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Summary 
Learning by examples refers to acquiring knowledge and 

experience to generalize theory from existing examples. Inductive 

logic programming (ILP) uses inductive inference to generate 

hypotheses from examples given with a background knowledge. 

ILP systems have been successfully applied in a number of real-

world domains. Several ILP systems were introduced in the 

literature. Each system uses different search strategies and 

heuristics; however, most systems employed a single predicate 

learning approach, which is not applicable in many learning 

problems. In this paper, we present GAILP, an ILP system that 

overcomes this limitation. GAILP employs genetic algorithms to 

discover various aspects of combinations to induce a set of 

hypotheses. It appraises such combinations in different ways to 

extract the most generic ones. The paper presents a thorough 

evaluation of the foundational aspects of the learning capability of 

GAILP. Two experiments were conducted to learn software model 

transformation rules. Experimental results reveal that GAILP is 

superior to a prominent ILP system, namely ALEPH, in different 

aspects; and specifically in learning multi-predicates 

incrementally. We used a case study of tasks from the automated 

software engineering domain. The results obtained for the “class 

packaging” task showed that the accuracy of GAILP was 0.88 

comparing with 0.83 achieved by ALEPH. Similarly, for 

“introducing Façade interface” task, the accuracy obtained using 

GAILP and ALEPH were 0.90 and 0.66 respectively. 

Key words: 
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1. Introduction 

Learning by examples refers to acquiring knowledge 

and experience to generalize theory from existing examples, 

i.e., observations. The examples represent a significant 

source of knowledge as they reflect the experience acquired 

by experts and practitioners. Inductive learning is a model 

building process where the data are analyzed to discover 

hidden patterns and draw conclusions from the available 

data. Thus, the induced patterns do not only describe the 

given examples, but also similar situations. Accordingly, 

they can be used to make estimation about unseen instances. 

The inductive learning programs have substantial 

applications in several science and engineering domains 

[1]–[3]. ILP has been employed successfully in extracting 

comprehensible and accurate rules in both scientific and 

industrial problems such as bioinformatics [4], medicine 

[5]–[7]  as well as in other areas like web semantic [8], [9] 

and software engineering [10], [11] . They can be utilized 

in two basic modes: (i) as interactive tools for knowledge 

acquisition from explicit examples, and (ii) as part of an 

expert system in which other components provide the 

required learning examples for the inductive program.  

Inductive logic programming (ILP) uses inductive 

inference to generate hypotheses from examples presented 

with the background knowledge. ILP systems can 

automatically construct first-order rules from background 

knowledge and training examples. ILP is defined as a 

subfield of machine learning (ML) which utilizes logic 

programming to represent the examples, background 

knowledge and induced hypotheses [12], [13]. Different 

ILP systems have been introduced in the literature. They 

differ in the way to learn from the given examples. However, 

some limitations were reported about the current ILP 

systems. For instance, ALEPH [14] and some other ILP 

systems [15] require manual declarations of the modes in 

advance to the learning process. Mode declaration means 

identifying in details the predicates that are expected to 

appear in the induced hypothesis. However, it is not 

practical in all cases to predefine such modes [16].  

The ILP learning problem can be viewed as a search 

problem for rules that deduce the training examples [13]. 

ILP represents the given data and learning problem in first-

order logic. Input data for learning can be represented by 

sets of positive, and negative examples in addition to 

background knowledge describing the given examples. The 

power of using the background knowledge is that it gives 

the domain experts the opportunity to select and integrate 

the appropriate knowledge that describes the given 

examples and the undertaken domain. The general ILP 

learning problem can be defined as follows:   

Given a background knowledge B containing 

definitions of predicates and a set of positive 𝐸+  and 

negative 𝐸− examples where 𝐸 = 𝐸+⋃ 𝐸− . 
Find a hypothesis H such that ∀𝑒+   ∈  𝐸+  s.t. 𝐵 ∪
𝐻 ⊨ 𝑒 and ∀ 𝑒+  ∈  𝐸−  s.t. 𝐵 ∪ 𝐻 ⊭ 𝑒−  i.e., the 

background theory together with the hypothesis 

entails all positive examples and none of the negative 

examples. 
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The generalization induces a generic hypothesis that covers 

