
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

128

Manuscript received May 5, 2019
Manuscript revised May 20, 2019

Design and Implementation of an FPGA Based System on Chip
(SoC) For Embedded Control Application

Salman Jafri1, Dr.Muhammad Ali Ismail2

Department of Electrical Engineering,
1Usman Institute of Technology, Engineering, UIT, Karachi, Pakistan

2Department of Computer & Information Systems Engineering, NED University of Engg. & Technology, Karachi, Pakistan

Abstract
FPGAs offer a great prototyping medium for complex digital
systems. FPGAs focus on the hardware implementation of digital
systems where the circuit is specified in a Hardware Description
Language (HDL) like Verilog or VHDL. Verilog coding,
debugging and verification takes time. To save time and also
implement efficient and high performance FPGA based systems,
the system can be divided into software tasks running on a softcore
processor (coded in HDL) and delegating the high performance
application specific tasks to hardware accelerators (hardware
tasks). This technique is termed as Hardware / Software Codesign.
It speeds up design of FPGA based systems because a small subset
of highly specific tasks need to be coded in HDL and the rest of
the application is easily handled by the Software running on the
softcore processor. This paper represents design and
implementation of an FPGA based System on Chip (SoC)
consisting of a Xilinx PicoBlaze soft processor core interfaced
with HDL coded hardware modules. The design is extensible and
more modules can be integrated in future to incorporate highly
specialized hardware tasks. The system has been implemented on
a Spartan 6 based FPGA board.
Key words:
RISC Architecture; System on Chip; UART; FPGA

1. Introduction

Different implementations of FPGA based Systems on Chip
exist in literature. Authors in [1] discuss a system on Chip
based on the Xilinx Microblaze Softcore processor. Open
source processor based systems like [2] use the OR1200
processor as the softcore processor for the platform. The
RISCV softcore processor [3] has also gained popularity in
optimized embedded control applications. A Nios-II powers
the SoC for an embedded web server in [4].
The major consideration in using softcore processors is
area/resource efficiency in terms of the resources of the
FPGA. Most of the above cited implementations are
resource hungry and complex in implementation and take
up a lot of valuable FPGA resources. Additionally softcore
processors like Xilinx Microblaze [1] need to be purchased
as an intellectual property (IP). This adds to the cost and
complexity of developing systems for embedded control
applications. To alleviate the problems of licensing and to
build a resource-efficient SoC, our SoC uses the Xilinx

PicoBlaze ™ softcore processor. PicoBlaze is free, its HDL
source is freely available (so it can be modified for
customized processor implementations). Most importantly
it is resource-efficient and can be implemented on modest
FPGA boards. PicoBlaze might not be fast for some
demanding applications but the idea of our system is that
hardware/software co-design may be used to add power to
the lean and mean PicoBlaze whereby specialized high
speed hardware modules may tackle the specialized high
performance tasks while normal priority tasks may be easily
implemented on Software running on the PicoBlaze
softcore processor. This approach has two major
advantages:

1. The system is very efficient and resource friendly.
2. The system can expand to accommodate high
performance hardware modules.

The rest of the paper is organized as follows: Section II
explains System architecture, Section III highlights system
implementation, Section IV explains system working,
Section V presents hardware implementation results for the
FPGA and Section VI concludes the paper.

2. System Architecture

The block diagram of the developed SoC is shown in Figure
1. The processing unit which is a PicoBlaze softcore
processor is interfaced through a bus network with its
external interfaces. The SoC has three interfaces- a general
purpose Input/output interface, a UART based serial
communication interface and an 8 bit Analogue to Digital
Convertor (ADC) interface. The System on Chip is
implemented on a Xilinx Spartan 6 based FPGA kit. The
PicoBlaze, UART and General purpose IO ports have been
implemented in hardware using Verilog HDL while the
ADC module is incorporated by the PIC16F877A
microcontroller and interfaced to the FPGA board. This
approach offers added flexibility and it is explained in
Section III.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

129

Fig. 1 The architecture of the System on Chip Module

3. System Implementation

The SoC consists of the following modules:

