
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

81

Manuscript received May 5, 2019
Manuscript revised May 20, 2019

A Hybrid Spark MPI OpenACC System

Waleed Al Shehri1*, Maher Khemakhem2, Abdullah Basuhail3 and Fathy E. Eassa4

Department of Computer Science, King Abdul-Aziz University, Jeddah, KSA

Summary
Apache Spark is a common big data platform that is built based
on a Resilient Distributed Dataset (RDD). This data structure
abstraction is able to handle large datasets by partitioning and
computing the data in parallel across many nodes. In addition,
Apache Spark also features fault tolerance and interoperability
with the Hadoop ecosystem. However, Apache Spark is written
in high-level programming languages which do not support high
parallelism like other native parallel programming models such
as Message Passing Interface (MPI) and OpenACC. Furthermore,
the use of the Java Virtual Machine (JVM) in the Spark
implementation negatively affects performance. On the other
hand, the tremendous volume of big data may not be suitable for
distributed tools such as MPI and OpenACC to support a high
level of parallelism. The distributed architecture of big data
platforms is different from the architecture of High Performance
Computing (HPC) clusters. Big data applications running on
HPC clusters cannot exploit the capabilities afforded by HPC. In
this paper, a hybrid approach is proposed that takes the best of
both worlds by handling big data with Spark combined with the
fast processing of MPI. In addition, the availability of graphics
processing units (GPUs) available in modern systems can further
speed up the computation time of an application. Therefore, the
hybrid Spark+MPI approach may be extended by using
OpenACC to include the GPU processor as well. To test the
approach, the PageRank algorithm was implemented using all
three methods: Spark, Spark+MPI and Spark+MPI+OpenACC.
Key words:
High-Performance Computing; Big Data; Spark; MPI;
OpenACC; Hybrid Programming model; Power Consumption;

1. Introduction

The concept of big data emanated from the dramatic
growth in the amount of data produced in scientific and
commercial fields. As a result, many big data technologies
have emerged to address the challenges of collecting,
analyzing, and storing such enormous amounts of data. It is
noticeable that high-performance computing (HPC) and
big data applications are converging due to the capabilities
of each paradigm. Big data technologies are able to handle
enormous datasets, while HPC is concerned with
performing computations as fast as possible by integrating
heterogeneous hardware and crafting software to exploit
high levels of parallelism [1].
Apache Spark is a popular distributed cluster computing
framework for big data analytics. Spark’s basis is in a
Resilient Distributed Dataset (RDD), which is a special

data structure abstraction that can be partitioned and
computed in parallel across many compute nodes.
Despite some attractive features of Spark, such as
interoperability with the Hadoop ecosystem and fault
tolerance, computation is slower than it could be since it is
implemented using the Java Virtual Machine (JVM). In
contrast, other distributed tools such as Message Passing
Interface (MPI), which is natively implemented,
outperform Spark [2], For example, a case study on large
matrix factorizations found that a C implementation with
MPI is 4.6–10.2 times faster than Spark on an HPC cluster
with 100 compute nodes [3].
Alternatively, the large volume of big data may hinder
parallel programming models such as MPI, Open Multi-
Processing (OpenMP) and accelerator models (CUDA,
OpenACC, OpenCL) from supporting high levels of
parallelism [4].
In addition, the architecture of big data platforms is
distributed, which differs from the architecture of HPC
clusters [5].
Furthermore, resource allocation in a HPC environment is
an arduous job due to differences in the software stack of
both HPC and big data paradigms [6].
As a result, there is usually a performance gap when
running big data applications on HPC clusters. In this
paper, a hybrid approach is proposed that takes the best of
both worlds by handling big data with Spark combined
with fast processing of MPI. In addition, the availability of
GPUs in modern systems can further speed up computation
time of an application. Therefore, the hybrid Spark+MPI
approach suggested above may be extended by using
OpenACC to include the GPU processor as well.
To test the approach, the PageRank algorithm is
implemented in all three methods, Spark, Spark+MPI, and
Spark+MPI+OpenACC.
For this work, Spark was used together with MPI and
OpenACC. MPI and OpenACC share a native
implementation base while Spark is implemented using the
JVM, which operates in higher domain. In order to bridge
the two environments, we had to setup individual
development environments. Further, in order to develop
OpenACC applications, we used the PGI compiler. This
gave us the benefit of an Open MPI implementation that
was compiled with the PGI compiler and recognized the
OpenACC directives however would only support Nvidia
GPUs.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

82

Spark applications were developed in Scala using IntelliJ
IDEA. For MPI and OpenACC code was written in C
using Microsoft Visual Code.
The remaining sections of this paper are structured as
follows: Section 2 highlights the related work to our
approach. The experimental method is discussed is section
3 followed by results and, finally, a conclusion.