the positive examples with sidestep the negative ones. That 

is, ILP attempts to find a hypothesis which is consistent with 

the positive and negative examples of given facts 

(background knowledge). In ILP terminology, a rule covers 

the set of facts if it is consistent with every positive and 

negative example. H is a complete w.r.t. the background 

knowledge and the given examples in case it covers all 

instances in E+ set. In another way, H is defined as a 

consistent w.r.t. the background knowledge and the given 

examples if it does not cover any negative example. We 

have recently presented a brief proposal of new genetic 

algorithms (GA) based ILP system, namely GAILP, to 

overcome some of the limitations of previous systems such 

as mode declaration, and requirement of negative examples 

[17].  In this paper, we discuss the technical details and the 

validity of GAILP. We present the capability of GAILP and 

compare its performance against the most prominent system 

currently available in the literature namely ALEPH. The 

results confirmed the incremental learning ability of GAILP 

to detect the suitable order of predicates and to revise the 

knowledge theory through utilizing the positive examples. 

GAILP was also shown to support the learning of multiple 

predicates. This ability distinguishes GAILP from other 

systems which only consider an iterative procedure for 

learning the rules one by one where the order is provided 

manually. 

This paper is organized as follows: Section 2 presents a 

motivational example illustrating the main ILP concepts 

and focusing on the limitation of most ILP systems. It also 

presents the fundamental aspects of GAILP system. Section 

3 introduces the experiment setup including the rules 

generation methodology, the data and evaluation 

measurements. The induction results are discussed in 

Section 4, while Section 5 concludes the paper and gives 

some directions for further research. 

2. GAILP: the Challenge and Solution  

2.1 A Motivational Example 

In the following, we present a real-world scenario that 

illustrates the concept of our model. Consider a task of 

learning concepts of family relationships namely aunt(X, Y) 

and uncle-in-law(X, Y). The former states that person X is 

an aunt of person Y, while the latter states that person X is 

uncle-in-law of person Y. The training examples consist of 

positive examples and negative examples. Each positive 

example is a fact of the predicate aunt or uncle-in-law that 

is known to be true, while each negative example indicates 

a pair of people are not connected by the aforementioned 

relationships. This task will be used as a running example 

throughout this paper. Fig. 1 shows an example of family 

relations, while Table 1 demonstrates the representation of 

the relations in first-order logic form. The background 

knowledge includes parent, brother, and husband 

relationships, which are represented by two predicates. The 

output of an ILP algorithm could be the following “learnt” 

rules expressed as a Horn clause.  

aunt (X, Y) :- brother (Z, X ), parent (Z, Y), female(X)  

uncle-in-law(X,Y):- aunt(Z,Y), husband(X,Z) 

The first declarative rule simply states that if a person Z is 

a brother of X, Z is a parent of Y, and X is female, then X 

is an aunt of Y. On the other hand, the second rule states 

that if a person X is a husband of Z, and Z is an aunt of Y 

then X is an uncle-in-law of Y.  

 

 

Fig. 1 Example of family relations 

Table 1. The first-order logic form of relationship concepts learning 
problem 

Background Facts 

brother(sam,liz),brother(tony,eve) 
husband(olin,amy),husband(tom,alice) 
husband(sam,eve),husband(igor,liz) 
female(liz), female(eve), 
female(amy), female(alice), 
female(bella), male(tom), 
male(sam),… 

Positive Examples 

aunt(liz,john) 
aunt (eve, colin) 
uncle-in-low(igor,john) 
uncle-in-law(sam,colin) 

 

Negative Examples 

aunt(liz,sam) 
aunt (bella, tony) 
uncle-in-low(olin,colin) 
uncle-in-law(tom,igor) 

 

In order to induce such rules, the ILP system generally 

conducts separated runs where each is fed with positive and 

negative examples as well as a set of background 

knowledge facts describing the given examples. In each run, 

the ILP engine constructs generic rules whose structure is 

predefined. The rule’s head is specified using given 

examples predicate and arity, while its body depends on the 

given facts.  Each set of similar predicates are generalized 

independently, so the currently used ILP systems rely on the 

user to identify dependency, feed the sets for generalization, 

and to revise the knowledge facts as needed. In the shown 

example “aunt” rule should be induced firstly to be able to 

utilize the results in inducting the predicate “uncle-in-law”. 

However, in some cases, the user is not aware of the 

dependency between the sets. This motivated us to propose 
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a new ILP system that assists to automatically identify the 

rule structure, discover the potential dependency and revise 

the theory after each run. 

