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Summary 
Apache Spark is a common big data platform that is built based 
on a Resilient Distributed Dataset (RDD). This data structure 
abstraction is able to handle large datasets by partitioning and 
computing the data in parallel across many nodes. In addition, 
Apache Spark also features fault tolerance and interoperability 
with the Hadoop ecosystem. However, Apache Spark is written 
in high-level programming languages which do not support high 
parallelism like other native parallel programming models such 
as Message Passing Interface (MPI) and OpenACC. Furthermore, 
the use of the Java Virtual Machine (JVM) in the Spark 
implementation negatively affects performance. On the other 
hand, the tremendous volume of big data may not be suitable for 
distributed tools such as MPI and OpenACC to support a high 
level of parallelism. The distributed architecture of big data 
platforms is different from the architecture of High Performance 
Computing (HPC) clusters. Big data applications running on 
HPC clusters cannot exploit the capabilities afforded by HPC. In 
this paper, a hybrid approach is proposed that takes the best of 
both worlds by handling big data with Spark combined with the 
fast processing of MPI. In addition, the availability of graphics 
processing units (GPUs) available in modern systems can further 
speed up the computation time of an application. Therefore, the 
hybrid Spark+MPI approach may be extended by using 
OpenACC to include the GPU processor as well. To test the 
approach, the PageRank algorithm was implemented using all 
three methods: Spark, Spark+MPI and Spark+MPI+OpenACC. 
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1. Introduction 

The concept of big data emanated from the dramatic 
growth in the amount of data produced in scientific and 
commercial fields. As a result, many big data technologies 
have emerged to address the challenges of collecting, 
analyzing, and storing such enormous amounts of data. It is 
noticeable that high-performance computing (HPC) and 
big data applications are converging due to the capabilities 
of each paradigm. Big data technologies are able to handle 
enormous datasets, while HPC is concerned with 
performing computations as fast as possible by integrating 
heterogeneous hardware and crafting software to exploit 
high levels of parallelism [1]. 
Apache Spark is a popular distributed cluster computing 
framework for big data analytics. Spark’s basis is in a 
Resilient Distributed Dataset (RDD), which is a special 

data structure abstraction that can be partitioned and 
computed in parallel across many compute nodes.  
Despite some attractive features of Spark, such as 
interoperability with the Hadoop ecosystem and fault 
tolerance, computation is slower than it could be since it is 
implemented using the Java Virtual Machine (JVM). In 
contrast, other distributed tools such as Message Passing 
Interface (MPI), which is natively implemented, 
outperform Spark [2], For example, a case study on large 
matrix factorizations found that a C implementation with 
MPI is 4.6–10.2 times faster than Spark on an HPC cluster 
with 100 compute nodes [3].  
Alternatively, the large volume of big data may hinder 
parallel programming models such as MPI, Open Multi-
Processing (OpenMP) and accelerator models (CUDA, 
OpenACC, OpenCL) from supporting high levels of 
parallelism [4]. 
In addition, the architecture of big data platforms is 
distributed, which differs from the architecture of HPC 
clusters [5]. 
Furthermore, resource allocation in a HPC environment is 
an arduous job due to differences in the software stack of 
both HPC and big data paradigms [6]. 
As a result, there is usually a performance gap when 
running big data applications on HPC clusters. In this 
paper, a hybrid approach is proposed that takes the best of 
both worlds by handling big data with Spark combined 
with fast processing of MPI. In addition, the availability of 
GPUs in modern systems can further speed up computation 
time of an application. Therefore, the hybrid Spark+MPI 
approach suggested above may be extended by using 
OpenACC to include the GPU processor as well. 
To test the approach, the PageRank algorithm is 
implemented in all three methods, Spark, Spark+MPI, and 
Spark+MPI+OpenACC. 
For this work, Spark was used together with MPI and 
OpenACC. MPI and OpenACC share a native 
implementation base while Spark is implemented using the 
JVM, which operates in higher domain. In order to bridge 
the two environments, we had to setup individual 
development environments. Further, in order to develop 
OpenACC applications, we used the PGI compiler. This 
gave us the benefit of an Open MPI implementation that 
was compiled with the PGI compiler and recognized the 
OpenACC directives however would only support Nvidia 
GPUs.  
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Spark applications were developed in Scala using IntelliJ 
IDEA. For MPI and OpenACC code was written in C 
using Microsoft Visual Code. 
The remaining sections of this paper are structured as 
follows: Section 2 highlights the related work to our 
approach. The experimental method is discussed is section 
3 followed by results and, finally, a conclusion. 

