that if a person Z is

a brother of X, Z is a parent of Y, and X is female, then X

is an aunt of Y. On the other hand, the second rule states

that if a person X is a husband of Z, and Z is an aunt of Y

then X is an uncle-in-law of Y.

Fig. 1 Example of family relations

Table 1. The first-order logic form of relationship concepts learning
problem

Background Facts

brother(sam,liz),brother(tony,eve)
husband(olin,amy),husband(tom,alice)
husband(sam,eve),husband(igor,liz)
female(liz), female(eve),
female(amy), female(alice),
female(bella), male(tom),
male(sam),…

Positive Examples

aunt(liz,john)
aunt (eve, colin)
uncle-in-low(igor,john)
uncle-in-law(sam,colin)

Negative Examples

aunt(liz,sam)
aunt (bella, tony)
uncle-in-low(olin,colin)
uncle-in-law(tom,igor)

In order to induce such rules, the ILP system generally

conducts separated runs where each is fed with positive and

negative examples as well as a set of background

knowledge facts describing the given examples. In each run,

the ILP engine constructs generic rules whose structure is

predefined. The rule’s head is specified using given

examples predicate and arity, while its body depends on the

given facts. Each set of similar predicates are generalized

independently, so the currently used ILP systems rely on the

user to identify dependency, feed the sets for generalization,

and to revise the knowledge facts as needed. In the shown

example “aunt” rule should be induced firstly to be able to

utilize the results in inducting the predicate “uncle-in-law”.

However, in some cases, the user is not aware of the

dependency between the sets. This motivated us to propose

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

203

a new ILP system that assists to automatically identify the

rule structure, discover the potential dependency and revise

the theory after each run.

2.2 GAILP System

GAILP is an ILP system that uses first-order logic as the

concept definition language and generates a set of definite

clauses. It employs a coverage algorithm in constructing

clause definition. To investigate all possible combinations

among the learning examples, GAILP employs two

approaches brute-force and genetic algorithms. It is able to

batch the background knowledge and all the positive

examples one time to induce all the rules. In contrast, the

existing systems at each run allow feeding only one set of

examples having the same type declaration. The

architecture of GAILP, depicted in Fig. 2, starts by taking

the background facts and the examples for learning. It then

constructs the ground bottom clauses (GBC) for all the

given examples. A random population is generated for

selecting the GBC groups to execute the substitution

process that ends up by a substituted bottom clause (SBC)

for the first GBC. The constructed SBC is considered the

bottom base to substitute the remaining GBCs. The

substitution process is viewed as a constraint satisfaction

problem. Eventually, for all the GBC groups there are

equivalent substituted clauses. Afterwards, a random

population is generated to select a set of SBCs. Then one

SBC is randomly selected to determine the search space for

starting generalization process. A detailed description of the

induction steps is provided in the following.

Hypothesis Space Construction

ILP system is a search problem in which a number of

candidate solutions, called the search space, will be found

and evaluated. The generalization process starts by

constructing the bottom clauses for all given positive

examples to determine the search space. The target bottom

clause is constructed by using the relevant atoms detected

in the background knowledge.

Building the Bottom Clauses

The proposed system differentiates between two versions of

the bottom clauses: ground and substituted bottom clauses.

In the sequel, we refer to them as gbc and sbc respectively.

For each positive example, 𝑒𝑖
+ , GAILP constructs a 𝑔𝑏𝑐𝑖

(∀ 𝑒+ ∈ 𝐸+ ⇒ 𝑔𝑏𝑐) where 𝑔𝑏𝑐𝑖 contains all facts known

to be true about the current example 𝑒𝑖
+. The background

knowledge facts are used to obtain the related atoms to a

particular 𝑒𝑖
+ . Hypothetically, the process results in a

number of bottom clause equals the number of positives

presented in the present group. It is supposed to consider

only one 𝐸+ group by an iteration.

