
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

62

Manuscript received May 5, 2019
Manuscript revised May 20, 2019

Factors Contributing in Failures of Software Projects

Muhammad Hamid†,††, Furkh Zeshan†††, Adnan Ahmad††† and Esma Aimeur††††

†NCBAE, Lahore, Pakistan
††UVAS, Lahore, Pakistan

†††COMSATS University Islamabad, Lahore Pakistan
††††Department of Computer Science, University of Montreal, Quebec Canada

Summary
Software Project management (SPM) is a vital concern for
software industries to follow best practices for successful project
completion. Despite the rich availability of SPM literature, every
year around 70% of projects cannot gain successful completion
worldwide. Software failure impacts the software industry in
terms of reduced revenue, development teams with stress and
reduced motivation, general population in terms of jobs reduction
and the whole country in terms of reduced exports. This study
explores the literature on SPM with the objectives of identifying
major contributing factors in software failure. The current study,
identified 2171 research studies out of which 68 have been
thoroughly analyzed, after applying guidelines of inclusion and
exclusion. The analysis of 68 selected research papers
highlighted 13 influencing factors toward software project failure,
with four major, five significant and four insignificant factors,
where the major factors are incorrect cost and time estimation.
The analysis included 35.29% empirical studies, 47.06% general
literature review and 17.65% case studies. The analysis also
reflected that 86.77% papers only examined the state of the art
while only 13.23% of research studies discussed some algorithm
to reduce failure. Further, the analysis found that only 4.41%,
studies developed some automation tool for reducing some
failure factor while 95.59% of studies did not developed any tool.
The findings of this study provide future insights for SPM
research as well as the software industry to increase the ratio of
successful projects.
Key words:
Software project management, Software development, Software
failure factors

1. Introduction

The examination and categorization of project failure have
been the subject of extensive study in recent years [1-6]. A
software project is considered as failure, when it does not
deliver within allocated time, budget or minimum quality
[7]. There are many reasons behind software project
failure such as lack of project planning [8, 9], scope
creeping [10-12], wrong estimation [8, 13-15], incomplete
requirements [16], inadequate selection of human resource
[17-19], and lack of user involvement [20, 21], etc. As
software projects are the primary source of revenue
generation for most software companies [22], their failure
negatively affect the company’s image, goodwill, revenue
drive and perceived satisfaction of customers and clients

[23]. On the other hand, successful completion of a
software project positively impacts on software exports,
which, in return, not only enhances the economy of a
country but also creates new jobs [24]. For many years, it
remains a challenging task for researchers and
practitioners to manage information technology (IT)
projects successfully. Two major software project
management research groups, GAO (established 1979)
and Standish Group (established 1994), publish their
annual reports regarding software project failure and
success [13, 25]. The Standish Group gathers statistics
from an extensive databases of projects executed every
year and releases report [13], which demonstrates various
reasons for software project failure and success. They
classify all projects in three major types with respect to
their completion status [26], detail is under:

(i) Type 1 (successful) projects are accomplished
within allocated time and budget frame along with
all already specified functions and features.

(ii) Type 2 (challenged) projects are completed and
functional, but exceeded time limits, over-budget,
or supported fewer features than specified.

(iii) Type 3 (failed) projects are disproved at a
particular point before their completion.

According to Standish group recent findings [13], only
29% projects are successfully completed, 19% projects
failed outright; while 52% projects overrun of time,
compromised functionality or cost. In this research, both
type 2 and type 3 projects were considered as failures. A
summary of the Standish group reports throughout the
previous 22 years (from 1994 to 2015) is exhibited in
Figure 1.
This research aims to investigate various factors that
contribute to software projects failure. For this purpose,
the literature is identified, assessed and analyzed to
explore essential guidelines for avoiding software projects
failure in future. This exploration comprised of three
phases: a) planning the investigation process, b)
conducting the software project failure review, and c)
reporting the review results. The outcome shall exhibit the
complete perspective of software project failure through
identifying failure factors, their ranking, current state of

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

63

the domain as well as proposing guidelines to overcome these failures.

Fig. 1 Standish figures from 1994–2015 publication years

This paper is systematized as follows: Section 2, describes
state of the art in the context of software project failure.
Section 3, presents the systematic literature review process
for identification of software failure. Section 4, provides
the detailed analysis while Section 5, explains the
recommendation and research contribution. Section 6,
concludes the paper with main findings and potential
future research directions.

2. State of the Art

Various studies have explored the literature in order to
extract responsible factors for software project failure.
This section provides an overview of the existing research
studies to identify existing research in this specific
research area, questions raised and interpreted
phenomenon of interest.
Jorgensen and Shepperd [27] identified 76 major journals
of the field and shortlisted 304 research papers from them
for the identification of key software project failure factors.
Their analysis concluded that cost estimation is the main
factor influencing the project failure. Dikert and
colleagues [28] conducted an exploratory review of the
literature for identifying factors that affect the software
failure. Total 1875 papers were found on keyword search,
while 52 research papers were selected for thorough
analysis, after applying inclusion and exclusion criteria.
Their analysis showed that the major influencing factors
are the wrong estimation of time, lack of management
support and inadequate human resource. Also, in 2016,
Idri and colleagues [29] conducted a review of the

literature for the identification of influencing factor
towards software failure during 2000 to 2016 years. An
analysis of 24 research papers highlighted that estimation
of time and cost were the main contributing factors during
these 16 years. Guillaume [30] explored causes of
software project failure through a case study of different
software development circumstances. His case study of
202 software projects identified various software project
failure factors including unrealistic project goals, lack of
resources, executive support and appropriate planning.
Walia and Carver [16] conducted a review in software
project development literature to explore the major reason
behind software failure. After reviewing 149 papers, they
found that inappropriate requirement management is the
major influencing factor in project failure. Similarly,
Hossain and colleagues [31] explored the literature for the
same reason. They found 336 research articles in the initial
search, and a final count of 20 research articles were
analyzed. The analysis showed that in distributed projects,
coordination and communication among team members is
a key challenge which contributes towards most project
failures. Inayat and colleagues [32] conducted an
exploratory review on identifying the failure rates of
software projects. The review conducted on literature
published between 2002 and June 2013, where an analysis
of the finalized 21 papers suggested that improper
requirement gathering was a main contributing factor
towards project failure during those 12 years. Gupta and
colleagues [33] conducted a case study on globally
distributed projects. The evidence indicated that the main
challenges in such projects execution were cooperation

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

64

between team members and estimation. These challenges
further lead to project delays or budget overrun. Cerpa and
colleagues [34], after an extensive literature review,
identified that three major factors are responsible for
project failure. These factors include the capability of
project manager, unrealistic project plan and inadequate
human resource. Komchaliaw and Wongthongtham [35]
carried out an extensive review of the literature and
identified key factors that lead to software project failure.
These factors included inadequate staff, improper project
planning and inappropriate requirements. In a case study,

Attarzadeh and Ow [36] developed a questionnaire to
investigate the factors that lead to software project failure.
The data collected from 50 developers suggested that poor
planning and scheduling are the main reasons for software
project failure. Damasiotis and colleagues [37] conducted
an extensive literature review for the identification of
crucial failure factors in software development. According
to their finding, the wrong estimation of the time is one of
the leading reasons behind software project failure.

