
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

103

Manuscript received May 5, 2019
Manuscript revised May 20, 2019

A Framework of Service Level Agreement Management for
Software Maintenance

Syed Irtiza Hassan1, Ahmad Salman Khan2
1Department of Computer Science & IT, The University of Lahore, Lahore, Pakistan

2Department of Software Engineering, The University of Lahore, Lahore, Pakistan

Abstract
Software maintenance is the largest phase of the software
development lifecycle. It’s a complex activity due to the diverse
nature of services provided during this phase. Therefore, it is
significant that the parties involved in maintenance should decide
and agree upon the nature and level of maintenance services
upfront. This paper discusses the important issue of Service
Level Agreement for software maintenance. We conducted a
systematic literature review to explore the state of the art and
then applied the grounded theory method for formulating the
preliminary SLA management framework. We elicited six major
phases of SLA management including Service Templates
Development, SLA Negotiation, Service Deployment, Service
Execution, Service Assessment, and Service Decommissioning.
This paper presents a framework for comprehensively managing
software maintenance service level agreement. Case studies were
conducted in five IT organizations that perform software
maintenance to validate and enhance the framework. Both
quantitative and qualitative analysis was performed and the
refined framework reflected the best practices from industry
enhancements were made in every phase of the framework.
Furthermore, it was identified that there is a gap in industrial
practice as far as the process of service deployment, assessment
and corrective actions over SLA and adjustment patterns and
manageability for modifying SLA are concerned.
Key words:
service level agreement, software maintenance

1. Introduction

The primary focus of software development is the
satisfaction of user requirements. Software products
inherently go through change and evolution. Once
operational, software product enters a maintenance phase.
Maintenance phase comprises of identifying and rectifying
defects, an adaptation of system in case of a variation in
the operating environment, and the addition of new
features based on new user requirements. Although the
maintenance is mainly concerned with the support
delivered after implementation, maintenance activities
start quite earlier parallel to development. SLA for
software maintenance is an important area of research;
however, little work has been done on SLA with the
perspective of software maintenance. General SLA exists
but there exists no comprehensive framework specific to
software maintenance. The preliminary framework has
been published as “Eliciting Theory for Software

Maintenance SLA Management Framework”, by the
authors in December 2017 in International Conference on
Frontiers of Information Technology (FIT) (pp. 241-246).
IEEE [9]
In this paper, we will be exploring what is the significance
of service level agreements for organizations performing
software maintenance, whether they follow any framework
to manage their SLA. Furthermore, we have to study how
service level agreements are developed in such
organizations in the first place, are there any service
templates they use. How do negotiations affect the SLA?
How are service provisioning and deployment carried out?
Is there any process defined for assessment and corrective
actions during execution? How is the service actually
executed? Is termination and decommissioning of service
properly addressed in the SLA? As a result, we will be
presenting a refined framework of service level agreement
management for Software Maintenance.

2. Research Methodology

The research was conducted in four phases: (1) systematic
literature review, (2) eliciting a preliminary framework, (3)
exploring the framework in industry and (4) updating the
framework. Phase 1 and 2 are previously published [9].
This paper presents phase 3 and 4. Figure 1 illustrates the
phases of research

Fig. 1 Research Roadmap

3. Systematic Literature review

We identified the specifications of service Agreements,
SLA Requirements, life cycle, modules, negotiation

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 104

framework along with roles in SLA management and
activities unique to software maintenance SLA
management through literature updated till the year 2019.
An account of the work of the authors is given below.

A. Service level agreement specifications

Service level agreement specifications were discussed by
Trienekens, J. J., Bouman, J. J., & Van Der Zwan, M. in
2004 [25]. A structured approach was presented in order to
speed up the process of providing service level agreement
specifications and to improve the effectiveness of SLAs
for both customers and users.

B. Service level agreement activities

Chapin, Hale, Khan, Ramil, and Tan proposed a new
classification of software maintenance management
activities in 2001. Proactive Software maintenance
activities to make the service management process cost-
effective and more functional were presented by Lee, Y. J.,
& Choi, Y. J. in 2015 [15]. An understanding of activities
in each software maintenance phase of enterprise systems
was presented by Li, S. H., Yen, D. C., Lu, W. H., & Chen,
T. Y. in 2014 [17].

C. Roles in SLA management

Kajko-Mattsson, M., Ahnlund, C., & Lundberg, E.
presented CM3 a framework for service level agreement in
2004 in which the authors presented roles on SLA
management [15].