Fig. 2 Overview of GAILP's architecture

First, it takes the examples one by one. For a particular

example 𝑒+ ∈ 𝐸+ , the algorithm searches for all related

atoms existing in the background knowledge. The atom is

related directly to 𝑒+ when one of its arguments appears in

𝑒+. The construction of 𝑔𝑏𝑐 is determined by the language

bias, if there is any. The given bias describes some

restrictions to be considered in order to build the target

bottom clause. Thus, our algorithm provides a parameter,

called relevance level shown in Fig. 2. It allows

consider/ignore the indirect related atoms. The relevance

level value guides the search for the related atoms in the

background knowledge to construct the hypothesis. Other

indirect related atoms can be added based on the setting of

the relevance level. The user can adjust this parameter to

determine the need to involve the indirect related atoms in

the construction process. The relevance level (L) can get one

of three values 1, 2, or 3. With 𝐿 = 1 only the literals

having, as input variables, input variables of the head (layer

0) are added to the most-specific clause. At layer i only

literals having input variables appearing in layer i − 1 (as

output or input variables) can be constructed. It is important

to note that with a low value for L not all facts from the

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

204

background knowledge will appear in a most-specific clause.

When having a target instance, 𝑝𝑟𝑒𝑑(𝑎𝑟𝑔1, 𝑎𝑟𝑔2, … , 𝑎𝑟𝑔𝑛),

the related atoms are searched in the background knowledge.

An atom 𝑎𝑖 is a direct related atom to

𝑝𝑟𝑒𝑑(𝑎𝑟𝑔1 , 𝑎𝑟𝑔2, … , 𝑎𝑟𝑔𝑛) if it shares a constant argument

𝑎𝑟𝑔𝑖 appearing in the target instance. For example, given the

target instance, 𝑎(𝑥, 𝑦) , and the background 𝑓𝑎𝑐𝑡𝑠 =
{ 𝑏(𝑥, 𝑧), 𝑐(𝑧, 𝑘, 𝑙), 𝑑(𝑦, 𝑚)}. The facts 𝑏(𝑥, 𝑧) and 𝑑(𝑦, 𝑚)

are considered direct related atoms. In contrast to direct

related atoms, an atom 𝑎𝑖 is an indirect related atom to

𝑝𝑟𝑒𝑑(𝑎𝑟𝑔1 , 𝑎𝑟𝑔2, … , 𝑎𝑟𝑔𝑛), if doesn’t share any argument

𝑎𝑟𝑔𝑖 with the given target instance. In the previous

examples the fact 𝑐(𝑧, 𝑘, 𝑙) is seen as indirect related to the

target instance, 𝑎(𝑥, 𝑦) . However, the type of indirect

related atoms might be involved in the bottom clause.

Bottom Clauses Substitution

A substitution is defined as the operation that replaces

variables occurring in each 𝑔𝑏𝑐 by terms (values). A

substitution θ can be defined as a finite set of the form:

 {𝑥1/𝑡1, … . . , 𝑥𝑛/𝑡𝑛}, 𝑛 ≥ 0 , where the 𝑥𝑖 are distinct

variables and the 𝑡𝑖 are terms, i.e. 𝑡𝑖 is substituted for 𝑥𝑖.

In this regard, we use the alphabet letters {𝐴, 𝐵, 𝐶, … } to

achieve the substitution operation. Given a set of the ground

most-specific clauses resulting from the previous operation.

It is supposed to replace each variable of the 𝑔𝑏𝑐 by a unique

value. The aim is to apply a particular substitution to a set of

expressions (values or bottom clauses) to make them

identical. We apply this substitution to make a particular

clause (𝑔𝑏𝑐𝑖) more specific to be matched with another

clause (𝑔𝑏𝑐𝑗). For the sake of suitable substitution for all the

constructed gbc, the problem is solved as a constraint

satisfaction problem (CSP [19]). So that, the problem can be

expressed in the following form; given a set of variables

{𝑥1, 𝑥2, … … . 𝑥𝑛} and a finite set of possible terms

{𝑡1, 𝑡2, … … . 𝑡𝑝} that can be assigned to variable x𝑖, and set

of constraints {𝑦1 , 𝑦2, … … . 𝑦𝑚}. The constraint 𝑦i involves a

subset of the variables and identifies the possible

combinations of terms for that subset. That is, the problem

can be defined by an assignment of terms to some or all of

the variables such that {𝑥𝑖 = t𝑖 , 𝑥𝑗 = 𝑡𝑗 , … } with

satisfying constraints.