Fig. 2 Overview of the search process.

The above overview have explored various project
influencing failure factors, identified in previous research
work. However, the existing studies do not provide any
insight on the categorization of important failure factors
according to 80/20 rule [111], nor they explored the
impact of existing automation tools and algorithms to
highlight their effectiveness and shortcomings. This study
has explored the latest work conducted in this area, along
with some neglected issues, which could help researchers
and software project management community to reduce
their risks of software project failure.

3. Investigation of software failure factors

The literature review provides essential guidelines to
identify, assess and analyze available research regarding a
specific research questions [38, 39]. This process results in
a secondary study, whereas, individual studies that
contribute towards it are considered primary studies. This
exploratory study adapted the protocol for executing the
review in software engineering suggested by Kitchenham
and colleagues [38], which consists of three major phases,
i.e., planning, conducting and reporting. Explicit
explanation of these phases for executing the investigation

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

65

process for identifying software failure factors is described
below.

3.1 Planning the Investigation Process

This is the first phase of the investigation which consists
of a) justification for performing the investigation; b)
research question design; c) defining the search strategy;
and d) developing inclusion and exclusion criteria.

3.2 Justification for the investigation

There are various needs for performing this investigation
of the literature. Its primary aim is to collect the literature
on project failure in a systematic way and summarize all
prevailing practices and information in an organized and
non-prejudiced way. Further, it aims to assess the impact
of project failure research and to highlight various
challenges that can give more insights for future
investigations. This research work will help to provide the
latest research findings to the software industry as well as
researchers interested in the software development process
over some overlooked issues.

3.2.1 Research Questions Design

Developing appropriate research questions is an essential
task before conducting the investigation because research
questions provide probing directions to extract information
from primary studies [38]. To define research questions
for this study, the Goal-Question-Metric (GQM) approach
[40] was used. This approach starts with identifying
specific goals like object, viewpoint, issue, etc. Then,
these goals are further refined into various questions and
then subdivided into metric [40]; which give ways to get
the answers to defined questions. Finally, based on these
answers, data can be investigated to evaluate the
achievement of specified goals. To identify the failure
factors of software projects, following questions were
designed by adapting the above-mentioned procedure.

RQ1. What are the main factors for the failure of software
projects?
RQ2. Explore various methodologies used in literature to
probe the issue?
RQ3. How many algorithms or automation tools were
proposed to assist the project managers?
RQ4. What are the limitations of the existing research
studies?

3.2.2 Search Strategy

The purpose of defining the search strategy is to find an
extensive and unbiased method for the gathering of
research material related to research questions. The search
strategy was created to maximize the probability to search

the related studies in a research area. For search purpose,
popular databases used in software engineering research,
as described in [41], were used, including IEEE Digital
Library, ACM Digitial Library, SpringerLink, and
ScienceDirect. The selected databases are extensive and
contain bibliographic data of production from all key
publisher of the computing literature. In this manner, we
utilized the above four databases along with Google
Scholar for verifying the collected results and performing
some meta-investigations. Our search keys stem from the
research questions, while the boolean operator of “OR”
and “AND” were utilized to join other words. The search
string used in this review was (software OR application
OR product OR project) AND (reason OR cause OR
factor) AND (failure).

3.2.3 Inclusion and Exclusion Criteria

Inclusion and exclusion criteria are a set of predefined
characteristics used to identify research articles to be
included in a research study. Inclusion criteria, along with
exclusion criteria, make up the selection or eligibility
criteria used to rule in or out the target research articles for
a research study. The inclusion and exclusion criteria to
address the research questions of the current investigation
are shown in Table 1.

Table 1: Inclusion and exclusion criteria used in this investigation
Type Description

Inclusion

Only those papers were considered which,
1. Belong to popular computing research

databases, including ACM, IEEE,
Elsevier, Springer and Google Scholar.

2. Discussed some failure factor in
software project development.

3. Investigated the factors influencing
software project failure.

4. Provided evidence of software project
failure through case studies, experience
reports and field studies.

5. Are published during the years 1990 to
2017.

Exclusion

Exclude the papers, which
1. Belong to non-indexed journals, books,

master or doctoral dissertations and the
papers that did not undergo a proper
investigation process.

2. Belong to hardware or others fields
rather than software engineering.

3. Are not relevant to the research
questions.

4. Concern news issues or related experience
in software project failure.

5. Is not written in the English language.
6. Are duplicate (select the latest version).

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

66

3.3 Conducting the Investigation

To conduct the investigation, procedures and instructions
defined in the first phase were executed. This phase
comprises of: a) selection of primary studies, and b) the
quality assessment of the selected studies. The selection of
primary studies at different steps of quality assessment is
shown in figure 2.

3.3.1 Primary Studies Selection for Investigation

This research was carried out between June 2018 to
December 2018. In the initial phase, 2079 studies were
extracted using a search string. Through title base
screening, 1232 studies were eliminated, reducing the
remaining number to 847. Then the abstract based
screening was performed on remaining 847 papers and
791 more papers were excluded, reducing the final count
to 56 papers. Two researchers, working autonomously,
extracted the relevant research papers by scanning portions

of every article, like the title and abstract. It was observed
that repetition of data was present due to various reasons.
For example, some authors published a new version of
their previously published work, or a shorter version is
published in a conference or workshop. So, all duplicated
results were excluded carefully, and only the recent work
without duplication was kept. On these 56 papers,
snowballing was applied and 92 more papers were
identified. The inclusion and exclusion criteria were
applied on these newly identified papers, where duplicated,
title based screening (92-59=33) and abstract based
screening (33-21=12) left 12 papers to be included,
making a total of 68 (56+12) papers for thorough
investigation. These 68 papers from January 1999 to
December 2018 were screened and retained for in-depth
analysis. Statistics of selected research studies related to
software project failure is given in Table II. Overview of
the division of chosen studies as per year is provided in
Figure 3.

Fig. 3 Selected Papers by Publication Year

3.3.2 Quality Assessment

Table 2: Selected research works Statistics for software project failure
Serial No. Publication type No. of Research studies

1 Journal 39
2 Conference 25
3 Chapter 4
 Total 68

The quality assessment criteria were used to determine the
rigorousness and credibility of the used research methods
and the relevance of the studies. Quality assessment was
developed to gain the significant results of studies. Only
reputed scientific databases were selected in the study.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

67

4. Analysis of Literature

In this section, outcomes of the in-depth investigation
about software project failure factors are summarized to
determine the existing gaps and current research trends.