2. Related Work  

It was observed that the MPI-based HPC model shows that 
Spark or Hadoop-based large data model is order of 
magnitude for verity of different applications such as large-
scale matrix factorization [3], graph analytics [8], [9], k 
means [10], support vector machine and k-nearest 
neighbor’s [11]. A recently analysis based on Spark 
showed that compute load is the primary bottleneck in a 
large number of applications like deserialization time and 
specifically serialization [12]. Lu et al. [13] conclude that 
replacing map with an MPI derivative reduced 
communication and leads to better performance. A 
drawback of this research was that it was not a drop-in 
replacement for Hadoop and there was a need to recode it 
to use the Data MPI. Here it is shown that MPI 
applications are extendable and so become elastic for a 
number of nodes through periodic data by redistribution 
among the MPI ranks [14]. We use MPI as a programming 
framework since similar benefit cannot be obtained by 
processing with cloud Spark or Hadoop such as fault 
tolerance and high productivity. Fagg, Dongarra proposed 
FTMP [15], an effort to add fault tolerance to MPI from 
the year 2000. Fault tolerance mechanisms in the MPI 
standard are still not integrated so proposed solutions 
continue to put forth such as Fenix [16]. Fenix and Spark 
have a large productivity gap between them. SWAT [17] is 
limited to single node optimizations, it cannot benefit from 
communication improvements provided by MPI. Thrill 
[18] is a project building a Spark data processing system 
that uses C++ and MPI for communication.  
Alchemist [19] interfaces between MPI libraries and Spark 
and observes that such interfacing speeds up linear algebra 
routines. Improved performance comes from the 
comparative overhead of moving data over the network 
between Spark nodes and Alchemist and there is still 
benefit working in the Spark environment.  
Smart MLlib [20] enables Spark to call custom machine 
learning code implemented in C++ and MPI. The system 
appears to no longer be under active development and has 
not been shown to be scalable. 
Based on the previous related work, and to the best of our 
knowledge, there is no contribution yet that integrates the 
three programming models Spark, MPI, and OpenACC. 
Such integration can take the best of each world to 

accelerate big data applications, particularly in HPC 
environments where pure big data applications are not able 
to exploit HPC capabilities.  

3. Experimental Method 

The proposed system is implemented on a single system 
machine with the following specifications (Table 1 ): 

Table 1: Target Machine Specifications 
OS Ubuntu 18.04.1 

Memory 
description: System Memory 
physical id: 3b 
slot: System board or motherboard 
size: 16GiB 

Cache 

*-cache:0 
description: L1 cache 
size: 384KiB 
*-cache:1 
description: L2 cache 
size: 1536KiB 
*-cache:2 
description: L3 cache 
size: 9MiB 

CPU 
description: CPU – 12 Cores 
product: Intel(R) 
Core(TM) i7-8750H CPU @ 2.20GHz 

 
The physical topology of the target machine can be seen as 
Figure 1. 