For a particular set of gbc, the substitution simply starts by

selecting one of the clauses 𝑔𝑏𝑐𝑟 (randomly) to perform a

direct substitution for all its variables (i.e. with no

constraints). Then the resulting substituted bottom clause is

used as the set of constraints to be satisfied when applying

substitution on the remaining 𝑔𝑏𝑐𝑖 belong to the present set.

The algorithm follows the backtracking search strategy,

where it selects term for one variable at a time and

backtracks when a variable with the assigned term does not

satisfy the constraints.

Search for the Hypothesis

Before starting the search of the candidate hypotheses,

different combinations of the resulting bottom clauses are

generated. Upon the number of the generated bottom clauses

one of the two approaches is employed to find the possible

combinations. A brute-force approach is used directly to find

all possible combinations in case the number of bottom

clauses is relatively small. The number of possible

combinations increases exponentially with the number of

given samples. Genetic algorithms approach is therefore

used when there is a significantly increasing number of

possible combinations.

GA approach generates a random population representing

particular combinations, and then several generations can be

found. Each combination is considered individually to

perform clauses generalization and to learn the expected

hypotheses. After that, from each presented set of bottom

clauses, a random bottom clause is selected first to determine

the hypothesis space. The combination operation results in

several sets of bottom clauses. The concern here is to

generalize one hypothesis in each set to include a number of

bottom clauses in the specified set.

In turn, it covers the corresponding positive examples. In

each set all the bottom clauses share the same head, thus one

of them will be used as the head of the generalized rule. Then

in the same set we search for the commonalities of the atoms

among the different bottom clauses. It is expected to induce

one or more rules from each set. Algorithm 6 demonstrates

the steps followed to accomplish this operation.

The rationale behind considering several combinations for

induction is to give another view about the given examples.

Thus, from each combination set, regardless of the used

approach, one bottom clause is randomly selected to

establish the hypothesis space. The head of the selected

bottom clause is managed as the head of the candidate

hypothesis. Several iterations are carried out to add atoms to

the hypothesis with measuring the confidence value (CF),

shown in Fig. 2, simultaneously. Upon the confidence value,

the new atom can be kept in the candidate hypothesis or

retracted. This represents the search operation to find the

best hypothesis as a solution for the presented ILP problem.

For each given example, GAILP traverses the search space

using the refinement operator, adding/changing a new literal

one at a time within the language constraints, keeping

clauses with the best compression at each refinement level

along the way. All generated refinements must subsume the

most specific clause under 0-subsumption (i.e. at least as

general as the most specific clause).

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

205

3. Experiment Setup

3.1 Induction Methodology

To evaluate the induction capability of GAILP, two
transformation experiments have been conducted. In each
experiment, various models of a number of software systems
were utilized. Each case study focuses on different learning
approach. The first one considers the single-predicate
learning while the second one takes into account the learning
of multi-predicates. In both cases, GAILP system was used
to induce the rules, however we considered further steps to
assess and validate the obtained transformation rules. Fig. 3
demonstrates the steps followed in our methodology to
conduct the experiments.

The declaration of modes that specify the structure of the

intended hypotheses is optional. The learner can utilize the

given predicates (as modes) or it can extract the head and

body of the hypothesis by using the positive examples and

the related atoms provided in the background knowledge.