4.1. RQ1. What are the main factors for the failure of
software projects?

The objective of this question was to identify the main
reasons behind software project failure. Similar
explorations have been done earlier in this domain, but to
complete the analysis for other overlooked issues, it was
important to consider some most recent findings. Although
some of the factors are already explored, however, this
study organized them in various categories according to
their influence on project failure. The analysis of 68

selected research papers highlighted 13 influencing factors
that contribute toward software project failure. Among
them 4 are major (top 33%), 5 significant (medium 33%)
and 4 are insignificant (bottom 33%) factors, as illustrated
in figure 4. Out of 68 research papers, 43 highlighted that
wrong estimation of time and cost are major factors for
software project failure. Time and cost estimation need
detailed information about human resources availability,
scope and requirements of the software project. Software
estimation plays a vital role in software project
development as a slight miscalculation not only delays the
completion of a software project but also increases its cost.
It is observed in various studies that useful software
project planning and management are challenging to
achieve without proper estimation [8, 9]. The estimation is
used by the project manager for managing and controlling
a software project. The wrong estimate not only delays the
completion of a software project but also increases its cost
[8, 14, 42].

Fig. 4 Project key failure factors

After time and cost estimation, the second major
contributing factor is scope creep, highlighted by 18
papers. Scope creeping appears due to changes in
requirements at later stages. The change in requirements
can occur due to several reasons including the lack of
client involvement, or unclear project vision. To handle
this issue, software development team has to rework
which negatively affects the development cost and time.
Ebert and De Man [43] found that one of the causes of
scope creep is requirements uncertainty. They identified
this after performing an empirical study over 246 software

projects from years 2002 and 2003.
Inadequate human resource is the third main reasons
behind software project failure. Human resource refers to
less trained project managers or lack of project
management skills to implement theoretical principles in
practice [44]. It also relates to poor selection of IT skills
professionals, as well as lack of proper communication
skills which often lead to project failure [44]. For example,
if the team members are not suitable, a lot of rework may
be needed to finalize the project, which ultimately delays
and over-budget a software project [45]. On the other hand,

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

68

suitable selection of the team members positively impact
the software quality [45] and implies the satisfaction of
team members which is directly proportional to software
productivity [42].
Poor risk assessment is found to be the fourth major
reason for software project failure. Proper risk assessment
plays an important role in reducing the probability of

software failure. Therefore, to achieve a successful
outcome, the project manager must identify, assess,
prioritize, and manage all the major risks [46]. Verner and
colleagues [47] analyzed 70 failed software projects, and
identified 57 essential factors that can affect software
project failure, where the major reason was poor risk
assessment.

Fig. 5 Types of studies

After these four major failure factors for software projects,
various other significant factors were also identified. 7 out
of 68 research papers suggested that communication gap
between team members during software development is a
reason of software project failure; 6 research articles

argued for lack of appropriate planning, 5 research articles
suggested lack of user involvement, 4 claimed that lack of
executive support while 4 found that unrealistic clients’
expectations are the significant cause behind project
failure.

Fig. 6 Level of the estimation algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

69

After the major and significant factors, some other factors
were also highlighted by some studies in the literature. We
consider them insignificant as they were highlighted by
less than 5% of the literature. These factors include lack of
resource [16] , technology illiteracy [46], unrewarded
human resources [47] and trust among the team members
[35]. These low contributing factors might have some
impact on the software project failure, but strong empirical
evidence will be required before considering them
significant. The analysis is summarized in figure 4 along
with various categories of failure factors for software
projects.

4.2 RQ2. Explore various methodologies used in
literature to probe the issue?

This study analyzed 68 articles from literature to
synthesize and identify 13 (4 major, 5 significant and 4
insignificant) software project failure factors. Different
studies have used different methodologies to identify
similar factors. Figure 5, presents an overview of the
methodologies followed in literature, where SLR is the
major adapted methodology (used by 47.06% articles),
followed by empirical study (35.29%) and case study
(17.65%).

Fig. 7 Level of Automation achieved

Methodology proposed by [38] is used for a complete
overview of all the available evidence about a particular
domain [50]. Based on the evidence, it can provide a
definitive answer to a specific question. SLR reviews the
literature in a certain field, giving an outline of the field,
recent progress, main problems and challenges the field is
still faceing [51]. On the other hand, the empirical
methodology is used for acquiring knowledge by means of
direct and indirect observation or experience and
perception [52]. An empirical methodology investigates a
contemporary phenomenon within its real-life context;
when the boundaries between phenomenon and context
are not clearly evident; and in which multiple sources of
evidence are used [53]. The case study methodology is
primarily used for exploratory purposes [54, 55].
In our search results, around half of the studies adapted the
SLR methodology to identify software project failure
factors. The main reason behind this might be a broader
insight provided by SLR which lacks in empirical study or

case study. Both the latter options only explore a part of
the domain while SLR offers a more thorough insight into
multiple projects with various perspectives of different
regions under different circumstances.

4.3 RQ3. How many algorithms or automation tools
were proposed to assist the project managers?

The literature analysis showed that only 13.23% papers
proposed some algorithm, as shown in figure 6. Likewise,
the estimation achieved through automation was found in
only 4.41% studies, while the remaining 95.59% research
articles did not mention any automation tool as reflected in
figure 7. Total 9 algorithms were proposed in the literature
for software project failure factors, out of which only 3
were developed as some tool. A summary of these six
algorithms and three automation tools are briefly
discussed in the sections below, so they may provide some
directions for future researchers and practitioners.

https://en.wikipedia.org/wiki/Observation

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

70

4.3.1 Proposed Algorithms

Better decision-making in scheduling and accurate
management of the development team according to their
skills and experiences are two key areas for a software
organizations. Stylianou and Andreou [56] proposed an
algorithm for better scheduling and management of team
activities to achieve the desired results during software

project development. In scheduling constraints, the
dependencies among the tasks are highlighted and the
required tasks are assigned to team members according to
their experience and skills. Similarly, Bahlerao and Maya
[57] proposed an algorithm (Generalized Estimation
Method (GEM)) to handle the influencing factors of
software projects in agile context. Their proposed

algorithm estimates the cost and time of future software
projects. Likewise, Thamarai and Murugavall [24]
proposed an algorithm (DEAPS) for software cost and
time estimation. Their proposed approach used an analogy
to retrieve relevant software projects from a database and
predicted the cost and time for new software projects.

Along the same lines, Bia and colleagues [58] proposed an
approach (Digitization Costs Model (DiCoMo)) to
estimate the cost and time for new projects. They
discovered various missing factors in existing approaches
like COCOMO [59], function points [60], and historical
data [61], and proposed an algorithm to minimize these
factors through digitization. Additionally, Francisco and

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

71

colleagues [62] developed an algorithm to identify risk
factors which are more influential in determining project
outcome. Their algorithm was tested with several existing
software risk prediction models and showed an improved
estimation of time and cost. Moreover, Peretz and Opher
[63] proposed an algorithm to estimate the time and cost
of software projects at early stages of their development
lifecycle. For this purpose, they combined the Mk-II
Function Points method [64] for software estimation with
the ADISSA (architectural design of information systems)
[65]. Their results showed better prediction of effort and
time.

