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Abstract 
FPGAs offer a great prototyping medium for complex digital 
systems. FPGAs focus on the hardware implementation of digital 
systems where the circuit is specified in a Hardware Description 
Language (HDL) like Verilog or VHDL. Verilog coding, 
debugging and verification takes time. To save time and also 
implement efficient and high performance FPGA based systems, 
the system can be divided into software tasks running on a softcore 
processor (coded in HDL) and delegating the high performance 
application specific tasks to hardware accelerators (hardware 
tasks). This technique is termed as Hardware / Software Codesign. 
It speeds up design of FPGA based systems because a small subset 
of highly specific tasks need to be coded in HDL and the rest of 
the application is easily handled by the Software running on the 
softcore processor. This paper represents design and 
implementation of an FPGA based System on Chip (SoC) 
consisting of a Xilinx PicoBlaze soft processor core interfaced 
with HDL coded hardware modules. The design is extensible and 
more modules can be integrated in future to incorporate highly 
specialized hardware tasks. The system has been implemented on 
a Spartan 6 based FPGA board. 
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1. Introduction  

Different implementations of FPGA based Systems on Chip 
exist in literature. Authors in [1] discuss  a system on Chip 
based on the Xilinx Microblaze Softcore processor. Open 
source processor based systems like [2] use the OR1200 
processor as the softcore processor for the platform. The 
RISCV softcore processor [3] has also gained popularity in 
optimized embedded control applications. A Nios-II powers 
the SoC for an embedded web server in [4]. 
The major consideration in using softcore processors is 
area/resource efficiency in terms of the resources of the 
FPGA. Most of the above cited implementations are 
resource hungry and complex in implementation and take 
up a lot of valuable FPGA resources. Additionally softcore 
processors like Xilinx Microblaze [1] need to be purchased 
as an intellectual property (IP). This adds to the cost and  
complexity of developing systems for embedded control 
applications. To alleviate the  problems of licensing and to 
build a resource-efficient SoC, our SoC uses the Xilinx 

PicoBlaze ™ softcore processor. PicoBlaze is free, its HDL 
source is freely available (so it can be modified for 
customized processor implementations). Most importantly 
it is resource-efficient and can be implemented on modest 
FPGA boards. PicoBlaze might not be fast for some 
demanding applications but the idea of our system is that 
hardware/software co-design may be used to add power to 
the lean and mean PicoBlaze whereby specialized high 
speed hardware modules may tackle the specialized high 
performance tasks while normal priority tasks may be easily 
implemented on Software running on the PicoBlaze 
softcore processor. This approach has two major 
advantages: 

1. The system is very efficient and resource friendly. 
2. The system can expand to accommodate high 
performance hardware modules. 

 
The rest of the paper is organized as follows: Section II 
explains System architecture, Section III highlights system 
implementation, Section IV explains system working, 
Section V presents hardware implementation results for the 
FPGA and Section VI concludes the paper. 

2. System Architecture 

The block diagram of the developed SoC is shown in Figure 
1. The processing unit which is a PicoBlaze softcore 
processor is interfaced through a bus network with its 
external interfaces. The SoC has three interfaces- a general 
purpose Input/output interface, a UART based serial 
communication interface and an 8 bit Analogue to Digital 
Convertor (ADC) interface. The System on Chip is 
implemented on a Xilinx Spartan 6 based FPGA kit. The 
PicoBlaze, UART and General  purpose IO ports have been 
implemented in hardware using Verilog HDL while the 
ADC module is incorporated by the PIC16F877A 
microcontroller and interfaced to the FPGA board. This 
approach offers added flexibility and it is explained in 
Section III. 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 

 

129 

 

Fig. 1  The architecture of the System on Chip Module 

3. System Implementation 

The SoC consists of the following modules: 

A. Xilinx PicoBlaze(KCPSM6) 

The processing unit of the System on chip module is based 
on Xilinx PicoBlaze implementation named KCPSM6. 
Figure 2 shows the Kcpsm6 module of the SoC indicating 
the various signals to be connected. The code memory is 
addressed by using the address bus and the instruction size 
is 18 bits. The processor can handle interrupts and can 
access upto 256 input and output ports. It has an 8 bit RISC 
architecture. KCPSM 6 is optimized for Spartan 6 series 
FPGA kits and 7 series FPGA kit by Xilinx. For Spartan 6 
FPGA it has a KCPSM6 code assembler [1]. Figure 2 show 
RTL representation of the KCPSM6 controller, when 
implemented in Verilog HDL. One of the most important 
thing to notice is the 18 bit instruction pin. All the 
information are defined by 18 bit instructions. It takes 
KCPSM6 two cycles to execute an instruction. 
The processing unit is optimized for efficient code 
execution and presents an efficient device with respect to 
resource utilization of the targeted FPGA (See Table 1). The 
interrupt handling feature of the processor allows 
sophisticated real-time applications to be built. This would 
cater for systems that require real-time response in the 
presence of peripherals with varying data transfer speeds. 
As shown in Figure 2, additional signals read_strobe and 
write_strobe are provided for peripheral interfacing and this 
offers a simplistic but powerful method for device 
interfacing. The input and output port are placed in separate 
address spaces and are each addressed by eight bit addresses. 
The sleep mode is provided for energy saving where 
dedicated watchdog timers may be added to the SoC to 
produce sophisticated power efficient systems with features 
like power saving program loops and wakeup on keystrokes. 
This adds further to deployment in power constrained 
embedded environments like drones. The RTL can be 
modified to incorporate different additional functions into 
the processing core like DSP (Digital Signal Processing) 
MAC (multiply and accumulate) instructions 