GAILP allows starting the induction by using positive

examples along with the background knowledge. In some

cases, the negative examples are not available as input. Thus

using negative examples is an option to help pruning large

parts of the search space.

To measure the induced rules’ performance, each rule was

evaluated individually against all the learning systems,

batched together. The induced rules were ranked according

to the achieved accuracy to compare their generalization

capability. Next, the rules with outstanding accuracy can be

assessed in order to find the most generic rules. This subset

of rules can be utilized by the practitioners for transforming

new given source instances (using appropriate tools for

application). A particular threshold can be specified to

specify the subset offered the optimal performance.

Afterward, the candidate rules, with different combinations,

are applied on the learning systems one by one. GA-based

procedure can be used to determine the best possible

combination.

Another perspective is considered to determine the most

generic rules. The number of times each rule was applied to

form the best combinations for the learning systems. The

rules were ranked based on the frequency of their

applications. Such a frequency measure was calculated in a

form of percentage by dividing the application times by the

total number of systems used for training. This percentage

can be used as a guide when applying the rules on new

unseen samples. Some rules have been selected several

times, for instance Rule <17> was selected with 60% of the

systems when looking for the best results. In contrast, some

rules were not selected any time with learning examples,

thus they were ignored.

Fig. 3 Procedure to assess the induced transformation rules

Fig. 4 The UML class diagram for analysis-design pair (a) the source

model (requirement analysis) and (b) the target model (software design)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

206

3.2 Case Studies

The presented case studies consider two substantial tasks to

transform the software analysis model to the corresponding

design models.

Packaging Class Diagram

Locating the classes into packages is one of the necessary

tasks when moving from analysis to design. The analysis

models present the class diagram depicting all system

classes and the relations linking them. Such models are used

to develop highly cohesive and loosely coupled packages.

The aim of this case study is to learn packaging rules from

analysis-design pair examples. Fig. 4 depicts a simple

example the analysis model along with the corresponding

initial design model after introducing the packages.

Introducing Façades

Another high-level software design activity is to introduce

façades. It is common for a class in one package to have

external relations with classes in other packages. A façade

provides a one “point of contact” to a package of classes

(i.e., component) which simplifies the interaction process

and improves the overall design coupling and cohesion. It

hides the implementation of the component from its clients,

making the component easier to use.

Fig. 5 (a) depicts a class diagram that has many inter-

packages relationships making the design highly coupled

and less maintainable. Fig. 5 (b) shows the simplified design

and loosely coupled model when using Façade interface.

Fig. 5 Part of class diagram of application (a) the source model and (b)

the target model

3.3 Experimental Data

The datasets used in the experiments comprises around 34

systems. Each system consists of the analysis and design

models. These cases were collected mostly from academic

projects, examples from textbooks, and by reserve

engineering [18]. Each system consists of analysis/design

pair. In turn, each design system comprises at least three

packages. The total number of packages in the base is 217

while the total number of classes and interfaces is 1540.

Table 2 shows a brief statistics of the systems’ artifacts i.e.,

packages, classes, interfaces, and relationships (including

association, aggregation, generalization, and realization).

Table 2 Statistical Analysis of the used datasets

Margin Min Max

Packages 3 27

Classes and Interfaces 10 151

Relationships 11 188

3.4 Evaluation Measurements

Different measures can be used to evaluate the produced

rules and their applicability. The following performance

measures were used to evaluate the generalization capacity

of the induced transformation rules. It is worth mentioning

that, the same measurements have been used in the literature

to evaluate similar studies.

 (1)

 (2)

 (3)

 (4)

 (5)

For the problem solved by ILP-based systems, usually the

performance can be measured by grouping the results as

true positive (TP), true negative (TN), false positive (FP)

and false negative (FN). In the context of this work, TP

refers to the correct target model artifacts generated by the

transformation rules. FP indicates the incorrect target model

artifacts generated by the transformation rules. FN denotes

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

207

the correct target model artifacts in the actual target model,

but the transformation rules do not generate. Lastly, TN

refers to the other model target artifact that were correctly

ignored by the transformation rules (in grouping problems).