4.3.2 Developed Automation Tools

Adnan and Afzal [66] developed a tool to estimate the
time of agile-based projects and to use the knowledge
acquired during software development for upcoming
software projects. The proposed tool uses the knowledge
base and multi-agent system for estimation and saving the
lesson learnt during software development. In another
approach [46], Jeet and colleagues identified risk factors
that lead towards software failure. The key four factors
were immature technology, reliance on a few personal,
lack of client support and lack of competence. Based on
these four factors, a tool was developed to predict the
delay and better management of time and cost in software
project development. In addition, Faliagka and colleagues
[15] proposed an online job recommender system for
recruiting better human resource based on machine
learning algorithms. The tool collects the candidate’s basic
information from his/her LinkedIn profile and reputation
from his/her social presence and activities. Based on these
two parameters, the algorithm compares the prerequisites
of job requirements, calculates candidates’ final scores and
recommends the high score candidate.

4.4 RQ4. What are the limitations of the existing
research studies?

After extensively analyzing the literature about software
influencing factors, various limitations were found in
existing research studies, which are summarized in the
investigation report (attached in appendix-1). Multiple
studies have suggested that a survey from the software
industry is needed to identify reasons for software project
failure. Various sub-items for cost and time estimation,
scope creep, human resource and risk assessment should
also be explored for better understanding and planning.
There is a need to improve and expand the existing
algorithms to cover other dimensions than just time and
cost estimation. In addition, some of the proposed
algorithms need some improvements by integrating other
components of project estimation and management. In
addition, majority of the current algorithms do not
consider knowledge from previously developed software

projects. Each study along with its methodology and
limitations is discussed in the investigation report
(attached in appendix-I)

5. Research Contribution and
Recommendation

Software projects fail for so many diverse reasons which
are difficult to be lumped into one category as illustrated
by this research effort. To overcome this issue, this
research proposes a framework for software project failure
factors as shown in Figure 8. The framework consolidates
current state of the art by analyzing existing studies,
algorithms, automation tools and suggested failure factors.
The framework also lumps various failure factors into
three main categories based on their presence in literature
which might help in the management of software projects.
It also highlights the research gap in this domain as most
of the algorithms and automation tools only support the
estimation phase. In brief, this paper can work as a
coherent source of literature on the failure of software
projects, readily available for both researchers and
practitioners.
Most of the studies explored that expert judgment is a
primary approach for estimation of time and cost.
Therefore, inexperienced project managers wrongly
estimating time and cost are the primary cause of software
project failure. Wrong estimation highly influences
others factors in terms of task completion. Based on our
findings from existing literature, following
recommendations may help in building high confidence
level for managing projects successfully.

(1) Training and usage of standard software project
management tools can be the key to avoid failure
factors.

(2) Experienced project managers should always be
involved during the estimation process to
minimize the influence of other identified factors
on software project failure.

(3) Project time and cost are identified as the most
contributing factors of most software projects
failures, which should be emphasized more in
planning a software project.

(4) Project managers should focus on good
governance, risk management and regulatory
factors to stay ahead of the competition.

6. Conclusion and Future Work

This study explored the literature related to software
project failure to highlight its influencing factors. It also
aimed to identify current trends in this field and gaps
present in the existing research. Total of 2,171 studies

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

72

were observed with the combination of manual
snowballing and automated searches, out of which 68
studies were further explored in detail according to the
adapted investigation protocol. From these 68 selected
studies, 13 influencing factors were identified and
classified into three main categories. The four main
influencing factors are wrong estimation of time and cost,
scope creeping, inadequate human resource and risk
control. The analysis further reflected that wrong
estimation of time and cost is the major factor causing
software project failures. Along with these major factors,
five significant factors were also identified, which include
communication issues, lack of planning, lack of user
involvement, unrealistic expectations and lack of
executive support. In addition, some insignificant factors
were also identified which are lack of resources,
technology illiteracy, staff not rewarded trust and
knowledge sharing. The most influencing factor identified
in this research work is time and cost estimation. The
percentage of risk towards project failures can be greatly
reduced if time and cost estimation is adequately
evaluated.
Apart from factor identification, this study also explored
various methodologies adopted in existing research. Three
major adapted methodologies related to software project
failure are systematic literature review (47.06%),
empirical study (35.29%) and case studies (17.65%).
Further, this study identified existing algorithms and
automation tools in the domain and found that only
13.23% research studies proposed some algorithm to
resolve the issue of software project failure and only
4.41% research studies developed some tool to aid the
situation. In the future, an automated tool will be
developed for better decision making for the scope
management, resource selection, allocation and risk
management along with time and cost estimation. A
complete automation solution that can help with all four
major failure factors will also be developed. Overall
results indicated that more emphasis towards major
identified factors can help in software project management
and also put a positive impact on the successful
completion of software projects. Successfully completion
of software projects positively impact the software exports
of a country, which in turn not only enhance the economy
but also creates new jobs.

References
[1] K. Conboy, "Project failure en masse: a study of loose

budgetary control in ISD projects," European Journal of
Information Systems, vol. 19, pp. 273-287, 2010.

[2] A. Bharadwaj, M. Keil, and M. Mähring, "Effects of
information technology failures on the market value of
firms," The Journal of Strategic Information Systems, vol.
18, pp. 66-79, 2009.

[3] R. Stanley and L. Uden, "Why projects fail, from the
perspective of service science," in 7th international

conference on knowledge management in organizations:
service and cloud computing, 2013, pp. 421-429.

[4] S. Dhir, D. Kumar, and V. Singh, "Success and Failure
Factors that Impact on Project Implementation using Agile
Software Development Methodology," in Software
Engineering, ed: Springer, 2019, pp. 647-654.

[5] F. A. Batarseh and A. J. Gonzalez, "Predicting failures in
agile software development through data analytics,"
Software Quality Journal, vol. 26, pp. 49-66, 2018.

[6] S. M. Sarif, S. Ramly, R. Yusof, N. A. A. Fadzillah, and N.
Y. bin Sulaiman, "Investigation of Success and Failure
Factors in IT Project Management," in International
Conference on Kansei Engineering & Emotion Research,
2018, pp. 671-682.

[7] D. L. Hughes, Y. K. Dwivedi, A. C. Simintiras, and N. P.
Rana, "Project failure and its contributing factors," in
Success and failure of IS/IT projects, ed: Springer, 2016, pp.
3-25.

[8] R. Popli and N. Chauhan, "Cost and effort estimation in
agile software development," in Optimization, Reliabilty,
and Information Technology (ICROIT), 2014 International
Conference on, 2014, pp. 57-61.