2. Related Work

It was observed that the MPI-based HPC model shows that
Spark or Hadoop-based large data model is order of
magnitude for verity of different applications such as large-
scale matrix factorization [3], graph analytics [8], [9], k
means [10], support vector machine and k-nearest
neighbor’s [11]. A recently analysis based on Spark
showed that compute load is the primary bottleneck in a
large number of applications like deserialization time and
specifically serialization [12]. Lu et al. [13] conclude that
replacing map with an MPI derivative reduced
communication and leads to better performance. A
drawback of this research was that it was not a drop-in
replacement for Hadoop and there was a need to recode it
to use the Data MPI. Here it is shown that MPI
applications are extendable and so become elastic for a
number of nodes through periodic data by redistribution
among the MPI ranks [14]. We use MPI as a programming
framework since similar benefit cannot be obtained by
processing with cloud Spark or Hadoop such as fault
tolerance and high productivity. Fagg, Dongarra proposed
FTMP [15], an effort to add fault tolerance to MPI from
the year 2000. Fault tolerance mechanisms in the MPI
standard are still not integrated so proposed solutions
continue to put forth such as Fenix [16]. Fenix and Spark
have a large productivity gap between them. SWAT [17] is
limited to single node optimizations, it cannot benefit from
communication improvements provided by MPI. Thrill
[18] is a project building a Spark data processing system
that uses C++ and MPI for communication.
Alchemist [19] interfaces between MPI libraries and Spark
and observes that such interfacing speeds up linear algebra
routines. Improved performance comes from the
comparative overhead of moving data over the network
between Spark nodes and Alchemist and there is still
benefit working in the Spark environment.
Smart MLlib [20] enables Spark to call custom machine
learning code implemented in C++ and MPI. The system
appears to no longer be under active development and has
not been shown to be scalable.
Based on the previous related work, and to the best of our
knowledge, there is no contribution yet that integrates the
three programming models Spark, MPI, and OpenACC.
Such integration can take the best of each world to

accelerate big data applications, particularly in HPC
environments where pure big data applications are not able
to exploit HPC capabilities.

3. Experimental Method

The proposed system is implemented on a single system
machine with the following specifications (Table 1):

Table 1: Target Machine Specifications
OS Ubuntu 18.04.1

Memory
description: System Memory
physical id: 3b
slot: System board or motherboard
size: 16GiB

Cache

*-cache:0
description: L1 cache
size: 384KiB
*-cache:1
description: L2 cache
size: 1536KiB
*-cache:2
description: L3 cache
size: 9MiB

CPU
description: CPU – 12 Cores
product: Intel(R)
Core(TM) i7-8750H CPU @ 2.20GHz

The physical topology of the target machine can be seen as
Figure 1.

3.1 RDD-based approach

Spark’s core is RDD. Its distributed nature, one of its key
features, sees data stored in partitions and distributed
across nodes. Each partition is a unit of parallelism and
consists of records that contain a subset of the data being
processed. Spark creates partitions and divides data among
them based on the following parameters:

• Number of available cores
• Available memory

The partitioning process can be customized. Processing
begins once data is partitioned into subsets. Our approach
takes over from there. Spark generally performs the
following operations on data:

• Transformations
• Actions

In this approach data is passed for each partition to a
worker that is responsible for the execution of the
algorithm. Each partition’s data can be computed
independently and the individual results can be combined
to produce the overall result. This is an inherently parallel
solution.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

83

3.2 The Worker

The worker is responsible for performing the computations
of the algorithm being evaluated. It receives data, performs
computations, and then returns the results to the Spark

Fig. 1 Physical Topology for the target machine

environment, where all the worker sub-results are
combined to get the final result.
The worker needs to be implemented by employing
parallel programming models such as MPI and OpenACC.
Such native implementations support more parallelism than
pure Spark, which is a high-level programming model.

3.2.1 MPI

Message passing interface (MPI) is a standard for message
passing, used for parallel computing. The two main
implementations of the MPI standard are MPICH and
Open MPI. For this approach, Open MPI is used with code
compiled using the PGI compiler.
The worker is implemented in C and uses the MPI libraries
to send and receive data. Point-to-point communication is
used in a circular fashion (starts with process 0 and ends
with process 0).

3.2.2 OpenACC

OpenACC can be used if a GPU is available in any of the
HPC cluster nodes. This can give an extra speed boost to
the processing time of an algorithm. The PGI compiler was
required to use OpenACC. MPI in combination with
OpenACC was used so that a cluster solution can be
employed. If certain nodes do not have a GPU available,
the worker needs to have an alternate solution that does not
require a GPU.
GPU’s have limited memory and only basic operations are
available on the processor; any additional method
definitions along with the data is required to be transferred
onto the GPU memory. This creates an additional task for

the programmer to break down the code to elemental form,
which could be difficult for complex algorithms.