Eq. (1)–(5) demonstrate the measures considered, through

this work, to measure the induced rules performance.

4. Induction Results

This section presents conducted experiments that are in line

with the above case studies. The first experiment considers

packaging class diagrams to evaluate the single predicate

learning. Likewise, the second experiment examines the

multi-predicates learning capacity of the ILP system by

studying the use of Façade interface.

4.1 Single Predicate Learning

A dataset consists of twenty-two systems was used to feed

the GAILP to start the induction procuress. Each system

consists of pairs of source- target models used as learning

samples. Table 3 shows samples of the rules resulted from

the induction. By using all learning samples, GAILP was

able to induce 63 rules for packaging class diagrams. These

rules were individually evaluated against the learning

systems, batched together. Almost have of the rules showed

a satisfactory accuracy.

Next, a threshold of 0.4 was chosen to specify the subset

offered the optimal performance. As a result, the top

twenty-four rules were selected for further assessment to

determine the most generic rules. With considering

different combinations, the rules were applied to the

learning systems one by one. Table 3 demonstrates the

accuracy measures in a training system-wise manner. The

average of the accuracy measure equals to %93.

To assess the generalization of the transformation rules, we

counted the number of times each rule was applied to form

the best combinations for the learning systems. The rules

have been applied with different frequencies. It is supposed

to consider the high frequently applied rules to be validated

further using unseen samples. A threshold of (.30) was

considered to take the most frequent applied rules. Several

validation runs have been conducted using a validation set

that consists of twelve systems. In each run, a subset of the

candidate rules were applied to the validation systems one

by one. In the first run, only the top two rules were used,

while the second run added one more rule to the subset, and

so on. The averages of performance measures for the

different runs using the validation systems are depicted in

Table 3.