2.2 GAILP System  

GAILP is an ILP system that uses first-order logic as the 

concept definition language and generates a set of definite 

clauses. It employs a coverage algorithm in constructing 

clause definition. To investigate all possible combinations 

among the learning examples, GAILP employs two 

approaches brute-force and genetic algorithms. It is able to 

batch the background knowledge and all the positive 

examples one time to induce all the rules. In contrast, the 

existing systems at each run allow feeding only one set of 

examples having the same type declaration. The 

architecture of GAILP, depicted in Fig. 2, starts by taking 

the background facts and the examples for learning. It then 

constructs the ground bottom clauses (GBC) for all the 

given examples. A random population is generated for 

selecting the GBC groups to execute the substitution 

process that ends up by a substituted bottom clause (SBC) 

for the first GBC. The constructed SBC is considered the 

bottom base to substitute the remaining GBCs. The 

substitution process is viewed as a constraint satisfaction 

problem. Eventually, for all the GBC groups there are 

equivalent substituted clauses. Afterwards, a random 

population is generated to select a set of SBCs. Then one 

SBC is randomly selected to determine the search space for 

starting generalization process. A detailed description of the 

induction steps is provided in the following.  

Hypothesis Space Construction 

ILP system is a search problem in which a number of 

candidate solutions, called the search space, will be found 

and evaluated. The generalization process starts by 

constructing the bottom clauses for all given positive 

examples to determine the search space. The target bottom 

clause is constructed by using the relevant atoms detected 

in the background knowledge.  

Building the Bottom Clauses 

The proposed system differentiates between two versions of 

the bottom clauses: ground and substituted bottom clauses. 

In the sequel, we refer to them as gbc and sbc respectively. 

For each positive example, 𝑒𝑖
+ , GAILP constructs a 𝑔𝑏𝑐𝑖 

(∀ 𝑒+  ∈ 𝐸+  ⇒  𝑔𝑏𝑐) where 𝑔𝑏𝑐𝑖 contains all facts known 

to be true about the current example 𝑒𝑖
+. The background 

knowledge facts are used to obtain the related atoms to a 

particular  𝑒𝑖
+ . Hypothetically, the process results in a 

number of bottom clause equals the number of positives 

presented in the present group. It is supposed to consider 

only one 𝐸+ group by an iteration.  

 

 

Fig. 2 Overview of GAILP's architecture 

First, it takes the examples one by one. For a particular 

example 𝑒+ ∈ 𝐸+ , the algorithm searches for all related 

atoms existing in the background knowledge. The atom is 

related directly to 𝑒+ when one of its arguments appears in 

𝑒+. The construction of 𝑔𝑏𝑐 is determined by the language 

bias, if there is any. The given bias describes some 

restrictions to be considered in order to build the target 

bottom clause. Thus, our algorithm provides a parameter, 

called relevance level shown in Fig. 2. It allows 

consider/ignore the indirect related atoms. The relevance 

level value guides the search for the related atoms in the 

background knowledge to construct the hypothesis. Other 

indirect related atoms can be added based on the setting of 

the relevance level.  The user can adjust this parameter to 

determine the need to involve the indirect related atoms in 

the construction process. The relevance level (L) can get one 

of three values 1, 2, or 3.  With 𝐿 =  1 only the literals 

having, as input variables, input variables of the head (layer 

0) are added to the most-specific clause. At layer i only 

literals having input variables appearing in layer i − 1 (as 

output or input variables) can be constructed. It is important 

to note that with a low value for L not all facts from the 
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background knowledge will appear in a most-specific clause. 

When having a target instance, 𝑝𝑟𝑒𝑑(𝑎𝑟𝑔1, 𝑎𝑟𝑔2, … , 𝑎𝑟𝑔𝑛), 

the related atoms are searched in the background knowledge. 

An atom 𝑎𝑖  is a direct related atom to 

𝑝𝑟𝑒𝑑(𝑎𝑟𝑔1 , 𝑎𝑟𝑔2, … , 𝑎𝑟𝑔𝑛) if it shares a constant argument 

𝑎𝑟𝑔𝑖  appearing in the target instance. For example, given the 

target instance, 𝑎(𝑥, 𝑦) , and the background 𝑓𝑎𝑐𝑡𝑠 =
{ 𝑏(𝑥, 𝑧), 𝑐(𝑧, 𝑘, 𝑙), 𝑑(𝑦, 𝑚)}. The facts 𝑏(𝑥, 𝑧) and 𝑑(𝑦, 𝑚) 