A. Xilinx PicoBlaze(KCPSM6)

The processing unit of the System on chip module is based
on Xilinx PicoBlaze implementation named KCPSM6.
Figure 2 shows the Kcpsm6 module of the SoC indicating
the various signals to be connected. The code memory is
addressed by using the address bus and the instruction size
is 18 bits. The processor can handle interrupts and can
access upto 256 input and output ports. It has an 8 bit RISC
architecture. KCPSM 6 is optimized for Spartan 6 series
FPGA kits and 7 series FPGA kit by Xilinx. For Spartan 6
FPGA it has a KCPSM6 code assembler [1]. Figure 2 show
RTL representation of the KCPSM6 controller, when
implemented in Verilog HDL. One of the most important
thing to notice is the 18 bit instruction pin. All the
information are defined by 18 bit instructions. It takes
KCPSM6 two cycles to execute an instruction.
The processing unit is optimized for efficient code
execution and presents an efficient device with respect to
resource utilization of the targeted FPGA (See Table 1). The
interrupt handling feature of the processor allows
sophisticated real-time applications to be built. This would
cater for systems that require real-time response in the
presence of peripherals with varying data transfer speeds.
As shown in Figure 2, additional signals read_strobe and
write_strobe are provided for peripheral interfacing and this
offers a simplistic but powerful method for device
interfacing. The input and output port are placed in separate
address spaces and are each addressed by eight bit addresses.
The sleep mode is provided for energy saving where
dedicated watchdog timers may be added to the SoC to
produce sophisticated power efficient systems with features
like power saving program loops and wakeup on keystrokes.
This adds further to deployment in power constrained
embedded environments like drones. The RTL can be
modified to incorporate different additional functions into
the processing core like DSP (Digital Signal Processing)
MAC (multiply and accumulate) instructions

The KCPSM6 version of Picoblaze is compatible for
various latest kits by Xilinx like Virtex 6, 7 series FPGA
(Artix 7 for instance) and Spartan 6. KCPSM6 only utilizes
26 Slices of an FPGA kit to operate. This results in fewer
resources of the FPGA to be used [1]. Furthermore
KCPSM6 supports programs up to 4K instructions. It has an
additional bank of 16 registers, dynamic JUMP and CALL,
user defined interrupt vector and constant-optimized output
ports [1] [2]. We have implemented the Verilog HDL
version of KCPSM6. This is yet another contribution of this
work because KCPSM6 has mostly been implemented in
VHDL in prior works.
The main motivation behind this Verilog Implementation
was to enable an infra-sturcture for future enhancement and
research of the SoC using Verilog HDL. This may allow
future reseaerch activities on the developed system for
example incorporating complex image processing
algorithms using custom accelerators interfaced to the
PicoBlaze System, or incorporating sound wave processing
engines incorporating digital filtering and sonic refinement.

B. A Universal Asynchronous receiver / transmitter
(UART)

The SoC consists of a UART for asynchronous serial
communication. This module is used to interface the SoC.
The UART communicates with the PC and is interfaced to
the PicoBlaze. Commands can be given to the SoC as
explained in Section C.

C. General Purpose I/O Interface

This interface is used to the output the PWM wave and also
the analog to digital convertor module (ADC). This block
can be thought of as the I/O connectgivity portion of the
system. As a future extension multiple such systems may be
interfaced or specialized hardware may be directly
interfaced through the system bus of the PicoBlaze.

Fig. 2 RTL representation of KCPSM6

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 130

Figure 3 shows the schermatic diagram generated by Xilinx
ISE using the RTL schematic tool. This schematic reveals
the many components just discussed and shows the layout
of the system as coded in the Verilog HDL.
LED block contains the block RAM containing the code to
be executed by the PicoBlaze processor. The UART block
connects to the PC for serial communication and is also
interfaced to the PicoBlaze (KCPSM6). This allows the
controlling of the SoC through the PC by using the PC
terminal software.
The ADC block (not shown) is interfaced to the system and
offers the interface of an eight channel 10 bit ADC. This

offers optimum channels and resolution for embedded
control applications of moderate size and complexity. This
block may be useful in digital control applications and
resolution may be traded off for frequency for high speed
applications. To offer flexibility ADC is provided through
a PIC16F877A microcontroller. This allows programmable
flexibility for incorporating multi-channel ADC
applications for complex applications like digital multi-
channel oscilloscopes or logic analyzers.

Fig. 3 RTL Schematic generated by the Xilinx ISE RTL Schematic tool

4. Working

The user inputs the desired duty cycle for the PWM wave
from the serial connection through the Personal computer
(PC). This input is received with the help of the UART in
the SoC. In response,the PicoBlaze (KCPSM6) generates
the respective PWM signal. This PWM signal drives a DC
fan connected to the SoC. In another specialized application
of the SoC, The ADC module is connected to a temperature
transducer and provides the temperature reading to the SoC.
As a result, the SoC can control the speed of the DC fan by
PWM. These are demonstrative examples of the SoC and
more complex applications and devices may be constructed
by modifying the KCPCM6 Verilog HDL code and also
incorporating and interfacing new HDL modules into the
system. Figure 4 shows the implementation of the system.
The actual results of synthesis of the SoC are presented in
Table 1 where the highly optimized design of the SoC is

evident. Figure 5 shows the output of the PWM unit of the
SoC for a 50 % duty cycle. As is evident from the figure,
accurate PWM waveform are being generated by the unit
with the proper timing constraints. This is because the
synthesis does not include any timing violations and
latching elements.