3.3 PageRank Algorithm in Spark

The PageRank algorithm is based on the concept of
weighted graphs and is the backbone of the Google search
engine. It calculates the probability distribution of a link
being clicked and a page being visited. In short, more
references/links a page has from other pages, the greater
the probability that page will be visited. The algorithm is
defined by the following equation:

Equation 1

As can be observed from the equation, the PageRank
implementation can be parallelized as per the requirement
of the approach and sub results can be combined to reach a
final result; fulfilling the requirement for qualification for
the proposed approach.
The PageRank algorithm is used as the basis for comparing
the three methods described above. The pure Spark
implementation makes use of Spark’s built-in PageRank
method to calculate ranks for provided input.

3.3.1 Dataset

The data set used for experimentation consisted of Twitter
circles. The data were crawled from public sources and
represent Twitter user connections that are masked
numerically [7]. The data consist of 2,420,766 edges. Each
edge represents a connection between two nodes, where a
node represents a Twitter user in a circle.
Applying the PageRank algorithm to this dataset calculates
the highest ranked Twitter user. For the sake of
experimentation, we spliced the data into a number of
partitions. The Twitter data was split by subtracting 25 %
of the 2,420,766 edges to create the first split and
consequently each split was produced by reducing 10 % of
the data from the first split. The process continued until the
size was reduced to 60 % of the original data size as any
further splitting would make the data set too small.
The full dataset was too large for the new system to handle.
Data shuffling was barred and single system resources
were used. The system crashed and the pure Spark
implementation took an infinite amount of time which led
to the conclusion that additional steps were required to
handle data beyond a certain size. However, the results on
datasets the system could handle clearly showed excellent
improvements in processing time as compared to the pure
Spark implementation.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

84

3.4 Spark with MPI

To integrate Spark with MPI (Figure 2), the glom method
with Spark is used, which allows data to be accessed as a
traversal object. The biggest advantage of this method is
that data is neither shuffled nor relocated among partitions,
which is the root cause of major delays in Spark executions.
For each partition, as explained in the previous section, a
worker implemented in C using MPI libraries is called, and
Spark is used for the PageRank algorithm.

var PR = Array.fill(n)(1.0)

 val oldPR = Array.fill(n)(1.0)

 for(iter <- 0 until numIter) {

 swap(oldPR, PR)

 for(i <- 0 until n) {

 PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j =>
oldPR[j] / outDeg[j]).sum

 }

 }

Fig. 2 A dual programming model of Spark and MPI

Fig. 3 A hybrid programming model of Spark, MPI and OpenACC

In this case, the worker receives a subset of edges and
returns the ranks of the edges within those subsets. Here,
edges represent links; the job of the worker is to:

a) Determine the number of vertices (also referred as
nodes or links).

b) Determine the degree of each vertex.
c) Using information from (a) and (b) to distribute

data between MPI processes to calculate the page
ranks.

Fig. 3 A hybrid programming model of Spark, MPI and OpenACC

3.4 Spark with MPI, with OpenACC support

This implementation (Figure 3) is an extension of Spark
with MPI. As explained in the previous section, the code
needs to check for the availability of a GPU on a node and
assign the relevant code, otherwise it must be able to run
the simple MPI code. The logic of the algorithm is similar
to that explained in the Spark with MPI section above, but
it is broken down to smaller steps in the implementation.

4. Results and Discussion

The comparison of the three methods showed that
Spark+MPI+OpenACC gave the best processing time
against various input data sizes (Figure 4).

Fig. 4 Processing Time Comparison

An anomaly was observed for Spark in the middle of the
graph. This can be associated to a type of data shuffling
that resulted for that dataset.
The most overhead in Spark is generated when the dataset
increases and, for the sake of computation, data movement

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

85

is required. In our scheme we have limited any data
movement.
For small datasets, Spark gives better performance
although the proposed schemes may be optimized to
surpass Spark in that domain as well.
This Produces Optimal results though it requires a custom
scheme for resource management and load balancing so
that MPI assigns nodes based on the locality of the data,
which will be addressed in future work.
In addition, data is currently being passed as a shared copy,
which produces a memory load on the entire system. This
is a problem that needs to be tackled. A suggestion is to
send a reference to the original data. However, data
integrity and failsafe needs to be ensured.

Fig. 5 Power Consumption Comparison

(Figure 5) above shows power consumption comparison
between Spark, Spark+MPI and Spark+MPI+OpenACC at
512 memory for executor and driver. Spark’s power
consumption is non-linear and for certain datasets heavy
power consumption is observed which can be attributed to
data shuffling and clearing of accumulators.