are considered direct related atoms. In contrast to direct 

related atoms, an atom 𝑎𝑖  is an indirect related atom to 

𝑝𝑟𝑒𝑑(𝑎𝑟𝑔1 , 𝑎𝑟𝑔2, … , 𝑎𝑟𝑔𝑛), if doesn’t share any argument 

𝑎𝑟𝑔𝑖  with the given target instance. In the previous 

examples the fact 𝑐(𝑧, 𝑘, 𝑙) is seen as indirect related to the 

target instance, 𝑎(𝑥, 𝑦) . However, the type of indirect 

related atoms might be involved in the bottom clause.  

Bottom Clauses Substitution  

A substitution is defined as the operation that replaces 

variables occurring in each 𝑔𝑏𝑐  by terms (values). A 

substitution θ can be defined as a finite set of the form: 

 {𝑥1/𝑡1, … . . , 𝑥𝑛/𝑡𝑛}, 𝑛 ≥ 0 , where the 𝑥𝑖  are distinct 

variables and the 𝑡𝑖 are terms, i.e. 𝑡𝑖  is substituted for 𝑥𝑖.    

In this regard, we use the alphabet letters {𝐴, 𝐵, 𝐶, … } to 

achieve the substitution operation. Given a set of the ground 

most-specific clauses resulting from the previous operation. 

It is supposed to replace each variable of the 𝑔𝑏𝑐 by a unique 

value. The aim is to apply a particular substitution to a set of 

expressions (values or bottom clauses) to make them 

identical. We apply this substitution to make a particular 

clause (𝑔𝑏𝑐𝑖) more specific to be matched with another 

clause (𝑔𝑏𝑐𝑗). For the sake of suitable substitution for all the 

constructed gbc, the problem is solved as a constraint 

satisfaction problem (CSP [19]). So that, the problem can be 

expressed in the following form; given a set of variables 

{𝑥1, 𝑥2, … … . 𝑥𝑛}  and a finite set of possible terms 

{𝑡1, 𝑡2, … … . 𝑡𝑝}  that can be assigned to variable x𝑖, and set 

of constraints {𝑦1 , 𝑦2, … … . 𝑦𝑚}. The constraint 𝑦i involves a 

subset of the variables and identifies the possible 

combinations of terms for that subset.  That is, the problem 

can be defined by an assignment of terms to some or all of 

the variables such that {𝑥𝑖 =  t𝑖 , 𝑥𝑗 =  𝑡𝑗 , … }  with 

satisfying constraints. 

For a particular set of gbc, the substitution simply starts by 

selecting one of the clauses 𝑔𝑏𝑐𝑟 (randomly) to perform a 

direct substitution for all its variables (i.e. with no 

constraints). Then the resulting substituted bottom clause is 

used as the set of constraints to be satisfied when applying 

substitution on the remaining 𝑔𝑏𝑐𝑖  belong to the present set. 

The algorithm follows the backtracking search strategy, 

where it selects term for one variable at a time and 

backtracks when a variable with the assigned term does not 

satisfy the constraints.  

 

Search for the Hypothesis  

Before starting the search of the candidate hypotheses, 

different combinations of the resulting bottom clauses are 

generated. Upon the number of the generated bottom clauses 

one of the two approaches is employed to find the possible 

combinations. A brute-force approach is used directly to find 

all possible combinations in case the number of bottom 

clauses is relatively small. The number of possible 

combinations increases exponentially with the number of 

given samples. Genetic algorithms approach is therefore 

used when there is a significantly increasing number of 

possible combinations.  

GA approach generates a random population representing 

particular combinations, and then several generations can be 

found. Each combination is considered individually to 

perform clauses generalization and to learn the expected 

hypotheses. After that, from each presented set of bottom 

clauses, a random bottom clause is selected first to determine 

the hypothesis space. The combination operation results in 

several sets of bottom clauses. The concern here is to 

generalize one hypothesis in each set to include a number of 

bottom clauses in the specified set.  

In turn, it covers the corresponding positive examples. In 

each set all the bottom clauses share the same head, thus one 

of them will be used as the head of the generalized rule. Then 

in the same set we search for the commonalities of the atoms 

among the different bottom clauses. It is expected to induce 

one or more rules from each set. Algorithm 6 demonstrates 

the steps followed to accomplish this operation. 

The rationale behind considering several combinations for 

induction is to give another view about the given examples. 

