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Summary 
The paper presents a design scheme for multi-core embedded 
controller security architecture and a control application runtime 
unexpected behavior detection method based on instruction 
stream. In the architecture design, the partition and isolation 
functions of the hypervisor are used to consolidate the security- 
critical system and the non-security-critical system into a single 
hardware to be handled by different cores. The two cores 
cooperate with hardware-based instruction stream tracking 
module dynamically monitors whether the behavior of the 
control application executed by the monitored core deviates from 
the expectation to implement secure and reliable seamless 
control. The compatibility of different instruction sets and the 
impact of interrupt on detection are considered synthetically in 
the control application security detection algorithm. Finally, the 
effectiveness of the proposed method is verified by simulation 
experiments on ball and plate system. 
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1. Introduction 

In the field of modern industrial security-critical control, 
such as aerospace, nuclear energy, automobile, Internet of 
things, etc., embedded system is usually used as the 
controller of the physical plants. The application of the 
embedded controllers also brings about security problems 
for industrial control system, such as information 
tampering, virus attack, etc., which leads to property loss, 
environmental damage and even casualties due to control 
failure. Recently, there have been many successful cases 
of security attacks for embedded control systems. For 
example, Iran's nuclear power plant was infected by 
W32.Stuxnet making the nuclear facility fail, malicious 
code was injected into the information communication 
unit of modern cars resulting in brake failure, unmanned 
aerial vehicles were hijacked, and smart home equipment 
in a family was controlled by hacker [1],[2],[3],[4]. 
Therefore, the security of embedded control system has 
attracted great attention from the industry [5],[6]. 
Recently, a trend is that high-performance embedded 
multi-core processor with low power consumption and 
small size (single board instead of multi-board) is used 
increasingly in the security-critical industrial control 

systems [7],[8]. However, in the multi-core architecture, 
some resources (e.g. Cache, Bus, Memory and other 
components) are shared among many cores, which may 
lead to security vulnerabilities. In addition, in order to 
adapt to the needs of high-performance embedded 
multi-core system, application software is complicated to 
design, and it is easy to result in software vulnerabilities, 
and attacker exploit the vulnerability to disrupt the 
application behavior by executing unplanned code or 
malicious code to endanger the system security. Therefore, 
a comprehensive solution is needed to enable embedded 
multi-core processor to work in a real-time control system 
in a secure and reliable manner. This paper proposes a 
design method to improve the overall security of the 
system by taking advantage of the hypervisor and 
considering the nature of multi-core processors (namely 
parallel cores and the convenience they provide). 
The remaining sections are organized as follows: in 
section 2, the related work is described. A multi-core 
embedded controller secure architecture and its working 
principle are proposed for the security-critical control 
application in section 3. Section 4 presents the dynamic 
security detection algorithm based on instruction stream. 
The experiment and result analysis are given in section 5, 
and the conclusion and future work are proposed in 
section 6. 