3.1 RDD-based approach 

Spark’s core is RDD. Its distributed nature, one of its key 
features, sees data stored in partitions and distributed 
across nodes. Each partition is a unit of parallelism and 
consists of records that contain a subset of the data being 
processed. Spark creates partitions and divides data among 
them based on the following parameters: 

• Number of available cores 
• Available memory 

 
The partitioning process can be customized. Processing 
begins once data is partitioned into subsets. Our approach 
takes over from there. Spark generally performs the 
following operations on data: 

• Transformations 
• Actions 

 
In this approach data is passed for each partition to a 
worker that is responsible for the execution of the 
algorithm. Each partition’s data can be computed 
independently and the individual results can be combined 
to produce the overall result. This is an inherently parallel 
solution. 
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3.2 The Worker 

The worker is responsible for performing the computations 
of the algorithm being evaluated. It receives data, performs 
computations, and then returns the results to the Spark 
 

 

Fig. 1  Physical Topology for the target machine 

environment, where all the worker sub-results are 
combined to get the final result. 
The worker needs to be implemented by employing 
parallel programming models such as MPI and OpenACC. 
Such native implementations support more parallelism than 
pure Spark, which is a high-level programming model.  

3.2.1 MPI 

Message passing interface (MPI) is a standard for message 
passing, used for parallel computing. The two main 
implementations of the MPI standard are MPICH and 
Open MPI. For this approach, Open MPI is used with code 
compiled using the PGI compiler.  
The worker is implemented in C and uses the MPI libraries 
to send and receive data. Point-to-point communication is 
used in a circular fashion (starts with process 0 and ends 
with process 0). 

3.2.2 OpenACC 

OpenACC can be used if a GPU is available in any of the 
HPC cluster nodes. This can give an extra speed boost to 
the processing time of an algorithm. The PGI compiler was 
required to use OpenACC. MPI in combination with 
OpenACC was used so that a cluster solution can be 
employed. If certain nodes do not have a GPU available, 
the worker needs to have an alternate solution that does not 
require a GPU. 
GPU’s have limited memory and only basic operations are 
available on the processor; any additional method 
definitions along with the data is required to be transferred 
onto the GPU memory. This creates an additional task for 

the programmer to break down the code to elemental form, 
which could be difficult for complex algorithms. 

3.3 PageRank Algorithm in Spark 

The PageRank algorithm is based on the concept of 
weighted graphs and is the backbone of the Google search 
engine. It calculates the probability distribution of a link 
being clicked and a page being visited. In short, more 
references/links a page has from other pages, the greater 
the probability that page will be visited. The algorithm is 
defined by the following equation: 
 

 

Equation 1 

As can be observed from the equation, the PageRank 
implementation can be parallelized as per the requirement 
of the approach and sub results can be combined to reach a 
final result; fulfilling the requirement for qualification for 
the proposed approach. 
The PageRank algorithm is used as the basis for comparing 
the three methods described above. The pure Spark 
implementation makes use of Spark’s built-in PageRank 
method to calculate ranks for provided input.  

3.3.1 Dataset 

The data set used for experimentation consisted of Twitter 
circles. The data were crawled from public sources and 
represent Twitter user connections that are masked 
numerically [7]. The data consist of 2,420,766 edges. Each 
edge represents a connection between two nodes, where a 
node represents a Twitter user in a circle.   
Applying the PageRank algorithm to this dataset calculates 
the highest ranked Twitter user. For the sake of 
experimentation, we spliced the data into a number of 
partitions. The Twitter data was split by subtracting 25 % 
of the 2,420,766 edges to create the first split and 
consequently each split was produced by reducing 10 % of 
the data from the first split. The process continued until the 
size was reduced to 60 % of the original data size as any 
further splitting would make the data set too small. 
The full dataset was too large for the new system to handle. 
Data shuffling was barred and single system resources 
were used. The system crashed and the pure Spark 
implementation took an infinite amount of time which led 
to the conclusion that additional steps were required to 
handle data beyond a certain size. However, the results on 
datasets the system could handle clearly showed excellent 
improvements in processing time as compared to the pure 
Spark implementation. 
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3.4 Spark with MPI 