[9] Z. Jalil and A. Hanif, "Improving management of
outsourced software projects in Pakistan," in Computer
Science and Information Technology, 2009. ICCSIT 2009.
2nd IEEE International Conference on, 2009, pp. 524-528.

[10] I. ul Hassan, N. Ahmad, and B. Zuhaira, "Calculating
completeness of software project scope definition,"
Information and Software Technology, vol. 94, pp. 208-233,
2018.

[11] K. L. Ramage, "Scope Management Strategies for
Engineering Leaders to Improve Project Success Rates,"
2018.

[12] S. Amjad, N. Ahmad, T. Saba, A. Anjum, U. Manzoor, M.
A. Balubaid, et al., "Calculating completeness of agile
scope in scaled agile development," IEEE Access, vol. 6,
pp. 5822-5847, 2018.

[13] T. Clancy, "The Standish Group Report CHAOS," Project
Smart, available at: www. projectsmart. co.
uk/white-papers/chaos-report. pdf (accessed March 7,
2016).[Google Scholar] 2014.

[14] F. S. Gharehchopogh, I. Maleki, and S. R. Khaze, "A Novel
Particle Swarm Optimization Approach For Software Effort
Estimation," International Journal of Academic Research,
vol. 6, 2014.

[15] E. Faliagka, L. Iliadis, I. Karydis, M. Rigou, S. Sioutas, A.
Tsakalidis, et al., "On-line consistent ranking on
e-recruitment: seeking the truth behind a well-formed CV,"
Artificial Intelligence Review, vol. 42, pp. 515-528, 2014.

[16] G. S. Walia and J. C. Carver, "A systematic literature
review to identify and classify software requirement
errors," Information and Software Technology, vol. 51, pp.
1087-1109, 2009.

[17] F. S. Gharehchopogh, I. Maleki, and S. R. Khaze, "A novel
particle swarm optimization approach for software effort
estimation," International Journal of Academic Research,
Part A, vol. 6, pp. 69-76, 2014.

[18] M. Jørgensen, "The Use of Precision of Software
Development Effort Estimates to Communicate
Uncertainty," in International Conference on Software
Quality, 2016, pp. 156-168.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

73

[19] J. Ashraf, N. S. Khattak, and A. M. Zaidi, "Why do public
sector IT projects fail," in Informatics and Systems
(INFOS), 2010 The 7th International Conference on, 2010,
pp. 1-6.

[20] W. Al-Ahmad, K. Al-Fagih, K. Khanfar, K. Alsamara, S.
Abuleil, and H. Abu-Salem, "A taxonomy of an IT project
failure: root causes," International Management Review,
vol. 5, pp. 93-104, 2009.

[21] S. Kujala, "User involvement: a review of the benefits and
challenges," Behaviour & information technology, vol. 22,
pp. 1-16, 2003.

[22] A. Hussain, E. O. Mkpojiogu, and F. M. Kamal, "The role
of requirements in the success or failure of software
projects," International Review of Management and
Marketing, vol. 6, 2016.

[23] J. Luftman, K. Lyytinen, and T. ben Zvi, "Enhancing the
measurement of information technology (IT) business
alignment and its influence on company performance,"
Journal of Information Technology, vol. 32, pp. 26-46,
2017.

[24] I. Thamarai and S. Murugavalli, "Model for improving the
accuracy of relevant project selection in analogy using
differential evolution algorithm," Sādhanā, vol. 42, pp.
23-31, 2017.

[25] C. General, "Contracting for Computer Software
Development," General Accounting Office report
FGMSD-80, vol. 4, 1979.

[26] "The Standish Group chaos report," 1994.
[27] M. Jorgensen and M. Shepperd, "A systematic review of

software development cost estimation studies," IEEE
Transactions on software engineering, vol. 33, 2007.

[28] K. Dikert, M. Paasivaara, and C. Lassenius, "Challenges
and success factors for large-scale agile transformations: A
systematic literature review," Journal of Systems and
Software, vol. 119, pp. 87-108, 2016.

[29] A. Idri, M. Hosni, and A. Abran, "Systematic literature
review of ensemble effort estimation," Journal of Systems
and Software, vol. 118, pp. 151-175, 2016.

[30] G. Guillaume-Joseph, "Improving Software Project
Outcomes through Predictive Analytics," The George
Washington University, 2016.

[31] E. Hossain, M. A. Babar, and H.-y. Paik, "Using scrum in
global software development: a systematic literature
review," in Global Software Engineering, 2009. ICGSE
2009. Fourth IEEE International Conference on, 2009, pp.
175-184.

[32] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S.
Shamshirband, "A systematic literature review on agile
requirements engineering practices and challenges,"
Computers in human behavior, vol. 51, pp. 915-929, 2015.

[33] R. K. Gupta, P. Manikreddy, and K. Arya, "Pragmatic
Scrum Transformation: Challenges, Practices & Impacts
During the Journey A case study in a multi-location legacy
software product development team," in Proceedings of the
10th Innovations in Software Engineering Conference,
2017, pp. 147-156.

[34] N. Cerpa, M. Bardeen, B. Kitchenham, and J. Verner,
"Evaluating logistic regression models to estimate software
project outcomes," Information and Software Technology,
vol. 52, pp. 934-944, 2010.

[35] S. Komchaliaw and P. Wongthongtham, "A state of the art
review on software project performance management," in
Digital Ecosystems and Technologies (DEST), 2010 4th
IEEE International Conference on, 2010, pp. 653-655.

[36] I. Attarzadeh and S. H. Ow, "Project management practices:
the criteria for success or failure," Communications of the
IBIMA, vol. 1, pp. 234-241, 2008.

[37] V. Damasiotis, P. Fitsilis, P. Considine, and J. O'Kane,
"Analysis of software project complexity factors," in
Proceedings of the 2017 International Conference on
Management Engineering, Software Engineering and
Service Sciences, 2017, pp. 54-58.

[38] B. Kitchenham, D. Budgen, and P. Brereton,
"Evidence-Based Software Engineering, Empirical SE,
Software Design," ed: CRC Press, Boca Raton, FL, 2015.

[39] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, "Lessons from applying the systematic literature
review process within the software engineering domain,"
Journal of systems and software, vol. 80, pp. 571-583,
2007.

[40] V. R. Basili and D. M. Weiss, "A methodology for
collecting valid software engineering data," IEEE
Transactions on software engineering, pp. 728-738, 1984.

[41] H. Zhang, M. A. Babar, and P. Tell, "Identifying relevant
studies in software engineering," Information and Software
Technology, vol. 53, pp. 625-637, 2011.

[42] J. G. Borade and V. R. Khalkar, "Software project effort
and cost estimation techniques," International Journal of
Advanced Research in Computer Science and Software
Engineering, vol. 3, 2013.