The KCPSM6 version of Picoblaze is compatible for 
various latest kits by Xilinx like Virtex 6, 7 series FPGA 
(Artix 7 for instance) and Spartan 6. KCPSM6 only utilizes 
26 Slices of an FPGA kit to operate. This results in fewer 
resources of the FPGA to be used [1]. Furthermore 
KCPSM6 supports programs up to 4K instructions. It has an 
additional bank of 16 registers, dynamic JUMP and CALL, 
user defined interrupt vector and constant-optimized output 
ports [1] [2]. We have implemented the  Verilog HDL 
version of KCPSM6. This is yet another contribution of this 
work because KCPSM6 has mostly been implemented in 
VHDL in prior works.  
The main motivation behind this Verilog Implementation 
was to enable an infra-sturcture for future enhancement and 
research of the SoC using Verilog HDL. This may allow 
future reseaerch activities on the developed system for 
example incorporating complex image processing 
algorithms using custom accelerators interfaced to the 
PicoBlaze System, or incorporating sound wave processing 
engines incorporating digital filtering and sonic refinement.  

B. A Universal Asynchronous receiver / transmitter 
(UART) 

The SoC consists of a UART for asynchronous serial 
communication. This module is used to interface the SoC. 
The UART communicates with the PC and is interfaced to 
the PicoBlaze. Commands can be given to the SoC as 
explained in Section C. 

C. General Purpose I/O Interface 

This interface is used to the output the PWM wave and also 
the analog to digital convertor module (ADC). This block 
can be thought of as the I/O connectgivity portion of the 
system. As a future extension multiple such systems may be 
interfaced or specialized hardware may be directly 
interfaced through the system bus of the PicoBlaze. 
 

 

Fig. 2  RTL representation of KCPSM6 
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Figure 3 shows  the schermatic diagram generated by Xilinx 
ISE using the RTL schematic tool. This schematic reveals 
the many components just discussed and shows the layout 
of the system as coded in the Verilog HDL. 
LED block contains the block RAM containing the code to 
be executed by the PicoBlaze processor. The UART block 
connects to the PC for serial communication and is also 
interfaced to the PicoBlaze (KCPSM6). This allows the 
controlling of the SoC through the PC by using the PC 
terminal software.  
The ADC block (not shown) is interfaced to the system and 
offers the interface of an eight channel 10 bit ADC. This 

offers optimum channels and resolution for embedded 
control applications of moderate size and complexity. This 
block may be useful in digital control applications and 
resolution may be traded off for frequency for high speed 
applications. To offer flexibility ADC is provided through 
a PIC16F877A microcontroller. This allows programmable 
flexibility for incorporating multi-channel ADC 
applications for complex applications like digital multi-
channel oscilloscopes or logic analyzers. 
 

 

 

Fig. 3  RTL Schematic generated by the Xilinx ISE RTL Schematic tool 

4. Working 

The user inputs the desired duty cycle for the PWM wave 
from the serial connection through the Personal computer 
(PC). This input is received with the help of the UART in 
the SoC. In response,the PicoBlaze (KCPSM6) generates 
the respective PWM signal. This PWM signal drives a DC 
fan connected to the SoC. In another specialized application 
of the SoC, The ADC module is connected to a temperature 
transducer and provides the temperature reading to the SoC. 
As a result, the SoC can control the speed of the DC fan by 
PWM. These are demonstrative examples of the SoC and 
more complex applications and devices may be constructed 
by modifying the KCPCM6 Verilog HDL code and also 
incorporating and interfacing new HDL modules into the 
system. Figure 4 shows the implementation of the system. 
The actual results of synthesis of the SoC are presented in 
Table 1 where the highly optimized design of the SoC is 

evident. Figure 5 shows the output of the PWM unit of the 
SoC for a 50 % duty cycle. As is evident from the figure, 
accurate PWM waveform are being generated by the unit 
with the proper timing constraints. This is because the 
synthesis does not include any timing violations and 
latching elements. 
 

 

Fig. 4  The System on Chip showing the ADC module PCB 
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5. Results 

Table 1 shows the resource utilization for the Spartan 6 
FPGA as implementation results. One can see that the SoC 
only utilizes 1 %  of slice registers and 3% each of slice 
LUTs, occupied slices and bonded IOBs. These figures 

translate into a very optimized SoC design for our modest 
Spartan 6 FPGA. They also show the potential for future 
growth to incorporate complex hardware modules in 
Verilog HDL. This is true for even for the modest Spartan 
6 FPGA and the possibilities grow exponentially for the 
complex FPGAs like the Artix 7 and Vertex 7 Devices.  
 

 

Fig. 5  Output of the PWM unit of the SoC. 

Table 1: Resource Utilization of Spartan 6 FPGA 
Resource Used Available Utilization 

Number of Slice Registers 157 11440 1% 
Number of Slice LUTs 198 5720 3% 

Number of Occupied Slices 57 1430 3% 
Number of bonded IOBs 6 186 3% 

 
Note that the user decides the duty cycle based on the 
temperature measured using the ADC channel which is also 
interfaced using the transmitter of the UART. The 
temperature value is received at another I/O pin of the 
System on Chip. 
As a result the speed of the fan varies as the temperature 
increases or decreases. This leads to a controlled ventilation 
system which saves energy and reduces running cost as well. 
Various more complex applications can be interfaced using 
the system on chip.   

5. Conclusion 

The results show that our SoC is very resource friendly from 
the point of view of the Spartan 6 FPGA.The developed 
setup can be expanded to incorporate ore complex 
embedded control systems by including further HDL 
modules. Also, the inclusion of the ADC module of the 
PIC16F877A microcontroller into the system increases the 
possibilities even further. In a future derivative of the 
system, this ADC module might include some software 
based signal processing of its own e.g. digital filtering or 
sound processing algorithms. The possibilities expand even 
further for the high end Xilinx Devices like Virtex 7 and 
Artix 7 
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