Table 3 Evaluating the induced rules using the learning and validation

systems

S
ys

te
m

S
p

ec
if

ic
it

y

R
ec

a
ll

P
re

ci
si

o
n

F
-M

ea
su

re

A
cc

u
ra

cy

Learning Systems

Average 0.96 0.77 0.94 0.83 0.93

sys1 0.942 0.976 0.825 0.888 0.947

sys2 0.892 1 0.833 0.903 0.933

Sys05 1 0.5 1 0.667 0.833

Sys07 1 0.731 1 0.842 0.944

Sys08 1 0.694 1 0.819 0.9

Sys09 0.8 0.56 0.8 0.654 0.753

Sys10 0.944 0.889 0.944 0.903 0.939

Sys12 0.969 0.818 0.923 0.858 0.935

Sys14 1 0.746 1 0.851 0.938

Sys15 1 0.74 1 0.839 0.95

Sys17 0.987 0.836 0.944 0.877 0.962

Sys18 1 0.725 1 0.817 0.975

Sys19 0.638 0.642 0.638 0.627 0.667

Sys20 1 0.772 1 0.87 0.97

Sys22 1 0.642 1 0.764 0.978

Sys23 1 0.738 1 0.843 0.967

Sys26 0.97 1 0.933 0.963 0.978

Sys28 0.955 0.599 0.955 0.719 0.936

Sys29 1 0.748 1 0.85 0.964

Sys30 1 0.859 1 0.923 0.976

Sys31 0.981 0.831 0.921 0.868 0.954

Sys32 1 0.889 1 0.933 0.967

Validation Systems

Average 0.93 0.70 0.91 0.77 0.88

Sys3 1 0.619 1 0.729 0.948

Sys4 0.958 0.822 0.933 0.859 0.917

Sys6 0.815 0.535 0.815 0.638 0.804

Sys11 1 0.76 1 0.861 0.958

Sys13 1 0.711 1 0.83 0.909

Sys16 0.976 0.84 0.893 0.839 0.955

Sys21 0.625 0.642 0.673 0.646 0.667

Sys24 0.952 0.806 0.917 0.838 0.9

Sys25 1 0.711 1 0.822 0.923

Sys27 1 0.584 1 0.698 0.925

Sys33 0.983 0.744 0.917 0.803 0.942

Sys34 0.8 0.621 0.8 0.698 0.762

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

208

4.2 Multi-predicate Learning

One of the limitations reported about current ILP systems is

their inability to deal with multi-predicates learning

automatically [16]. “Introducing Façade interface” is an

example of model transformation learning tasks that

requires a multi-predicates learning approach. The

experiments conducted, in this section, is to evaluate

GAILP’s capacity in terms of the multi-predicates learning.

In the software modeling process, introducing a façade to a

model means not only adding the façade interface, but also

adding more than one artifact.

The new artifacts may include a new interface, association

relationships linking the external clients to the interface, and

others linking the interface to the classes placed in its

package. Thus, the used ILP system should be able to learn

multi-predicates hypotheses and discover the accurate order

to start inducing the hypotheses.

The learning process started with the given background

facts and the first group positives based on initial order. The

system tried different orders until it found the most

appropriate one. Fig. 6 presented samples of rules induced

for introducing a façade, and its related relationships. The

first group shows sample of the rules induced for

introducing façade, while the other two groups shows the

rules for the relationship (associations) artifacts.

Fig. 6 Samples of the induced transformation rules - Introducing Façade

(a) Façade artifact, (b) Association between a client and façade, (c)

Association between a façade and a class

It is worth mentioning that, the last two rules are supposed

to be applied whenever there is application of any rule in

the first group. The induced transformation rules were

applied (one by one) to the learning systems (source

models) and the results were compared against the actual

target models. The rules evaluation focused only on the first

group of the transformation rules presented in Fig. 6. When

applied the rules on the learning examples, some rules are

applied perfectly many times, while others might be used

one time. As specified in the methodology, the rules were

ranked according to their application frequency as several

combinations have been assessed to find the best results. A

subset of the rules have been selected based on a threshold,

(30% was determined to take into account most frequent

applied rules). Only five rules were applied on more than

30% of the presented systems. Further validation, using the

validation dataset, was conducted for the candidate rules as

top generic induced rules. The results obtained when

applying the transformation rules on unseen systems are

shown in Table 4. Obviously, GAILP was able to learn

efficiently multi-predicates hypothesis and to discover

accurately the order of the induced rules (f-measure = 0.90).

Table 4 Evaluating the induced rules using the learning and validation

systems

System Recall Precision F-Measure

Learning Systems

Average 1 0.955 0.965

Sys4 1 0.96 0.95

Sys17 1 1 1

Sys25 1 0.98 0.94

Sys21 1 0.95 0.98

Sys11 1 1 1

Sys12 1 0.75 0.85

Sys14 1 1 1

Sys27 1 1 1

Validation Systems

Average 1 0.88 0.90

Sys5 1 0.97 0.95

Sys7 1 1 1

Sys30 1 0.67 0.72

Sys2 1 0.93 0.94

Sys23 1 0.86 0.92

4.3 Comparisons with ALEPH

We evaluated the capability of GAILP in learning model

transformation rules. Two main transformation tasks have

been considered, namely: packaging class diagrams and

introducing Façade interface. In this paper we showed that

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

209

GAILP overcomes limitations encountered when using

traditional ILP systems. Through this work, we conducted a

comparison between GAILP and ALEPH within the context

of the model transformation. Several experiments were

conducted on a considerable large dataset consists of 34

systems that vary in size and were collected from different

sources. The dataset was divided into independent sets for

learning and validation purposes.

Hamdi and Ahmed have recently reported results of using

ALEPH against a software modeling problem, namely

packaging class diagram. They observed some limitations

such as the prior declarations of modes and types to start the

learning process. The same learning and validation datasets

were used when testing both systems. Therefore, we

considered it acceptable to compare performance through

quality and accuracy of the induced transformation rules.