[43] C. Ebert and J. De Man, "Requirements uncertainty:
influencing factors and concrete improvements," in
Proceedings of the 27th international conference on
Software engineering, 2005, pp. 553-560.

[44] J. D. Musa, Software reliability engineering: more reliable
software, faster and cheaper: Tata McGraw-Hill Education,
2004.

[45] N. Azhar, R. U. Farooqui, and S. M. Ahmed, "Cost overrun
factors in construction industry of Pakistan," in First
International Conference on Construction In Developing
Countries (ICCIDC–I), Advancing and Integrating
Construction Education, Research & Practice, 2008, pp.
499-508.

[46] K. Jeet, N. Bhatia, and R. S. Minhas, "A model for
estimating the impact of low productivity on the schedule
of a software development project," ACM SIGSOFT
Software Engineering Notes, vol. 36, pp. 1-6, 2011.

[47] J. Verner, J. Sampson, and N. Cerpa, "What factors lead to
software project failure?," in Research Challenges in
Information Science, 2008. RCIS 2008. Second
International Conference on, 2008, pp. 71-80.

[48] R. Pham, S. Kiesling, L. Singer, and K. Schneider,
"Onboarding inexperienced developers: struggles and
perceptions regarding automated testing," Software Quality
Journal, pp. 1-30, 2016.

[49] A. Trendowicz and R. Jeffery, "Software Project Effort
Estimation," Foundations and Best Practice Guidelines for
Success, Constructive Cost Model–COCOMO pags, pp.
277-293, 2014.

[50] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, and
J. M. Boyle, "A systematic literature review of empirical

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

74

evidence on computer games and serious games,"
Computers & Education, vol. 59, pp. 661-686, 2012.

[51] B. Kitchenham, L. Pickard, and S. L. Pfleeger, "Case
studies for method and tool evaluation," IEEE software, vol.
12, pp. 52-62, 1995.

[52] S. Weibelzahl and G. Weber, "Advantages, opportunities
and limits of empirical evaluations: Evaluating adaptive
systems," KI, vol. 16, pp. 17-20, 2002.

[53] A. Bharadwaj, "Empirical Methodology and Findings," in
Environmental Regulations and Innovation in Advanced
Automobile Technologies, ed: Springer, 2018, pp. 81-99.

[54] B. Flyvbjerg, "Five misunderstandings about case-study
research," Qualitative inquiry, vol. 12, pp. 219-245, 2006.

[55] C. Andersson and P. Runeson, "A spiral process model for
case studies on software quality monitoring—method and
metrics," Software Process: Improvement and Practice, vol.
12, pp. 125-140, 2007.

[56] C. Stylianou and A. S. Andreou, "Intelligent software
project scheduling and team staffing with genetic
algorithms," in Artificial Intelligence Applications and
Innovations, ed: Springer, 2011, pp. 169-178.

[57] S. Bahlerao and M. Ingle, "Generalized Agile Estimation
Method," International Journal on Advanced Science,
Engineering and Information Technology, vol. 1, pp.
262-267, 2011.

[58] A. Bia, R. Muñoz, and J. Gómez, "Estimating digitization
costs in digital libraries using DiCoMo," in International
Conference on Theory and Practice of Digital Libraries,
2010, pp. 136-147.

[59] B. Boehm, B. Clark, E. Horowitz, C. Westland, R.
Madachy, and R. Selby, "Cost models for future software
life cycle processes: COCOMO 2.0," Annals of software
engineering, vol. 1, pp. 57-94, 1995.

[60] J. E. Matson, B. E. Barrett, and J. M. Mellichamp,
"Software development cost estimation using function
points," IEEE Transactions on Software Engineering, vol.
20, pp. 275-287, 1994.

[61] B. W. Boehm, R. Madachy, and B. Steece, Software cost
estimation with Cocomo II with Cdrom: Prentice Hall PTR,
2000.

[62] F. Reyes, N. Cerpa, A. Candia-Véjar, and M. Bardeen,
"The optimization of success probability for software
projects using genetic algorithms," Journal of Systems and
Software, vol. 84, pp. 775-785, 2011.

[63] P. Shoval and O. Feldman, "A combination of the Mk-II
Function Points software estimation method with the
ADISSA methodology for systems analysis and design,"
Information and Software Technology, vol. 39, pp. 855-865,
1997.

[64] C. R. Symons, Software sizing and estimating: Mk II FPA
(function point analysis): John Wiley & Sons, Inc., 1991.

[65] P. Shoval, "ADISSA: Architectural design of information
systems based on structured analysis," Information systems,
vol. 13, pp. 193-210, 1988.

[66] M. Adnan and M. Afzal, "Ontology Based Multiagent
Effort Estimation System for Scrum Agile Method," IEEE
Access, vol. 5, pp. 25993-26005, 2017.

[67] T. Moh'd MI, A.-T. Haroon, and A. Elsheikh, "Software
development projects: An investigation into the factors that
affect software project success/failure in Jordanian firms,"
in Applications of Digital Information and Web

Technologies, 2008. ICADIWT 2008. First International
Conference on the, 2008, pp. 246-251.

[68] N. Cerpa and J. M. Verner, "Why did your project fail?,"
Communications of the ACM, vol. 52, pp. 130-134, 2009.

[69] J. Coelho and M. T. Valente, "Why modern open source
projects fail," in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp.
186-196.

[70] R. Berntsson-Svensson and A. Aurum, "Successful
software project and products: An empirical investigation,"
in Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, 2006, pp.
144-153.

[71] S. Dalal and R. S. Chhillar, "Empirical study of root cause
analysis of software failure," ACM SIGSOFT Software
Engineering Notes, vol. 38, pp. 1-7, 2013.

[72] D. Stankovic, V. Nikolic, M. Djordjevic, and D.-B. Cao, "A
survey study of critical success factors in agile software
projects in former Yugoslavia IT companies," Journal of
Systems and Software, vol. 86, pp. 1663-1678, 2013.

[73] M. Jørgensen, "Failure factors of small software projects at
a global outsourcing marketplace," Journal of systems and
software, vol. 92, pp. 157-169, 2014.

[74] K. A. Demir, "A Survey on Challenges of Software Project
Management," Software Engineering Research and Practice,
vol. 2009, pp. 579-585, 2009.

[75] J. Hihn and H. Habib-agahi, "Cost estimation of software
intensive projects: A survey of current practices," in
Proceedings of the 13th international conference on
Software engineering, 1991, pp. 276-287.

[76] Z. Siting, H. Wenxing, Z. Ning, and Y. Fan, "Job
recommender systems: a survey," in Computer Science &
Education (ICCSE), 2012 7th International Conference on,
2012, pp. 920-924.

[77] K. Molokken and M. Jorgensen, "A review of software
surveys on software effort estimation," in Empirical
Software Engineering, 2003. ISESE 2003. Proceedings.
2003 International Symposium on, 2003, pp. 223-230.