D. Processes in SLA management

Kajko Mattsson has further presented the processes in
SLA Management. EM3: SLA Management process
model consists of four main processes in 2009. [13]

E. Unique Software Maintenance activities

April, A., & Abran, A. introduced SMmm, Software
maintenance maturity model in 2009 that was inspired by
CMMi, it mentioned activities unique to software
maintenance that should be included in SLA. [1]

F. Software Maintenance process improvement

Jansson, A. S. provided Software Maintenance and
Process Improvement for CMMI in 2007, based on the
work of April, Huffman Hayes in. 2005. This work was
further improved in 2009 [12,1]
Factors affecting software maintenance work efficiency
were presented by Tsunoda, M., Monden, A., Matsumoto,
K., Ohiwa, S., & Oshino, T in 2015 [14]. Factors, directly
and indirectly, affecting the maintenance process and

customer satisfaction was discussed by Christa, S.,
Madhusudhan, V., Suma, V., & Rao, J. J. in 2017[6]

G. SLA Negotiation

Hasselmeyer, P., Mersch, H., Koller, B., Quyen, H. N.,
Schubert, L., & Wieder, P. presented a negotiation
framework for SLAs in 2007 [10].
A software maintenance requirement negotiation model
has been presented by Christa, S., Madhusudhan, V., Suma,
V., & Rao, J. J. in [6] and Renegotiation process has been
discussed by Huang, H., Hu, M., Kauffman, R., & Xu, H.
in 2019 [11]

H. SLA Life Cycle

Life Cycle of SLA was presented by Zhang, S., & Song,
M. in 2010 [28]. The study of Kung, H. J., & Hsu, C.
developed and classified this concept and introduced the
model of the SMLC, which classifies software
maintenance into four different stages [29].

I. SLA Modules

An SLA Management Framework has also been prescribed
by Comuzzi, M., Kotsokalis, C., Rathfelder, C., Theilmann,
W., Winkler, U., & Zacco, G in 2009. Modules of SLA
were also defined further [7]

J. Software maintenance service deployment

A software handover framework was presented which is
effective for the transition from developer to maintainer by
Khan, A. S. in 2013 [16]. Classification and analysis of
literature were done in order to scope the phenomenon of
the continuous evolution of software functionality was
done by Rodríguez, P., Haghighatkhah, A., Lwakatare, L.
E., Teppola, S., Suomalainen, T., Eskeli, J., ... & Oivo, M.
who mentioned that the software-intensive industry is
moving towards the adoption of a value-driven and
adaptive real-time business paradigm Software
Maintenance Help Desk [24]
A systematic mapping study on software change request
repositories was done by Cavalcanti, Y. C., da Mota
Silveira Neto, P. A., Machado, I. D. C., Vale, T. F., de
Almeida, E. S., & Meira, S. R. D. L in 2014[4]. Mikkonen,
T., Lassenius, C., Männistö, T., Oivo, M., & Järvinen, J
proposed a software maintenance evaluation method based
on users' feedback, by means of the records stored in the
help desk's databases system in 2018 [21].

K. Software Maintenance Help Desk

The work of Cook, S. in 2017 explores the measurement
of service effectiveness with a focus on customer
satisfaction. Chatzimparmpas, A., & Bibi, S explored

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

105

factors relevant to the maintainability of a project in 2019
with an objective to improve software service management
propose the combination of two well-known machine
learning (ML) techniques, Bayesian
Networks (BNs), and Association Rules (ARs) for
modeling the maintenance process by identifying the
relationships among the internal and external quality
metrics related to a particular project release to both the
maintainability of the project and the maintenance process
indicators (i.e., effort and duration) [5].

Fig. 2 represents knowledge areas from the systematic literature review
along with the authors who contributed to it. This systematic literature

review is updated until 2019.

This systemaic literature review gave the basis of applying
grounded theory, which is a systematic process to
prescribe a preliminary framework. It commences with
data collection followed by open coding after which axial
or selective coding is done followed by theoretical coding.
First off all the available information is coded in order to
bring forward concepts out of it. Concepts are than
categorized and a collection of these concepts is utilized to
formulate a theory.

Fig. 3 Systematic literature review knowledge areas

4. Preliminary FrameWork

We elicited six major phases of SLA management
including Service Templates Development, SLA
Negotiation, Service Deployment, Service Execution,
Service Assessment, and Service Decommissioning. This
study provides a basis for producing a comprehensive
software maintenance SLA to be applicable in an
industrial setting. Figure 3 presents the above-mentioned
phases. Phases enclosed together in a box represent
parallel execution and arrows represent the sequence of
phases

Fig. 4 Preliminary software maintenance SLA management framework

5. Evaluation/Exploration of framework

We applied case study methodology to validate the SLA
management Framework for software maintenance. The
SLA management Framework for software maintenance
has been prescribed through literature. The purpose of this
case study was to explore this framework in the industry.
To observe as to what extent the phases mentioned in the
preliminary framework along with the activities and
deliverables are followed in organizations performing
software maintenance. Evolution of the framework is also
intended by incorporating the recommendations from the
industry. Organizations that perform software maintenance
are taken into consideration. Convenient sampling
technique is used and the organization size varies from
medium to large. Table 1 presents the units of analysis of
the case study