Thus, from each combination set, regardless of the used 

approach, one bottom clause is randomly selected to 

establish the hypothesis space. The head of the selected 

bottom clause is managed as the head of the candidate 

hypothesis. Several iterations are carried out to add atoms to 

the hypothesis with measuring the confidence value (CF), 

shown in Fig. 2, simultaneously. Upon the confidence value, 

the new atom can be kept in the candidate hypothesis or 

retracted. This represents the search operation to find the 

best hypothesis as a solution for the presented ILP problem.   

For each given example, GAILP traverses the search space 

using the refinement operator, adding/changing a new literal 

one at a time within the language constraints, keeping 

clauses with the best compression at each refinement level 

along the way. All generated refinements must subsume the 

most specific clause under 0-subsumption (i.e. at least as 

general as the most specific clause). 
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3. Experiment Setup 

3.1 Induction Methodology  

To evaluate the induction capability of GAILP, two 
transformation experiments have been conducted. In each 
experiment, various models of a number of software systems 
were utilized. Each case study focuses on different learning 
approach. The first one considers the single-predicate 
learning while the second one takes into account the learning 
of multi-predicates. In both cases, GAILP system was used 
to induce the rules, however we considered further steps to 
assess and validate the obtained transformation rules. Fig. 3 
demonstrates the steps followed in our methodology to 
conduct the experiments.  

The declaration of modes that specify the structure of the 

intended hypotheses is optional. The learner can utilize the 

given predicates (as modes) or it can extract the head and 

body of the hypothesis by using the positive examples and 

the related atoms provided in the background knowledge. 

GAILP allows starting the induction by using positive 

examples along with the background knowledge. In some 

cases, the negative examples are not available as input. Thus 

using negative examples is an option to help pruning large 

parts of the search space. 

To measure the induced rules’ performance, each rule was 

evaluated individually against all the learning systems, 

batched together. The induced rules were ranked according 

to the achieved accuracy to compare their generalization 

capability.  Next, the rules with outstanding accuracy can be 

assessed in order to find the most generic rules. This subset 

of rules can be utilized by the practitioners for transforming 

new given source instances (using appropriate tools for 

application). A particular threshold can be specified to 

specify the subset offered the optimal performance. 

Afterward, the candidate rules, with different combinations, 

are applied on the learning systems one by one. GA-based 

procedure can be used to determine the best possible 

combination. 

Another perspective is considered to determine the most 

generic rules. The number of times each rule was applied to 

form the best combinations for the learning systems. The 

rules were ranked based on the frequency of their 

applications. Such a frequency measure was calculated in a 

form of percentage by dividing the application times by the 

total number of systems used for training. This percentage 

can be used as a guide when applying the rules on new 

unseen samples.  Some rules have been selected several 

times, for instance Rule <17> was selected with 60% of the 

systems when looking for the best results. In contrast, some 

rules were not selected any time with learning examples, 

thus they were ignored. 

 

 

Fig. 3 Procedure to assess the induced transformation rules 

   

Fig. 4 The UML class diagram for analysis-design pair (a) the source 

model (requirement analysis) and (b) the target model (software design) 
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3.2 Case Studies 

The presented case studies consider two substantial tasks to 

transform the software analysis model to the corresponding 

design models. 

 

Packaging Class Diagram 

Locating the classes into packages is one of the necessary 

tasks when moving from analysis to design. The analysis 

models present the class diagram depicting all system 

classes and the relations linking them. Such models are used 

to develop highly cohesive and loosely coupled packages. 

The aim of this case study is to learn packaging rules from 

analysis-design pair examples. Fig. 4 depicts a simple 

example the analysis model along with the corresponding 

initial design model after introducing the packages. 

Introducing Façades 

Another high-level software design activity is to introduce 

façades. It is common for a class in one package to have 

external relations with classes in other packages. A façade 

provides a one “point of contact” to a package of classes 

(i.e., component) which simplifies the interaction process 

and improves the overall design coupling and cohesion. It 

hides the implementation of the component from its clients, 

making the component easier to use. 

Fig. 5 (a) depicts a class diagram that has many inter-

packages relationships making the design highly coupled 

and less maintainable. Fig. 5 (b) shows the simplified design 

and loosely coupled model when using Façade interface.    