5. Conclusion

This paper proposed a Hybrid Spark MPI OpenACC
system, which is an integration of these three programming
models, to enhance Spark-based big data applications. The
benefit of such integration is anticipated to be significantly
enhanced performance without sacrificing the power
consumption metric. This can be seen clearly in HPC
cluster environments where Spark and similar platforms,
that are written in high level programming languages, fail
to exploit HPC capabilities and support high parallelism.
As a result of the approach described in this paper,
performance was enhanced although it is on a single
system. For future work, this test will be implemented in a
real HPC cluster environment with the need to consider
data locality to reduce data movement. This can be
achieved by employing resource management techniques

that will extract the physical topology and map the virtual
topology of a big data application in a way that exploits
HPC resources effectively and achieve data locality. This
is predicted to more reduction in power consumption along
with enhancing performance.

References
[1] D. A. Reed and J. Dongarra, “Exascale computing and big

data,” Commun. ACM, vol. 58, no. 7, pp. 56–68, 2015.
[2] M. Anderson et al., “Bridging the gap between HPC and big

data frameworks,” Proc. VLDB Endow., vol. 10, no. 8, pp.
901–912, 2017.

[3] A. Gittens et al., “Matrix factorizations at scale: A
comparison of scientific data analytics in spark and C+MPI
using three case studies,” in 2016 IEEE International
Conference on Big Data (Big Data), 2016, pp. 204–213.

[4] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mob.
Networks Appl., vol. 19, no. 2, pp. 171–209, 2014.

[5] P. Xuan, J. Denton, P. K. Srimani, R. Ge, and F. Luo, “Big
data analytics on traditional HPC infrastructure using two-
level storage,” Proc. 2015 Int. Work. Data-Intensive
Scalable Comput. Syst. - DISCS ’15, pp. 1–8, 2015.

[6] H. R. Asaadi, D. Khaldi, and B. Chapman, “A comparative
survey of the HPC and big data paradigms: Analysis and
experiments,” Proc. - IEEE Int. Conf. Clust. Comput. ICCC,
pp. 423–432, 2016.

[7] “SNAP: Network datasets: Social circles.” [Online].
Available: https://snap.stanford.edu/data/ego-Twitter.html.
[Accessed: 28-Apr-2019].

[8] N. Satish et al., “Navigating the maze of graph analytics
frameworks using massive graph datasets,” in Proceedings
of the 2014 ACM SIGMOD international conference on
Management of data - SIGMOD ’14, 2014, pp. 979–990.

[9] G. M. Slota, S. Rajamanickam, and K. Madduri, “A Case
Study of Complex Graph Analysis in Distributed Memory:
Implementation and Optimization,” in 2016 IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), 2016, pp. 293–302.

[10] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox, “A
Tale of Two Data-Intensive Paradigms: Applications,
Abstractions, and Architectures,” in 2014 IEEE
International Congress on Big Data, 2014, pp. 645–652.

[11] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big Data
Analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP
on Beowulf,” Procedia Comput. Sci., vol. 53, pp. 121–130,
Jan. 2015.

[12] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-
G. Chun, “Making Sense of Performance in Data Analytics
Frameworks,” 12th USENIX Symp. Networked Syst. Des.
Implmentation (NSDI 2015), pp. 293–307, 2015.

[13] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu, “DataMPI:
Extending MPI to Hadoop-Like Big Data Computing,” in
2014 IEEE 28th International Parallel and Distributed
Processing Symposium, 2014, pp. 829–838.

[14] A. Raveendran, T. Bicer, and G. Agrawal, “A Framework
for Elastic Execution of Existing MPI Programs,” in 2011
IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, 2011, pp. 940–947.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

86

[15] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault Tolerant
MPI, Supporting Dynamic Applications in a Dynamic
World,” Springer, Berlin, Heidelberg, 2000, pp. 346–353.

[16] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M.
Parashar, “Exploring Automatic, Online Failure Recovery
for Scientific Applications at Extreme Scales,” in SC14:
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014, pp. 895–906.

[17] M. Grossman and V. Sarkar, “SWAT,” in Proceedings of
the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing -
HPDC ’16, 2016, pp. 81–92.

[18] T. Bingmann et al., “Thrill: High-performance algorithmic
distributed batch data processing with C++,” in 2016 IEEE
International Conference on Big Data (Big Data), 2016, pp.
172–183.

[19] A. Gittens et al., “Accelerating Large-Scale Data Analysis
by Offloading to High-Performance Computing Libraries
using Alchemist,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining - KDD ’18, 2018, pp. 293–301.

[20] D. Siegal, J. Guo, and G. Agrawal, “Smart-MLlib: A High-
Performance Machine-Learning Library,” in 2016 IEEE
International Conference on Cluster Computing
(CLUSTER), 2016, pp. 336–345.