Table 1: Units of analysis
Roles in SLA
Management

Tenure of
agreement

Scope of
support

Specification
of equipment

required
The

commitments
and

responsibilities
of the parties

involved in the
SLA

Availability of
support

organizations

Definition of
each task type in

terms of
monetary or

non-monetary
values

Rules for
requesting

and providing
support

Prioritization of
support tasks

SLA
Templates

Process of
negotiation

Design time
repository

SLA Template
registry

Process of
service

provisioning
and

deployment

Decomposing
SLA into rules Help desk

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 106

SLA violation
record and

SLA
adjustment

patterns

Termination and
decommission
of the service

Research questions addressed in the case study are:
RQ1: What are different aspects of a good SLA according
to the industry?
RQ2: What are the attributes for a software maintenance
specific SLA according to the industry?
RQ3: How do the practices in the industry vary from the
prescribed practices in literature?
RQ4: What attributes and practices must be a part of
maintenance SLA that can fill the gap between theory and
practice?
Data collection techniques are divided into three levels:
• First degree: Direct contact with the subjects and collect
data in real time interviews.
• Second degree: Indirect methods where we directly
collect raw data without actually interacting with the
subjects during the data collection.
• Third degree: Independent analysis of work artifacts
where already available and compiled data will be used.
Independent analysis of work artifacts is done where
already available and compiled data is used.
In order to explore the preliminary framework in the
industry through case study methodology (Runeson, Host,
et al. 2012). The case study has been properly designed
following the prescribed guidelines with an objective to
gather as much information as possible from the industrial
setting

6. Results from data collection

Case studies were conducted in five IT organizations,
which perform software maintenance. The organizations
that participated in the case studies are listed in Table II.

Table 2: Participating organizations*
Organization Project Domain Size Process

Model
A Business Intelligence Large Agile
B Health Records Large Agile
C Insurance Medium Agile
D Issuer Processing

Solution Large Agile

E Human Resource
Management Large Agile

*Names of the organizations have been kept confidential

A. Quantitative Results

Quantitative techniques have been applied to the data
collected through case studies. These have been elaborated
as follows. we used practice performance rating measure
[32]. Practice performance, PP(i), is rated by the maximum
adequacy degrees among fully (F, 90 – 100%), largely (L,

60 – 89%), partially (P, 25 – 59%), and not (N, 10 – 24%)
achieved, i.e.: PP(i) = max { F | L | P | N } = max { 5 | 3 | 1
| 0 } where i is the index number of a practice.
Assume a process, p, consists of mp practices. An average
practice performance of the practices in a process, PP(p),
can be derived by: PP(p) = 1 /mp = ∑ PP(i). Table III
provides the practice performance rating for all the phases
of SLA Management in studied IT Organizations
Performance of the following phases was evaluated
through this method:

1. Developing SLA Template
2. Process of negotiations over SLA
3. Process of service deployment (Perform

Transition to progressively transfer the system
from the developer to the maintainer)

4. Maintain a help desk and decompose SLA into
rules that can be monitored to further provide a
way for analyzing the subsequent flow of
monitoring events corresponding to these rules

5. Assessment and Corrective Actions over SLA
6. Decommissioning should be properly handled

through SLA

The scores for the process of service deployment and
assessment and corrective actions over SLA are low as
shown in Table III. This shows a gap in industrial practice
regarding these two practices.
We were interested in examining the applicability of our
preliminary framework in the IT industry. For this purpose,
we analyzed the compatibility of practices based on joint
domain coverage [32]. According to compatibility
definition, fork existing organizational frameworks, the
compatibility degree, Ck, can be described at k levels.
Where k=5, the five compatibility levels can be specified
by; C1: activities that are only defined in specific
organizational frameworks. Cn: activities identified in n of
the organizational frameworks. Table IV provides key
practice analysis for the practices identified in the
preliminary framework.

Table 3: Practice performance rating
 A B C D E PP(p)

Developing SLA Template F F F F F 5
Process of negotiations over SLA is

significant F F F F F 5
Process of service deployment

(Perform Transition to progressively
transfer the system from the developer

to the maintainer)
L P P L L 2.2

Maintain a help desk and decompose
SLA into rules that can be monitored
to further provide a way for analyzing

the subsequent flow of monitoring
events corresponding to these rules

F F F F F 5

Assessment and corrective Actions
over SLA P P P P P 1

Decommissioning should be properly
handled through SLA F F F F F 5

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

107

It is evident from Table IV that the concept of SLA
registry and software landscape is not appreciated in the
industry as prescribed in literature. Industrial practices
regarding these were identified and the final framework
has been modified accordingly. Literature was further
explored for adjustment patterns and manageability for
modifying SLA to give recommendations.