 

Fig. 5 Part of class diagram of application (a) the source model and (b) 

the target model 

3.3 Experimental Data 

The datasets used in the experiments comprises around 34 

systems. Each system consists of the analysis and design 

models. These cases were collected mostly from academic 

projects, examples from textbooks, and by reserve 

engineering [18]. Each system consists of analysis/design 

pair. In turn, each design system comprises at least three 

packages. The total number of packages in the base is 217 

while the total number of classes and interfaces is 1540. 

Table 2 shows a brief statistics of the systems’ artifacts i.e., 

packages, classes, interfaces, and relationships (including 

association, aggregation, generalization, and realization).  

Table 2 Statistical Analysis of the used datasets 

Margin Min Max 

Packages 3 27 

Classes and Interfaces 10 151 

Relationships 11 188 

3.4 Evaluation Measurements 

Different measures can be used to evaluate the produced 

rules and their applicability. The following performance 

measures were used to evaluate the generalization capacity 

of the induced transformation rules. It is worth mentioning 

that, the same measurements have been used in the literature 

to evaluate similar studies.  

         (1) 

      (2) 

     (3) 

    (4) 

    (5) 

For the problem solved by ILP-based systems, usually the 

performance can be measured by grouping the results as 

true positive (TP), true negative (TN), false positive (FP) 

and false negative (FN). In the context of this work, TP 

refers to the correct target model artifacts generated by the 

transformation rules. FP indicates the incorrect target model 

artifacts generated by the transformation rules. FN denotes 
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the correct target model artifacts in the actual target model, 

but the transformation rules do not generate. Lastly, TN 

refers to the other model target artifact that were correctly 

ignored by the transformation rules (in grouping problems). 

Eq. (1)–(5) demonstrate the measures considered, through 

this work, to measure the induced rules performance. 

4. Induction Results 

This section presents conducted experiments that are in line 

with the above case studies. The first experiment considers 

packaging class diagrams to evaluate the single predicate 

learning. Likewise, the second experiment examines the 

multi-predicates learning capacity of the ILP system by 

studying the use of Façade interface. 

4.1 Single Predicate Learning 

A dataset consists of twenty-two systems was used to feed 

the GAILP to start the induction procuress. Each system 

consists of pairs of source- target models used as learning 

samples. Table 3 shows samples of the rules resulted from 

the induction. By using all learning samples, GAILP was 

able to induce 63 rules for packaging class diagrams. These 

rules were individually evaluated against the learning 

systems, batched together. Almost have of the rules showed 

a satisfactory accuracy.  

Next, a threshold of 0.4 was chosen to specify the subset 

offered the optimal performance. As a result, the top 

twenty-four rules were selected for further assessment to 

determine the most generic rules. With considering 

different combinations, the rules were applied to the 

learning systems one by one. Table 3 demonstrates the 

accuracy measures in a training system-wise manner. The 

average of the accuracy measure equals to %93.  

To assess the generalization of the transformation rules, we 

counted the number of times each rule was applied to form 

the best combinations for the learning systems. The rules 

have been applied with different frequencies. It is supposed 

to consider the high frequently applied rules to be validated 

further using unseen samples. A threshold of (.30) was 

considered to take the most frequent applied rules. Several 

validation runs have been conducted using a validation set 

that consists of twelve systems. In each run, a subset of the 

candidate rules were applied to the validation systems one 

by one. In the first run, only the top two rules were used, 

while the second run added one more rule to the subset, and 

so on. The averages of performance measures for the 

different runs using the validation systems are depicted in 

Table 3. 

 

 