For the single predicate learning, on most cases ALEPH

was able to produce rules for packaging the class diagrams

based on the given examples. However, it required a

rigorous preparation of the files and models declarations in

each run. For packages with many classes and complicated

relations, ALEPH could not find a solution using different

settings of search. For the multi-predicates learning,

ALEPH was not an efficient in inducing the required rules

as it manipulates the problem as a regular single predicate

learning [19].

It is obvious, GAILP showed a better performance in both

tasks. The validation results for the packaging task showed

that the accuracy of GAILP was 0.88 comparing with 0.83

achieved by ALEPH, Fig. 7 (a). Similarly, for the second

task, the f-measure obtained using GAILP was 0.96, while

the f-measure of ALPEH was 0.66, Fig. 7 (b).

Definitely, the number of induced rules varies from one

system to another. For packaging problem, GAILP was able

to induce 63 rules comparing with 25 rules induced via

ALEPH. The increase of the induced rules came from the

coverage of all the positive examples using GA

combinations. We explained that, not all the induced rules

can be stored in the rule base for future development. The

rules were evaluated in different ways and validated to

select the best subset to be stored in the rule base. That mean

only 12 out of 63 rules are recommended to be stored in the

rule base. It is important to mention that, for introducing

Façade interface the results obtained from GAILP came

from a combination of applying façade and associations

rules. However, the comparison with rules induced by

ALEPH for façade interface is reasonable. The reason is

that the application of the association rules is a consequence

of the façade rules application. In other words, the

associations' artifacts will be added correctly to the model

if the façade interface was added to the right package.

Similarly, if there is a missed façade interface in the model,

consequently all the related associations will not be added.

Fig. 7 (a) Introducing packages to the class diagram, (b) Introducing
Façade design pattern

From the previous experiments, we noticed that GAILP and

ALEPH have common characteristics where there are many

problems that can be solved correctly using both systems

such as classification, learning transitive rules, arch

problem without modifications, and packaging of class

diagrams. However, ALPEH could not find solutions for

multi-predicates learning problems. As pointed out by our

experimental results, GAILP is not meant to be a general-

purpose ILP system; rather it is meant to be domain specific

in the sense that when having multi-predicates that can be

batched together to learn different types of hypotheses with

different number of arity.

5. Conclusion and Future Work

In this paper, we presented a GA-based ILP system, GALIP.

We evaluated the capability of GAILP in learning model

transformation rules. Two main software engineering

transformation tasks have been considered, namely:

packaging class diagrams and introducing Façade interface.

Through this work, we conducted a comparison between

GAILP and ALEPH within the context of the model

transformation. Several experiments were conducted on a

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019

210

considerable large dataset consists of 34 systems that vary

in size and were collected from different sources. The

dataset was divided into two independent sets; one for

learning and one for validation. Experiments showed that

GAILP outperforms ALEPH. The validation results for the

packaging task showed the accuracy of GAILP to be 0.88

comparing with 0.83 achieved by ALEPH. Similarly, for

introducing Façade interface task, the f-measures obtained

using GAILP and ALEPH were 0.90 and 0.66 respectively.

As pointed out by our experimental results, GAILP is not

meant to be a general-purpose ILP system; rather it is meant

to be more appropriate for domains having multi-predicates

that can be batched together to learn different types of

hypotheses with different number of arity. As a future work,

we will use GAILP to induce transformation rules with

considering other transformation problems

Acknowledgment

This research was funded by the National Plan for Science,

Technology and Innovation (MAARIFAH) – King

Abdulaziz City for Science and Technology – through the

Science & Technology Unit at King Fahd University of

Petroleum & Minerals (KFUPM) – the Kingdom of Saudi

Arabia, award number 11-INF1633-04.

References
[1] J. C. A. Santos, H. Nassif, D. Page, S. H. Muggleton, and M.