B. Qualitative Results

Subjective information was gathered while conducting the
case study that applied to every phase of the framework.
This provided enhancements to the framework and helped
to shape the final framework. Service level management
roles were identified, which are: Product owner, project
manager, implementation lead, process manager, process
analyst, client liaison and end user. Table IV elaborates
SLA management roles.
SLA structure was defined that includes: Project name,
personnel information, a tenure that includes not only
dates but also rules of renewal and termination, client’s
desired outcome, communication channels: Focal persons,
Modes of reporting, Complaint handling procedures,
Surveys, Reviews.
Criticality identification where critical assets are identified
and impact estimation caused by a loss of these assets is
made, availability of stakeholders, required types and level
of support: Onsite and offsite, commitments of continuity,
specification of technical standards, responsibilities of
stakeholders, pricing model, version control, annexures
and references along with a glossary, if required. A
stakeholder management process was identified which can
be elaborated as a management process for stakeholders
where they are initially identified, their interest and impact
on the project are determined, communication channels
established among them and their engagement is formally
defined.
Scope definition and task prioritization process are also
addressed. The scope is defined through objectives, goals,
phases and sub-phases, responsibilities, funds, and
financial plan while Priority and severity policy is applied
where tasks are classified accordingly. It is observed that
whether a task is critical, major, medium or low in terms
of severity and where does it fall on the priority scale. In
general, a severity-priority matrix is drawn and the task is
placed in a particular quadrant.

Schedule SLA terms are initially negotiated by the product
owner and the project manager. Once the process gets
running implementation leads are involved in the
negotiations.
In order to enable the maintenance team to perform its
tasks, proper knowledge transfer has to be done. Following
information sources are considered mandatory: Detailed
specifications of the project, documentation (code and
technical), credentials, procedures, and workflows.
SLA is decomposed through service level objectives
(SLOs). SLOs need to be properly defined so that to
ensure that they can be properly understood, attained,
repeated, and controlled. They have to be affordable and
acceptable for all the stakeholders. Incident management
tools are used and a log of each and every incident is
maintained based on a feature checklist. This log is further
analyzed to perform any corrective action. Data migration
and data archiving provisions are vital to the
decommissioning phase and should be a part of the SLA.

Table 4: SLA Management Roles
Role Description

Product owner

Product Owner is Responsible for defining,
managing, controlling, and improving the SLA

management process in order to ensure that the SLA
management process and operational practices are
both efficient and effective. He has to make sure
stakeholders adequately participate in the SLA

management process and keeps higher management
well informed.

Project
Manager

Product Owner is Responsible for defining,
managing, controlling, and improving the SLA

management process in order to ensure that the SLA
management process and operational practices are
both efficient and effective. He has to make sure
stakeholders adequately participate in the SLA

management process and keeps higher management
well informed.

Implementation
Lead

Heads the implementation of the processes described
in the SLA and provides related information to the
stakeholders. Reports discrepancies and facilitates

process enhancement

Process
Manager

Produces RFPs in coordination with stakeholders,
makes vendor selections after evaluating proposals.
He ensures that the process runs smoothly as he has

to see if the vendors are properly providing the
deliverables.

Process analyst

Responsible for production of reports, performing
gap analysis, identifying SLA breaches, investigating

causes of breaches and recommending remedial
measures. It is his responsibility to coordinate review

meetings and keep a track of actions taken
accordingly.

Client Liaison Represents the client
End User The ones who actually consume the provided services

Table 5: Key Practice analysis
 A B C D E

DST1 Identify all parties involved 1 1 1 1 1 C5
DST2 Mention Tenure of agreement 1 1 1 1 1 C5
DST3 Define scope of support 1 1 1 1 1 C5
DST4 Define Scope of the supported products is defined 1 1 1 1 1 C5
DST5 Specify equipment for providing support 1 1 1 1 1 C5
DST6 State the commitments and responsibilities of the parties involved in the SLA are stated 1 1 1 1 1 C5
DST7 State the availability of support organizations 1 1 1 1 1 C5
DST8 Define each support task type in terms of monetary and non-monetary terms 1 1 1 1 1 C5
DST9 State the rules for requesting and providing support 1 1 1 1 1 C5

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 108

DST10 Prioritize Support Tasks 1 1 1 1 1 C5
 SLA Templates
NSLA1 Negotiate to agree upon the activities mentioned above in DST1 through DST10 1 1 1 1 1 C5