Table 3 Evaluating the induced rules using the learning and validation 

systems 
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Learning Systems 

Average 0.96 0.77 0.94 0.83 0.93 

sys1 0.942 0.976 0.825 0.888 0.947 

sys2 0.892 1 0.833 0.903 0.933 

Sys05 1 0.5 1 0.667 0.833 

Sys07 1 0.731 1 0.842 0.944 

Sys08 1 0.694 1 0.819 0.9 

Sys09 0.8 0.56 0.8 0.654 0.753 

Sys10 0.944 0.889 0.944 0.903 0.939 

Sys12 0.969 0.818 0.923 0.858 0.935 

Sys14 1 0.746 1 0.851 0.938 

Sys15 1 0.74 1 0.839 0.95 

Sys17 0.987 0.836 0.944 0.877 0.962 

Sys18 1 0.725 1 0.817 0.975 

Sys19 0.638 0.642 0.638 0.627 0.667 

Sys20 1 0.772 1 0.87 0.97 

Sys22 1 0.642 1 0.764 0.978 

Sys23 1 0.738 1 0.843 0.967 

Sys26 0.97 1 0.933 0.963 0.978 

Sys28 0.955 0.599 0.955 0.719 0.936 

Sys29 1 0.748 1 0.85 0.964 

Sys30 1 0.859 1 0.923 0.976 

Sys31 0.981 0.831 0.921 0.868 0.954 

Sys32 1 0.889 1 0.933 0.967 

Validation Systems 

Average 0.93 0.70 0.91 0.77 0.88 

Sys3 1 0.619 1 0.729 0.948 

Sys4 0.958 0.822 0.933 0.859 0.917 

Sys6 0.815 0.535 0.815 0.638 0.804 

Sys11 1 0.76 1 0.861 0.958 

Sys13 1 0.711 1 0.83 0.909 

Sys16 0.976 0.84 0.893 0.839 0.955 

Sys21 0.625 0.642 0.673 0.646 0.667 

Sys24 0.952 0.806 0.917 0.838 0.9 

Sys25 1 0.711 1 0.822 0.923 

Sys27 1 0.584 1 0.698 0.925 

Sys33 0.983 0.744 0.917 0.803 0.942 

Sys34 0.8 0.621 0.8 0.698 0.762 
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4.2 Multi-predicate Learning 

One of the limitations reported about current ILP systems is 

their inability to deal with multi-predicates learning 

automatically [16]. “Introducing Façade interface” is an 

example of model transformation learning tasks that 

requires a multi-predicates learning approach. The 

experiments conducted, in this section, is to evaluate 

GAILP’s capacity in terms of the multi-predicates learning. 

In the software modeling process, introducing a façade to a 

model means not only adding the façade interface, but also 

adding more than one artifact.  

The new artifacts may include a new interface, association 

relationships linking the external clients to the interface, and 

others linking the interface to the classes placed in its 

package. Thus, the used ILP system should be able to learn 

multi-predicates hypotheses and discover the accurate order 

to start inducing the hypotheses.  

The learning process started with the given background 

facts and the first group positives based on initial order. The 

system tried different orders until it found the most 

appropriate one. Fig. 6 presented samples of rules induced 

for introducing a façade, and its related relationships. The 

first group shows sample of the rules induced for 

introducing façade, while the other two groups shows the 

rules for the relationship (associations) artifacts. 

 

Fig. 6 Samples of the induced transformation rules - Introducing Façade 

(a) Façade artifact, (b) Association between a client and façade, (c) 

Association between a façade and a class 

It is worth mentioning that, the last two rules are supposed 

to be applied whenever there is application of any rule in 

the first group. The induced transformation rules were 

applied (one by one) to the learning systems (source 

models) and the results were compared against the actual 

target models. The rules evaluation focused only on the first 

group of the transformation rules presented in Fig. 6. When 

applied the rules on the learning examples, some rules are 

applied perfectly many times, while others might be used 

one time. As specified in the methodology, the rules were 

ranked according to their application frequency as several 

combinations have been assessed to find the best results. A 

subset of the rules have been selected based on a threshold, 

(30% was determined to take into account most frequent 

applied rules). Only five rules were applied on more than 

30% of the presented systems. Further validation, using the 

validation dataset, was conducted for the candidate rules as 

top generic induced rules. The results obtained when 

applying the transformation rules on unseen systems are 

shown in Table 4. Obviously, GAILP was able to learn 

efficiently multi-predicates hypothesis and to discover 

accurately the order of the induced rules (f-measure = 0.90). 

Table 4 Evaluating the induced rules using the learning and validation 

systems 

System Recall Precision F-Measure 

Learning Systems 

Average 1 0.955 0.965 

Sys4 1 0.96 0.95 

Sys17 1 1 1 

Sys25 1 0.98 0.94 

Sys21 1 0.95 0.98 

Sys11 1 1 1 

Sys12 1 0.75 0.85 

Sys14 1 1 1 

Sys27 1 1 1 

Validation  Systems 

Average 1 0.88 0.90 

Sys5 1 0.97 0.95 

Sys7 1 1 1 

Sys30 1 0.67 0.72 

Sys2 1 0.93 0.94 

Sys23 1 0.86 0.92 

4.3 Comparisons with ALEPH 

We evaluated the capability of GAILP in learning model 

transformation rules. Two main transformation tasks have 

been considered, namely: packaging class diagrams and 

introducing Façade interface. In this paper we showed that 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.4, April 2019 

 

209 

 

GAILP overcomes limitations encountered when using 

traditional ILP systems. Through this work, we conducted a 

comparison between GAILP and ALEPH within the context 

of the model transformation. Several experiments were 

conducted on a considerable large dataset consists of 34 

systems that vary in size and were collected from different 

sources. The dataset was divided into independent sets for 

learning and validation purposes.  