J. E. Sternberg, “Automated identification of protein-ligand

interaction features using inductive logic programming: A

hexose binding case study,” BMC Bioinformatics, vol. 13,

no. 1, p. 162, 2012.

[2] U. Schmid, S. H. Muggleton, and R. Singh, “Approaches

and Applications of Inductive Programming (Dagstuhl

Seminar 17382),” in Dagstuhl Reports, 2018, vol. 7, no. 9.

[3] I. Bratko and S. Muggleton, “Applications of inductive logic

programming,” Commun. ACM, vol. 38, no. 11, pp. 65–70,

1995.

[4] N. Amir, D. Cohen, and H. J. Wolfson, “DockStar: A novel

ILP-based integrative method for structural modeling of

multimolecular protein complexes,” Bioinformatics, vol. 31,

no. 17, pp. 2801–2807, 2015.

[5] S. Ushikubo, K. Kanamori, and H. Ohwada, “Extracting

time-oriented relationships of nutrients to losing body fat

mass using inductive logic programming,” in Cognitive

Informatics & Cognitive Computing (ICCI* CC), 2016

IEEE 15th International Conference on, 2016, pp. 226–230.

[6] Y. Qiu et al., “Knowledge discovery for pancreatic cancer

using inductive logic programming,” IET Syst. Biol., vol. 8,

no. 4, pp. 162–168, 2014.

[7] T. Op De Beéck, A. Hommersom, J. Van Haaren, M. van

der Heijden, L. O. Jesse Davis, and I. Nagtegaal, “Mining

hierarchical pathology data using inductive logic

programming,” in Proceedings of the 15th Conference of

Artificial Intelligence in Medicine, 2015.

[8] H. Karimi and A. Kamandi, “A learning-based ontology

alignment approach using inductive logic programming,”

Expert Syst. Appl., vol. 125, pp. 412–424, 2019.

[9] R. Lima, B. Espinasse, and F. Freitas, “OntoILPER: an

ontology-and inductive logic programming-based system to

extract entities and relations from text,” Knowl. Inf. Syst.,

vol. 56, no. 1, pp. 223–255, 2018.

[10] D. Varró and Z. Balogh, “Automating Model

Transformation by Example Using Inductive Logic

Programming,” in SAC’07, 2007.

[11] H. A. Al-Jamimi and M. A. Ahmed, “Knowledge

acquisition in model driven development transformations:

An inductive logic programming approach,” in TENCON

2014- 2014 IEEE Region 10 Conference, 2014, pp. 1–6.

[12] S. Muggleton, “Inductive logic programming,” New Gener.

Comput., vol. 8, no. 4, pp. 295–317, 1991.

[13] S. Muggleton and L. De Raedt., “Inductive logic

programming: Theory and methods,” J. Log. Program., vol.

19, pp. 629–679, 1994.

[14] A. Srinivasan, “The Aleph Manual,” Univ. Oxford, 2007.

[15] Y. Li, M. Niu, and J. Guo, “An Inductive Logic

Programming Algorithm Based on Artificial Bee Colony,”

J. Inf. Technol. Res., vol. 12, no. 1, pp. 89–104, 2019.

[16] H. A. Al-Jamimi and M. A. Ahmed, “Learning

Requirements Analysis to Software Design Transformation

Rules By Examples: Limitations of the Current ILP

systems.,” in 5th IEEE International Conference on

Software Engineering and Service Science (ICSESS 2014),

2014.

[17] M. Al-Jamimi, Hamdi A. ; Ahmed, “A genetic algorithm-

based ILP incremental system,” in 2017 12th International

Scientific and Technical Conference on Computer Sciences

and Information Technologies (CSIT), 2017.

[18] H. A. Al-Jamimi, “A New ILP System for Model

Transformation by Examples,” King Fahd University of

Petroleum and Minerals, 2015.

[19] H. A. Al-Jamimi and M. A. Ahmed, “Model Driven

Development Transformations using Inductive Logic

Programming,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no.

11, pp. 531–541, 2017.