SDP1
Perform Transition to

progressively transfer the
system from the developer

to the maintainer
1 0 1 0 1 C3

SPD2 Provision of SLA-
specified services. 1 1 1 1 1 C5

 SLA Registry 0 0 0 0 0 C0
 The software Landscape 0 0 0 0 0 C0

ES1
Decompose SLA into rules that can be monitored and

further provide a way for analyzing subsequent flow of
monitoring events corresponding to these rules

1 1 1 1 1 C5

ES2 Establish a Help desk for Modification Requests and
reporting problems: 1 1 1 1 1 C5

ES3 Accept or Reject modification requests 1 1 1 1 1 C5
ACA1 Record all the violations of SLA and initiate corrective

Actions 1 1 1 1 1 C5

ACA2 Utilize adjustment patterns and model for
manageability for modifying SLA 1 1 0 0 1 C3

DCM1 Decide the terms of decommissioning 1 1 1 1 1 C5

7. Refined framework

This research work started with the literature review and
then grounded theory was applied to build a preliminary
framework for SLA management for software
maintenance. This framework was explored and evaluated
in industry and enhancements were made to it. Summary
of these enhancements is provided in Table VI. Refined
phases of SLA management are presented.

A. Phase 1: Development of SLA Structure (DST)

All the necessary information regarding SLA is gathered
in this phase. It provides the basis for any further process.
Therefore, it is critical to developing a comprehensive
SLA that misses none of the vital aspects of SLA
management.

Table 6: Enhancements in the Preliminary Framework
Phase Enhancements

Phase 1: Development of SLA
Structure (DST)

1. Seven new activities
identified

2. Three new deliverables
identified

Phase 2: Negotiation of SLA (NSLA) 1. Concept of version
control identified

Phase 3: Service provisioning and
deployment (SPD)

1. Four more deliverables
identified

Phase 4: Execution of the service
(ES)

1. Two more deliverables
identified

Phase 5: Assessment and corrective
Actions (ACA)

1. One more deliverable
identified

Phase 6: Decommissioning of service
(DS)

1. Two more activities
identified

1. Two more deliverables
identified

The first phase of SLA is concerned with the initial
drafting of SLA. It is important that all the stakeholders
involved in software maintenance should mutually
participate in developing an SLA (DST1). The
stakeholders include the SLA Manager, SLA

Administrator, and SLA Executor. The SLA Manager is
the owner of SLA management process. SLA
Administrator has the responsibility of facilitating and
reviewing the SLA documentation. Finally, SLA Executor
implements the services as decided in the SLA
specifications

Table 7: Development of Service and Service Templates
Code ACTIVITIES Guidelines Deliverables
DST1 Identify all parties

involved

Following
recommendations

should be
considered while

mentioning service
specifications:

Efforts that would
be made and their
expected results

must be specified

Service
specifications

should be clear

Service
specifications

should be complete

There should be
proper cost

management

SLA should not be a
dead end document

SLA Structure

Stakeholder
management

plan*

Special
agreements if
applicable(eg;

NDA)*

Access Control
List*

DST2 Mention Tenure of
agreement

DST3 Define the scope
of support

DST4
Define the Scope
of the supported

products is defined

DST5
Specify equipment

for providing
support

DST6

State the
commitments and
responsibilities of

the parties
involved in the
SLA are stated

DST7
State the

availability of
support

organizations

DST8

Define each
support task type

in terms of
monetary and/or
non-monetary

values

DST9
State the rules for

requesting and
providing support

DST10 Prioritize support
tasks

DST11*
Communication

between customer
and service

provider
DST
12*

Service and asset
criticality

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

109

DST13*
Required types
and levels of

support

DST14*
State Service level

requirements/
targets

DST15*

Mention Technical
standards/

specification of
the service
interface

DST16* Provide a pricing
model

DST17*
Provide List of

annexes and
references and

Glossary

The stakeholders should decide on the time period for the
provision of services (DST2). The third activity (DST3) is
concerned with defining the scope of maintenance services.
The projects that should be maintained are decided in
advance (DST4). The maintenance team needs
maintenance environment in order to provide effective
services. Therefore, the requisition for maintenance
equipment should be part of SLA (DST5). Every role
participating in maintenance provision should have a clear
understanding of his role and responsibilities so that future
confusions can be avoided (DST6). It is important that the
contact hours of all stakeholders should be mentioned in
the SLA (DST7). It is important to categorize the support
tasks on the basis of their monetary/time value (DST8). A
communication mechanism should be formed for
requesting and providing maintenance services (DST9).
Maintenance tasks should be prioritized based upon their
criticality (DST10). Enhanced activities include
establishing communication channels among stakeholders
(DST11), Criticality of services and assets is mentioned
(DST12). Required types and levels of support are
mentioned (DST13). Service level requirements and
targets are mentioned (DST14). Technical standards and
interface specifications are mentioned (DST15). A pricing
model is provided (DST16). Annexure and glossary are
provided where required (DST17). Enhanced deliverables
include stakeholder management plan, special agreements
if applicable, and access control lists. See Table VII.