To integrate Spark with MPI (Figure 2), the glom method 
with Spark is used, which allows data to be accessed as a 
traversal object. The biggest advantage of this method is 
that data is neither shuffled nor relocated among partitions, 
which is the root cause of major delays in Spark executions. 
For each partition, as explained in the previous section, a 
worker implemented in C using MPI libraries is called, and 
Spark is used for the PageRank algorithm. 
 
var PR = Array.fill(n)( 1.0 ) 

 val oldPR = Array.fill(n)( 1.0 ) 

 for( iter <- 0 until numIter ) { 

   swap(oldPR, PR) 

   for( i <- 0 until n ) { 

     PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j => 
oldPR[j] / outDeg[j]).sum 

   } 

 } 

 

Fig. 2  A dual programming model of Spark and MPI 

 

Fig. 3  A hybrid programming model of Spark, MPI and OpenACC 

In this case, the worker receives a subset of edges and 
returns the ranks of the edges within those subsets. Here, 
edges represent links; the job of the worker is to:  

a) Determine the number of vertices (also referred as 
nodes or links). 

b) Determine the degree of each vertex. 
c) Using information from (a) and (b) to distribute 

data between MPI processes to calculate the page 
ranks. 

 

Fig. 3  A hybrid programming model of Spark, MPI and OpenACC 

3.4 Spark with MPI, with OpenACC support 

This implementation (Figure 3) is an extension of Spark 
with MPI. As explained in the previous section, the code 
needs to check for the availability of a GPU on a node and 
assign the relevant code, otherwise it must be able to run 
the simple MPI code. The logic of the algorithm is similar 
to that explained in the Spark with MPI section above, but 
it is broken down to smaller steps in the implementation. 

4. Results and Discussion 

The comparison of the three methods showed that 
Spark+MPI+OpenACC gave the best processing time 
against various input data sizes (Figure 4). 
 

 

Fig. 4  Processing Time Comparison 

An anomaly was observed for Spark in the middle of the 
graph. This can be associated to a type of data shuffling 
that resulted for that dataset.  
The most overhead in Spark is generated when the dataset 
increases and, for the sake of computation, data movement 
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is required. In our scheme we have limited any data 
movement. 
For small datasets, Spark gives better performance 
although the proposed schemes may be optimized to 
surpass Spark in that domain as well. 
This Produces Optimal results though it requires a custom 
scheme for resource management and load balancing so 
that MPI assigns nodes based on the locality of the data, 
which will be addressed in future work. 
In addition, data is currently being passed as a shared copy, 
which produces a memory load on the entire system. This 
is a problem that needs to be tackled. A suggestion is to 
send a reference to the original data. However, data 
integrity and failsafe needs to be ensured. 
 

 

Fig. 5  Power Consumption Comparison 

(Figure 5) above shows power consumption comparison 
between Spark, Spark+MPI and Spark+MPI+OpenACC at 
512 memory for executor and driver. Spark’s power 
consumption is non-linear and for certain datasets heavy 
power consumption is observed which can be attributed to 
data shuffling and clearing of accumulators. 

5. Conclusion  

This paper proposed a Hybrid Spark MPI OpenACC 
system, which is an integration of these three programming 
models, to enhance Spark-based big data applications. The 
benefit of such integration is anticipated to be significantly 
enhanced performance without sacrificing the power 
consumption metric. This can be seen clearly in HPC 
cluster environments where Spark and similar platforms, 
that are written in high level programming languages, fail 
to exploit HPC capabilities and support high parallelism. 
As a result of the approach described in this paper, 
performance was enhanced although it is on a single 
system. For future work, this test will be implemented in a 
real HPC cluster environment with the need to consider 
data locality to reduce data movement. This can be 
achieved by employing resource management techniques 

that will extract the physical topology and map the virtual 
topology of a big data application in a way that exploits 
HPC resources effectively and achieve data locality. This 
is predicted to more reduction in power consumption along 
with enhancing performance.  
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