Hamdi and Ahmed have recently reported results of using 

ALEPH against a software modeling problem, namely 

packaging class diagram. They observed some limitations 

such as the prior declarations of modes and types to start the 

learning process. The same learning and validation datasets 

were used when testing both systems. Therefore, we 

considered it acceptable to compare performance through 

quality and accuracy of the induced transformation rules. 

For the single predicate learning, on most cases ALEPH 

was able to produce rules for packaging the class diagrams 

based on the given examples. However, it required a 

rigorous preparation of the files and models declarations in 

each run. For packages with many classes and complicated 

relations, ALEPH could not find a solution using different 

settings of search. For the multi-predicates learning, 

ALEPH was not an efficient in inducing the required rules 

as it manipulates the problem as a regular single predicate 

learning [19]. 

It is obvious, GAILP showed a better performance in both 

tasks. The validation results for the packaging task showed 

that the accuracy of GAILP was 0.88 comparing with 0.83 

achieved by ALEPH, Fig. 7 (a). Similarly, for the second 

task, the f-measure obtained using GAILP was 0.96, while 

the f-measure of ALPEH was 0.66, Fig. 7 (b). 

Definitely, the number of induced rules varies from one 

system to another. For packaging problem, GAILP was able 

to induce 63 rules comparing with 25 rules induced via 

ALEPH. The increase of the induced rules came from the 

coverage of all the positive examples using GA 

combinations. We explained that, not all the induced rules 

can be stored in the rule base for future development. The 

rules were evaluated in different ways and validated to 

select the best subset to be stored in the rule base. That mean 

only 12 out of 63 rules are recommended to be stored in the 

rule base. It is important to mention that, for introducing 

Façade interface the results obtained from GAILP came 

from a combination of applying façade and associations 

rules. However, the comparison with rules induced by 

ALEPH for façade interface is reasonable. The reason is 

that the application of the association rules is a consequence 

of the façade rules application. In other words, the 

associations' artifacts will be added correctly to the model 

if the façade interface was added to the right package. 

Similarly, if there is a missed façade interface in the model, 

consequently all the related associations will not be added. 

 

Fig. 7 (a) Introducing packages to the class diagram, (b) Introducing 
Façade design pattern 

From the previous experiments, we noticed that GAILP and 

ALEPH have common characteristics where there are many 

problems that can be solved correctly using both systems 

such as classification, learning transitive rules, arch 

problem without modifications, and packaging of class 

diagrams. However, ALPEH could not find solutions for 

multi-predicates learning problems. As pointed out by our 

experimental results, GAILP is not meant to be a general-

purpose ILP system; rather it is meant to be domain specific 

in the sense that when having multi-predicates that can be 

batched together to learn different types of hypotheses with 

different number of arity. 

5. Conclusion and Future Work  

In this paper, we presented a GA-based ILP system, GALIP. 

We evaluated the capability of GAILP in learning model 

transformation rules. Two main software engineering 

transformation tasks have been considered, namely: 

packaging class diagrams and introducing Façade interface. 

Through this work, we conducted a comparison between 

GAILP and ALEPH within the context of the model 

transformation. Several experiments were conducted on a 
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considerable large dataset consists of 34 systems that vary 

in size and were collected from different sources. The 

dataset was divided into two independent sets; one for 

learning and one for validation. Experiments showed that 

GAILP outperforms ALEPH. The validation results for the 

packaging task showed the accuracy of GAILP to be 0.88 

comparing with 0.83 achieved by ALEPH. Similarly, for 

introducing Façade interface task, the f-measures obtained 

using GAILP and ALEPH were 0.90 and 0.66 respectively. 

As pointed out by our experimental results, GAILP is not 

meant to be a general-purpose ILP system; rather it is meant 

to be more appropriate for domains having multi-predicates 

that can be batched together to learn different types of 

hypotheses with different number of arity. As a future work, 

we will use GAILP to induce transformation rules with 

considering other transformation problems   
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