B. Phase 2: Negotiation of SLA (NSLA)

This phase put emphasis on negotiation between
stakeholders in order to form a consensus on the activities
described in Phase 1 (DST). Two work products are
produced as a result of this phase including (1) Design
Time Repository and SLA Template Registry, that keeps a
record of all the templates either possible or offered. A
version control aspect is added to the SLA structure. The
enhanced phase 2 of the framework is provided in Table
VIII.

Table 8: Negotiation of SLA
Code ACTIVITIES Deliverables

NSLA1
Negotiate to agree upon the activities

mentioned above in DST1 through
DST17*

Design Time
Repository

SLA Template

Registry

Version
Control*

C. Phase 3: Service provisioning and deployment
(SPD)

Once an SLA is agreed upon, deployment is initiated and
services provision begins. This phase comprises of
activities and deliverables given in Table VIII This phase
comprises of two activities. The first activity involves
transitioning of the system from developer to maintainer
(SPD1). The second activity is concerned with the
provision of maintenance services by the maintainer
(SPD2). Two work products are produced as a result of
this phase. These are (1) SLA registry, that keeps a track
of all agreed upon SLAs and (2) The Software Landscape
that keeps a record of all products related to software for
service provisioning in order to ensure that time-based and
other types of service dependencies are being catered.
Software landscape was elaborated in the industry by
adding deliverables namely: project specifications, code
documentation, development credentials, and deployment
procedures. See table IX.

Table 9: Service provisioning and deployment
Code Activities Deliverables

SDP1
Perform Transition to progressively

transfer the system from the
developer to the maintainer

Project
specifications*

Code

documentation*

Development
credentials*

Deployment
procedures*

SDP2 Provision of SLA-specified services.

D. Phase 4: Execution of Service

Services mentioned in the SLA and deployed in the
previous phase now become consistent. The initial set of
rules may be evolved based on feedback from stakeholders
(Activity ES1). The service provider establishes a help
desk for accepting the modification requests submitted by
service consumers (Activity ES2). Requests can be
rejected or rerouted based on their size, required effort or
the complexity (Activity ES3). The added deliverables are
Service Level Objectives and Incident Management Log as
mentioned in Table X.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 110

Table 10: Execution of service
Code ACTIVITIES Deliverables

ES1

Decompose SLA into rules that can
be monitored and further provide a
way for analyzing the subsequent

flow of monitoring events
corresponding to these rules

Service Level
Objectives*

Incident
Management

Log*
ES2

Establish a Help desk for
Modification Requests and reporting

problems:
ES3 Accept or Reject modification

requests:

E. Phase 5: Assessment and Corrective Actions

SLA management is an ongoing process and an SLA
should be evaluated and updated iteratively. Once the
execution has begun the assessment and correction process
runs in parallel. It is significant to monitor service
provision and record any SLA violations. The corrective
actions must be initiated to rectify the shortcomings of
SLA (ACA1). The added deliverables are Incident
Management Analysis as mentioned in Table XI. Through
Incident management analysis corrective actions are taken
and SLA is modified or adjusted.

Table 11: Assesment and corrective actions
Code ACTIVITIES Deliverables

ACA1 Record all the violations of SLA
and initiate corrective actions

Incident
management

analysis*

ACA2
Utilize adjustment patterns and

model for manageability for
modifying SLA

F. Phase 6: Decommissioning of service

Decommissioning is the final phase of the SLA
management life cycle where service is no longer provided.
There should be a consensus on how the services will
terminate and what would be the deliverables at the time
of decommissioning. Decommissioning phase in the
preliminary framework didn’t provide much detail about
the decommissioning process. However, in the refined
framework data migration (DCM2) and data archiving
(DCM3) are vital activities supported by their respective
deliverables as mentioned in table XII.

Table 12: Decommissioning of Service
Code ACTIVITIES Deliverables

DCM1 Decide the terms of
decommissioning

DCM2* Perform data migration Data Migration
Report*

DCM3* Perform data archiving Data Archiving
Report*

Figure 4 graphically represents the refined software
maintenance SLA management framework.