Fig. 4 The System on Chip showing the ADC module PCB

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

131

5. Results

Table 1 shows the resource utilization for the Spartan 6
FPGA as implementation results. One can see that the SoC
only utilizes 1 % of slice registers and 3% each of slice
LUTs, occupied slices and bonded IOBs. These figures

translate into a very optimized SoC design for our modest
Spartan 6 FPGA. They also show the potential for future
growth to incorporate complex hardware modules in
Verilog HDL. This is true for even for the modest Spartan
6 FPGA and the possibilities grow exponentially for the
complex FPGAs like the Artix 7 and Vertex 7 Devices.

Fig. 5 Output of the PWM unit of the SoC.

Table 1: Resource Utilization of Spartan 6 FPGA
Resource Used Available Utilization

Number of Slice Registers 157 11440 1%
Number of Slice LUTs 198 5720 3%

Number of Occupied Slices 57 1430 3%
Number of bonded IOBs 6 186 3%

Note that the user decides the duty cycle based on the
temperature measured using the ADC channel which is also
interfaced using the transmitter of the UART. The
temperature value is received at another I/O pin of the
System on Chip.
As a result the speed of the fan varies as the temperature
increases or decreases. This leads to a controlled ventilation
system which saves energy and reduces running cost as well.
Various more complex applications can be interfaced using
the system on chip.

5. Conclusion

The results show that our SoC is very resource friendly from
the point of view of the Spartan 6 FPGA.The developed
setup can be expanded to incorporate ore complex
embedded control systems by including further HDL
modules. Also, the inclusion of the ADC module of the
PIC16F877A microcontroller into the system increases the
possibilities even further. In a future derivative of the
system, this ADC module might include some software
based signal processing of its own e.g. digital filtering or
sound processing algorithms. The possibilities expand even
further for the high end Xilinx Devices like Virtex 7 and
Artix 7

References
[1] B. Bengherbia, S. Chadli, M. O. Zmirli and A. Toubal, "A

MicroBlaze based WSN sink node using XBee transceiver,"
2016 8th International Conference on Modelling,
Identification and Control (ICMIC), Algiers, 2016, pp. 831-
834. doi: 10.1109/ICMIC.2016.7804229

[2] S. Xuan, J. Han, Z. Yu, Y. Ren and X. Zeng, "A configurable
SoC design for information security," 2015 IEEE 11th
International Conference on ASIC (ASICON), Chengdu,
2015, pp. 1-4. doi: 10.1109/ASICON.2015.7516998

[3] C. A. R. A. Melo and E. Barros, "Oolong: A Baseband
processor extension to the RISC-V ISA," 2016 IEEE 27th
International Conference on Application-specific Systems,
Architectures and Processors (ASAP), London, 2016, pp.
241-242. doi: 10.1109/ASAP.2016.7760808

[4] P. G. Salunke and A. M. Sayyed, "Design of embedded web
server based on NIOS-II soft core processor," 2016
International Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), Chennai, 2016, pp.
488-492. doi: 10.1109/ICEEOT.2016.7755638

[5] L. Akçay, M. Tükel and S. B. Örs, "Implementation of an
OpenRISC based SoC and Linux Kernel installation on
FPGA," 2016 24th Signal Processing and Communication
Application Conference (SIU), Zonguldak, 2016, pp. 1969-
1972. doi: 10.1109/SIU.2016.7496153

[6] L. Janik, M. Novak, L. Hudcova, O. Wilfert and A. Dobesch,
"LwIP based network solution for MicroBlaze," 2016
International Conference on Broadband Communications for
Next Generation Networks and Multimedia Applications
(CoBCom), Graz, 2016, pp. 1-4. doi:
10.1109/COBCOM.2016.7593513

[7] M. A. Jaballah, D. Mezghani and A. Mami, "Development of
a MPPT controller for hybrid wind/photovoltaic system
based on SOPC and NIOS II," 2015 16th International
Conference on Sciences and Techniques of Automatic
Control and Computer Engineering (STA), Monastir, 2015,
pp. 700-706. doi: 10.1109/STA.2015.7505230

[8] D. Romeo, J. LaMagna, I. Hogan and J. C. Squire, "An
Introduction to Soft-Core Processors and a Biomedical

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 132

Application," in IEEE Potentials, vol. 37, no. 2, pp. 13-18,
March-April 2018. doi: 10.1109/MPOT.2017.2733341

[9] S. Tamimi, Z. Ebrahimi, B. Khaleghi and H. Asadi, "An
Efficient SRAM-Based Reconfigurable Architecture for
Embedded Processors," in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no.
3, pp. 466-479, March 2019. doi:
10.1109/TCAD.2018.2812118