[78] F. S. Butt, M. Liaqat, M. Khan, W. Nisar, and E. U. Munir,
"Common Factors in the Successful Software Projects in
Pakistan‘s Software Industry," World Applied Sciences
Journal, vol. 23, pp. 1176-1185, 2013.

[79] A. Arshad, "A Survey on Software Cost Estimation in the
Pakistani Software Industry," IJCER, vol. 3, pp. 13-19,
2014.

[80] J. M. Verner, W. M. Evanco, and N. Cerpa, "State of the
practice: An exploratory analysis of schedule estimation
and software project success prediction," Information and
Software Technology, vol. 49, pp. 181-193, 2007.

[81] M. Jørgensen, "A survey on the characteristics of projects
with success in delivering client benefits," Information and
Software Technology, vol. 78, pp. 83-94, 2016.

[82] T. Chow and D.-B. Cao, "A survey study of critical success
factors in agile software projects," Journal of systems and
software, vol. 81, pp. 961-971, 2008.

[83] V. Lenarduzzi and D. Taibi, "Can Functional Size
Measures Improve Effort Estimation in SCRUM?," in
ICSEA-International Conference on Software Engineering
and Advances, Nice, France, 2014.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

75

[84] S. Falahah, "Risk management assessment using SERIM
method," in Int. Conf. on e-Education, Entertainment and
e-Management, 2011, pp. 340-343.

[85] R. L. Glass, "IT Failure Rates-70% or 10-15%?," IEEE
Software, vol. 22, 2005.

[86] J. L. Eveleens and C. Verhoef, "The rise and fall of the
chaos report figures," IEEE software, vol. 27, pp. 30-36,
2010.

[87] M. Warkentin, R. S. Moore, E. Bekkering, and A. C.
Johnston, "Analysis of systems development project risks:
An integrative framework," ACM SIGMIS Database, vol.
40, pp. 8-27, 2009.

[88] D. Damian, J. Chisan, L. Vaidyanathasamy, and Y. Pal,
"Requirements engineering and downstream software
development: Findings from a case study," Empirical
Software Engineering, vol. 10, pp. 255-283, 2005.

[89] S. Parthasarathy and M. Daneva, "An approach to
estimation of degree of customization for ERP projects
using prioritized requirements," Journal of systems and
software, vol. 117, pp. 471-487, 2016.

[90] C. Wohlin and A. A. Andrews, "Prioritizing and assessing
software project success factors and project characteristics
using subjective data," Empirical Software Engineering, vol.
8, pp. 285-308, 2003.

[91] J. Keung, R. Jeffery, and B. Kitchenham, "The challenge of
introducing a new software cost estimation technology into
a small software organisation," in Software Engineering
Conference, 2004. Proceedings. 2004 Australian, 2004, pp.
52-59.

[92] J. Debari, O. Mizuno, T. Kikuno, N. Kikuchi, and M.
Hirayama, "On deriving actions for improving cost overrun
by applying association rule mining to industrial project
repository," in International Conference on Software
Process, 2008, pp. 51-62.

[93] A. A. Andrews, P. Beaver, and J. Lucente, "Towards better
help desk planning: Predicting incidents and required
effort," Journal of Systems and Software, vol. 117, pp.
426-449, 2016.

[94] S. Dragicevic, S. Celar, and M. Turic, "Bayesian network
model for task effort estimation in agile software
development," Journal of Systems and Software, vol. 127,
pp. 109-119, 2017.

[95] M. Jin, "The Development of the Chinese ICT Industry and
Japanese Firms’ Offshoring: With a Focus on Dalian’s
Case," in Innovative ICT Industrial Architecture in East
Asia, ed: Springer, 2017, pp. 99-114.

[96] A. B. Nassif, D. Ho, and L. F. Capretz, "Towards an early
software estimation using log-linear regression and a
multilayer perceptron model," Journal of Systems and
Software, vol. 86, pp. 144-160, 2013.

[97] M. Soualhia, F. Khomh, and S. Tahar, "Task Scheduling in
Big Data Platforms: A Systematic Literature Review,"
Journal of Systems and Software, vol. 134, pp. 170-189,
2017.

[98] B. B. Chua, D. V. Bernardo, and J. Verner, "Criteria for
estimating effort for requirements changes," in European
Conference on Software Process Improvement, 2008, pp.
36-46.

[99] D. Dalcher, "Rethinking success in software projects:
looking beyond the failure factors," in Software project

management in a changing world, ed: Springer, 2014, pp.
27-49.

[100] A. Seetharaman, M. Senthilvelmurugan, and T.
Subramanian, "Budgeting and accounting of software cost:
Part 1," Journal of Digital Asset Management, vol. 1, pp.
347-359, 2005.

[101] F. González-Ladrón-de-Guevara, M. Fernández-Diego, and
C. Lokan, "The usage of ISBSG data fields in software
effort estimation: A systematic mapping study," Journal of
Systems and Software, vol. 113, pp. 188-215, 2016.

[102] M. Keil, J. Mann, and A. Rai, "Why software projects
escalate: An empirical analysis and test of four theoretical
models," Mis Quarterly, pp. 631-664, 2000.

[103] K. V. Vasantrao, "Understanding need of flexible software
development approach using “The Economic Model”," in
Electronics Computer Technology (ICECT), 2011 3rd
International Conference on, 2011, pp. 240-243.

[104] Z. Nie, X.-h. Jiang, J.-c. Liu, and H. Yang, "Completion
Time Estimation for Instances of Generalized Well-Formed
Workflow," in Parallel and Distributed Processing with
Applications, 2009 IEEE International Symposium on,
2009, pp. 611-616.

[105] R. Ashman, "Project estimation: a simple use-case-based
model," IT professional, vol. 6, pp. 40-44, 2004.

[106] M. Jørgensen, "Top-down and bottom-up expert estimation
of software development effort," Information and Software
Technology, vol. 46, pp. 3-16, 2004.

[107] M. Usman, E. Mendes, F. Weidt, and R. Britto, "Effort
estimation in agile software development: a systematic
literature review," in Proceedings of the 10th International
Conference on Predictive Models in Software Engineering,
2014, pp. 82-91.

[108] R. Popli and N. Chauhan, "Agile estimation using people
and project related factors," in Computing for Sustainable
Global Development (INDIACom), 2014 International
Conference on, 2014, pp. 564-569.

[109] Y. K. Dwivedi, K. Ravichandran, M. D. Williams, S. Miller,
B. Lal, G. V. Antony, et al., "IS/IT project failures: a
review of the extant literature for deriving a taxonomy of
failure factors," in International Working Conference on
Transfer and Diffusion of IT, 2013, pp. 73-88.

[110] M. Jørgensen and K. Moløkken-Østvold, "How large are
software cost overruns? A review of the 1994 CHAOS
report," Information and Software Technology, vol. 48, pp.
297-301, 2006.