Fig. 5 Refined software maintenance SLA management framework

8. Conclusion

This paper presents an SLA Management Framework for
software maintenance. We developed the framework in
two major phases. In the first phase, we explored the state
of the art in this domain and developed a preliminary
framework. In the second phase, we evaluated and
enhanced the framework by conducting industrial case
studies. Every phase of the framework has been enhanced.
SLA structure is refined and new concepts like service
level objective and incident management analysis have
been introduced, Decommissioning phase has been
handled in detail. The final framework reflects industrial
practice. We concluded that the majority of aspects
mentioned in the framework are applicable in an industrial
setting. However, gaps were identified in the process of
service deployment, assessment and corrective actions
over SLA and SLA modification.
Quantitative results showed that the scores for the process
of service deployment and assessment and corrective
actions over SLA are low. This shows a gap in industrial
practice regarding these two practices. A process needs to
be adapted to modify the SLA while the service is in
progress rather than making ad-hoc measures and waiting
for the tenure to end. The key practice analysis showed
that the concept of SLA registry and software landscape is
not appreciated in the industry as prescribed in literature.
Industrial practices regarding these were identified and the
final framework has been modified accordingly.
We found that the Development of Service Template is a
major phase in maintenance SLA management. We found
that stakeholder management, scope identification, and
task prioritization are the key challenges of this phase.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

111

Stakeholders must be identified and consulted before
making any decision related to the SLA agreement.
Regarding scope identification, we found that it is the
main activity that decides about the effort and time
required by the maintenance team to provide post-delivery
maintenance services. Task prioritization depends on the
criticality of each change requests; we found that it is
important to group tasks under different categories based
upon their criticality level. In order to meet the above-
mentioned challenges, an SLA structure was further
provided where vital clauses were identified for instance:
Personnel information, tenure, client’s desired outcome,
communication channels, criticality identification,
availability, required types and levels of support, targets,
specification of technical standards, stakeholder
responsibilities, pricing model, and version control were
mentioned. Processes for stakeholder management, scope
definition, and task prioritization were identified.
Regarding SLA Negotiation, we found that either the
negotiation should be given enough time before moving on
to the advanced phases or there must be a provision of
modifying SLA during the service. In both cases, client
and vendor have to be mutually comfortable.
As far as Service Provisioning and Deployment is
concerned, it is important that a process of transition from
developer to maintainer must be maintained that should
include the elaborated and mandatory information sources:
detailed specifications, documentation, credentials and
procedure, and workflows.
Regarding Execution of service, it was identified that
though assessment and corrective actions are taken in the
process SLAs don’t get radically modified during the
process of service provision. It is also significant that the
SLA is decomposed into achievable service level
objectives.
There was an emphasis on the Decommissioning phase
where generally there is a convention of elaborating
decommissioning details. Organizations mostly archive
data but there are organizations that further facilitate the
client by assisting them in data migration as well.

References
[1] April, A., & Abran, A. (2009). A software maintenance maturity

model (S3M): Measurement practices at maturity levels 3 and
4. Electronic Notes in Theoretical Computer Science, 233, 73-
87.April, A., et al. (2005). "Software Maintenance Maturity Model
(SMmm): the software maintenance process model." 17(3): 197-
223.

[2] Boehm, B. W. (1981). Software engineering
economics (Vol. 197). Englewood Cliffs (NJ): Prentice-hall.

[3] Bourque, P., & Fairley, R. E. (2014). Guide to the software
engineering body of knowledge (SWEBOK (R)): Version
3.0. IEEE Computer Society Press.

[4] Cavalcanti, Y. C., da Mota Silveira Neto, P. A., Machado, I.
D. C., Vale, T. F., de Almeida, E. S., & Meira, S. R. D. L.
(2014). Challenges and opportunities for software change

request repositories: a systematic mapping study. Journal of
Software: Evolution and Process, 26(7), 620-653.

[5] Chatzimparmpas, A., & Bibi, S. (2019). Maintenance
process modeling and dynamic estimations based on
Bayesian networks and association rules. Journal of
Software: Evolution and Process, e2163.

[6] Christa, S., Madhusudhan, V., Suma, V., & Rao, J. J. (2017).
Software maintenance: from the perspective of effort and
cost requirement. In Proceedings of the International
Conference on Data Engineering and Communication
Technology (pp. 759-768). Springer, Singapore.

[7] Comuzzi, M., Kotsokalis, C., Rathfelder, C., Theilmann, W.,
Winkler, U., & Zacco, G. (2009, November). A framework
for multi-level sla management. In Service-Oriented
Computing. ICSOC/ServiceWave 2009 Workshops (pp.
187-196). Springer, Berlin, Heidelberg.

[8] Cook, S. (2017). Measuring customer service effectiveness.
Routledge..

[9] Hassan, S. I., & Khan, A. S. (2017, December). Eliciting
Theory for Software Maintenance SLA Management
Framework. In 2017 International Conference on Frontiers
of Information Technology (FIT) (pp. 241-246). IEEE

[10] Hasselmeyer, P., Mersch, H., Koller, B., Quyen, H. N.,
Schubert, L., & Wieder, P. (2007, October). Implementing
an SLA negotiation framework. In Proceedings of the
eChallenges Conference (e-2007) (Vol. 4, pp. 154-161)

[11] Huang, H., Hu, M., Kauffman, R., & Xu, H. (2019, January).
Renegotiation of Software Outsourcing Contracts.
In Proceedings of the 52nd Hawaii International Conference
on System Sciences..

[12] Jansson, A. S. (2007). Software maintenance and process
improvement by CMMI. UPTEC STS07037 November
Examensarbete, 20.

[13] Kajko-Mattsson, M. (2009, November). SLA management
process model. In Proceedings of the 2nd International
Conference on Interaction Sciences: Information
Technology, Culture and Human (pp. 240-249). ACM.

[14] Tsunoda, M., Monden, A., Matsumoto, K., Ohiwa, S., &
Oshino, T. (2015, July). Benchmarking software
maintenance based on working time. In 2015 3rd
International Conference on Applied Computing and
Information Technology/2nd International Conference on
Computational Science and Intelligence (pp. 20-27). IEEE.

[15] Kajko-Mattsson, M., Ahnlund, C., & Lundberg, E. (2004,
September). CM/sup 3: service level agreement. In 20th
IEEE International Conference on Software Maintenance,
2004. Proceedings. (pp. 432-436). IEEE.

[16] Khan, A. S. (2013). A framework for software system
handover (Doctoral dissertation, KTH Royal Institute of
Technology).

[17] Lee, Y. J., & Choi, Y. J. (2015). A Study on the Information
System Maintenance Activities and Performance. Journal of
the Korea Society of Computer and Information, 20(12),
175-180.

[18] Lewis, L., & Ray, P. (1999). Service level management
definition, architecture, and research challenges.
In Seamless Interconnection for Universal Services. Global
Telecommunications Conference. GLOBECOM'99.(Cat. No.
99CH37042) (Vol. 3, pp. 1974-1978). IEEE.

[19] Li, S. H., Yen, D. C., Lu, W. H., & Chen, T. Y. (2014). The
characteristics of information system maintenance: an

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 112

empirical analysis. Total Quality Management & Business
Excellence, 25(3-4), 280-295.

[20] McCalden, S., Tumilty, M., & Bustard, D. (2016, May).
Smoothing the Transition from Agile Software
Development to Agile Software Maintenance.
In International Conference on Agile Software
Development (pp. 209-216). Springer,

[21] Mikkonen, T., Lassenius, C., Männistö, T., Oivo, M., &
Järvinen, J. (2018). Continuous and collaborative
technology transfer: Software engineering research with
real-time industry impact. Information and Software
Technology, 95, 34-45.

[22] Monteiro, S. B. S., Lima, A. C. F., Venturini, F. C., & de
Oliveira, W. S. (2018, September). Continuous
improvement of systems in maintenance using proactive
quality management. In 2018 11th International Conference
on the Quality of Information and Communications
Technology (QUATIC) (pp. 47-55). IEEE.

[23] Pigoski, T. M. (1996). Practical software maintenance: best
practices for managing your software investment. Wiley
Publishing.

[24] Reifer, D. J. (2016). Software Maintenance Success Recipes.
Auerbach Publications..

[25] Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E.,
Teppola, S., Suomalainen, T., Eskeli, J., ... & Oivo, M.
(2017). Continuous deployment of software-intensive
products and services: A systematic mapping study. Journal
of Systems and Software, 123, 263-291.

[26] . Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E.,
Teppola, S., Suomalainen, T., Eskeli, J., ... & Oivo, M.
(2017). Continuous deployment of software-intensive
products and services: A systematic mapping study. Journal
of Systems and Software, 123, 263-291.

[27] Trienekens, J. J., Bouman, J. J., & Van Der Zwan, M.
(2004). Specification of service level agreements: Problems,
principles, and practices. Software Quality Journal, 12(1),
43-57.

[28] Trienekens, J. J., Bouman, J. J., & Van Der Zwan, M.
(2004). Specification of service level agreements: Problems,
principles, and practices. Software Quality Journal, 12(1),
43-57.

[29] Chapin, N., Hale, J. E., Khan, K. M., Ramil, J. F., & Tan, W.
G. (2001). Types of software evolution and software
maintenance. Journal of software maintenance and
evolution: Research and Practice, 13(1), 3-30.

[30] Zhang, S., & Song, M. (2010, February). Architecture
design of life cycle based SLA management. In 2010 The
12th International Conference on Advanced Communication
Technology (ICACT) (Vol. 2, pp. 1351-1355). IEEE.

[31] Kung, H. J., & Hsu, C. (1998, November). Software
maintenance life cycle model. In Proceedings. International
Conference on Software Maintenance (Cat. No.
98CB36272) (pp. 113-121). IEEE.

[32] Wang, Y., & King, G. (2000). Software engineering
processes: principles and applications. CRC press.