[111] Pareto, V., 1971. Manual of Political Economy. Translation
of 1906 Edition, Augustus M. Kelley, New York.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

76

Appendix-1
Ref
No Methodology Algorithm Automation Limitation

[47] Empirical study
X

X

The survey data was self-reported and needed more empirical study
implication to investigate the issue.

[67] Empirical study X X The survey data was self-reported to only Jordanian software Firms.
[43] Empirical study X X More study that is an empirical needed for proper extraction and

management of requirements.
[9] Empirical study X X As per review, need a tool to handle scheduling issues.

[68] Empirical Study X X Need to improve the estimation process for prediction of a software
project.

[69] Empirical study X X The author recommended further investigation into proactive strategies
to avoid the failure of software projects.

[70] Empirical study X X The empirical study results showed that there is a need for a tool for
better estimation of time and cost.

[71] Empirical study X X The author suggested that new integrated software testing technique
needs to be developed for prediction of software projects.

[34] Empirical study X X The empirical study results showed that the tool of estimation could
minimize the software failure issues.

[72] Empirical study X X The author recommended more empirical study need and developed a
tool that handles the estimation and management tasks.

[73] Empirical study X X The author suggested there was a need for effective estimation process
for handling large-scale agile projects.

[74] Empirical study X X More empirical studies required to identify the factors influencing the
software project failure.

[36] Empirical study X X Needed to save the knowledge and use in future projects for proper
project estimation and management

[13] Empirical study X X More empirical studies needed to identify the influencing reasons
behind software project failure.

[75] Empirical study X X The author recommended more empirical study need and developed an
algorithm to handle the software estimation issues.

[76] Empirical study X X The author suggested that there is a need to generate the enrich user
profile for accurate selection of human resource.

[77] Empirical study X X Lack of surveys is there, like a comprehensive evaluation of the logic
for effort and schedule overruns.

[78] Empirical study X X The results of the empirical study showed that data on similar projects
not available that used for estimation of upcoming software projects.

[79] Empirical study X X The author recommended that more empirical study is needed in
identifying the causes of software project failure.

[80] Empirical study X X Improve estimation and management process to avoid the failure.
[81] Empirical study X X Project management estimation and control need to investigate further.
[82] Empirical study X X The more empirical study further need to identify the failure causes.
[83] Empirical study X X Future work includes the replication of this study in an industrial

context with an understandable scrum process.

[66] Empirical study ✓ ✓
In future, an approach will be needed that handle distributed agile based

project knowledge as well as to mitigate the coordination and
communication challenges of geographically distributed development

teams.
[84] Case Study X X The author recommended that further investigating the wrong

estimation issues to overcome the software failure.
[19] Case Study X X There is a need for Identifying the effective way to handle requirements

and schedule overrun.
[85] Case Study X X There is a need an approach that improves the estimation process.
[86] Case Study X X The author suggests that there is need to improve the estimation process

for cost and time estimation.
[87] Case Study X X The author recommended in future there is need an efficient managerial

developments and adequate allocation of human resources.
[88] Case Study X X The author suggested culture change in organizations and requirement

engineering process further need to investigate.
[57] Case studies ✓ X In future, needed to mature the existing algorithm for estimation of time

and cost.
[89] Case study X X The limitation of case study showed that there is need to save the

learning and used for estimation in updating software projects
[90] Case study X X The author suggested that in future there is need to use previously

developed software project data for upcoming software projects.
[14] Case study X X More case study is needed to investigate the estimation issues.
[91] Case study X X More work is needed in the domain of early prediction in future.
[92] Case study X X Further need to compare that algorithm with others studies.
[42] Systemic

Literature review X X The author recommends a technique required to save the lesson of
current or past developed software project data.

[30] Systemic
Literature review X X There is need an approach to use the knowledge of developed software

projects for future estimation of time and cost.
[93] Systemic

Literature review X X Need to save and use previous software project data for new software
handling and estimation.

[29] Systematic
literature review X X Knowledge of developed software projects needed to save for the future

and used for upcoming software projects.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

77

[94] Systematic
literature review X X The future research needed to save the data in knowledge based and

used in future.
[95] Systematic

literature review X X Data needed for similar software projects for estimation of upcoming
software projects.

[96] Systematic
literature review X X

Predict new software projects based on already developing software
project data. However, needed of similar types of software projects

data.
[62] Systematic

literature review ✓ X Expand the existing algorithms and integrate other components for
different software predication.

[63] Systematic
literature review ✓ X Needed to save previously developed software project data for

estimation of upcoming software projects.
[97] Systematic

Literature Review X X The author suggested that future research need to design and manage
the task and jobs scheduling in Hadoop.

[98] Systematic
Literature Review X X Further empirical study needed to check the existing framework for

estimation.
[99] Systematic

Literature Review X X Need to develop a guideline for requirement management.

[56] Systematic
Literature Review ✓ X Needed to improve the existing algorithm for time and cost estimation.

[58] Systematic
Literature Review ✓ X The algorithm may need to improve based on the previously developed

software data
[24] Systematic

Literature Review ✓ X More empirical data will required to test the developed algorithm.

[100] Systematic
Literature Review X X In the future model will be developed for better estimation of time and

cost.
[28] Systematic

Literature Review X X The author suggested more study needed to identify the influencing
factors in further.

[101] Systematic
Literature Review X X More variable was needed to in-depth discuss for effort estimation

driver over time.
[102] Systematic

Literature Review X X The literature showed that more dataset would be needed for upcoming
software projects.

[103] Systematic
Literature Review X X Same data of previously developed software projects was a need for

future estimation of software projects.
[104] Systematic

Literature Review X X Same data of previously developed software projects was a need for
future estimation of software projects.

[105] Systematic
Literature Review X X A dataset of same software projects was needed for estimation and

decision making of upcoming software projects.
[15] Systematic

Literature Review ✓ ✓ In future, more attribute accessed from personality for accurate
selection of human resource.

[106] Systematic
Literature Review X X The author recommended saving previously developed software project

data for upcoming software projects.
[93] Systematic

Literature Review X X In further need historical data for upcoming software projects
estimation.

[107] Systematic
Literature Review X X The author strongly recommended investigating the estimation studies

in scrum and XP context.
[108] Systematic

Literature Review ✓ X In future, save the historical data for upcoming software projects.

[35] Systemic
Literature review X X Trust sharing measurement need to investigate further.

[46] Systemic
Literature review ✓ ✓ Some more factors are needed to study that impact on the productivity

or schedule overrun.
[37] Systemic

Literature review X X The literature results showed that project management tools would need
to avoid software failure.

[109] Systemic
Literature review X X The knowledge management tools would require avoiding the software

project failure.
[110] Systemic

Literature review X X The literature results showed that an effective technique would need in
future for time and cost estimation.

	4.1. RQ1. What are the main factors for the failure of software projects?