2. Related Work 

At present, the architecture security design for multi-core 
embedded system mainly draws on the technology of 
trusted auxiliary hardware [9],[10] to monitor the 
execution behavior of a real-time control application 
running on an untrusted main system. Li and Nakajima 
propose a multicore embedded secure architecture based 
on Limited Local Memory (LLM) [11], which uses a 
privileged core with the LLM executing a integrity testing 
tool to monitor state of target Operating System (OS) 
running on other core, but they did not give specific 
detection methods for target OS and application integrity. 
Ragel et al present a dual-core embedded processor 
architecture (SecureD) [12], which can both detect 
application integrity through calculating checksum for 
each basic block and prevent the power analysis attack 
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through using two processor cores running complementary 
encryption program to defense power analysis attack, 
however, its disadvantage is need to change the original 
binary code and instruction set, and not have versatility. 
In security detection technology for application, most of 
the research is focused on control flow detection and the 
program execution time detection. Literature [10] and [13] 
use reconfigurable logic connected to the main CPU to 
detect the integrity of program code executed by the CPU, 
but a specific detection algorithm is not given, and this 
method is not universal. Abadi et al. [14] propose a control 
flow detection method based on the hardware without 
changing the processor core, which can check out the 
basic block granularity of malicious code by using the 
output processor instructions or information to determine 
whether a control flow graph legal [15],[16], but this 
approach is insensitive to unexpected code which does not 
change the control flow (e.g., non-jump instruction 
overrides). Literature [17] proposed a multi-security 
strategy combining information flow tracking and memory 
monitoring based on hardware, which can detect more 
malicious attacks, however, it needs to change the 
microarchitecture of the embedded system and not easily 
applicable to multi-core embedded architecture. Sanjeev et 
al [18] proposed a fine-grained control flow integrity 
detection method at the basic block level to prevent 
malicious attacks based on buffer overflow, but this 
strategy only considered the detection of function calls and 
jump instructions, but it did not include the detection on 
interrupts. Mohan et al [19] used the method based on the 
program execution time to detect malicious behavior, but 
this method requires application structure fixation and 
need to change the original binary program (insert 
additional check code) [20] and causes large detection 
latency. Instruction flow detection method can 
comprehensively solve the contradiction faced by control 
flow detection between detection coverage and software 
interference, which has gradually become an important 
research. However, the current literature does not consider 
the compatibility of security monitors to processors of 
different instruction sets and the impact of interrupts on 
detection. 
This paper firstly proposes a multi-core embedded 
controller architecture based on hypervisor and instruction 
stream detection mechanism referring to the S3A [19], and 
then implements abnormal behavior detection method for 
the control application program, which comprehensively 
considers the impact of interrupt on algorithm and the 
universality of algorithm to processors with different 
instruction set. Therefore, our work is different from the 
above because we focus on the domain-specific 
characteristics of these systems, and in particular their 
interrupt real-time nature. 
As the main contributions of this paper, we propose the 
secure multi-core embedded controller architecture where, 

(i) In the architecture design, leveraging hypervisor 
features and multi-core conditions, the 
security-critical real-time system and non-real-time 
system are consolidated into a single hardware with 
minimum cost, and the consolidation allows for 
spatial (memory area) and temporal (time) isolation 
between applications (processor cores) to guarantee 
software executing in parallel. 

(ii) Security detection with minimum granularity based on 
instruction stream. 

(iii) Instruction set independence design to achieve 
compatibility of processors with different instruction 
set. 

(iv) The security detection component is independent of 
the control application. 

3. Secure Multicore Embedded Controller 
Architecture 

A proposed architecture of secure multi-core embedded 
controller with hypervisor for control systems, as shown in 
Fig. 1, which are capable of detecting abnormal behavior 
in real time during the execution of the control application 
and ensuring seamless control for physical  plants. The 
architecture consists of three main components: i) 
security-critical system, ii) non-security-critical system, 
iii) the hypervisor. The security-critical system is consists 
of core0 and core1, RTOS (e.g., µCOS), and the on-chip 
Instruction Stream Trace Module (ISTM). The 
non-security-critical system consists of core2 and 
embedded general-purpose OS (GPOS). 
The hypervisor provides a virtualized hardware resource 
for the architecture through partition and consolidation, in 
which each core is divided into a virtual machine VM0, 
VM1, and VM2 respectively [21]. The isolation of space 
and time and resource utilization is supervised through the 
interface provided by hypervisor between the hardware 
and the application to work independently for each 
application. In the architecture, core0 and core1 are 
allocated to (used as) security-critical system and 
non-security-critical system respectively taking into 
account the requirements of real-time systems. To protect 
a security-critical system from malicious tampering by a 
compromised non-security-critical system, the hypervisor 
provides a clean isolated memory space by designing the 
MMU, and the hypervisor itself runs in its own protected 
memory space. So any attempt to access memory across 
partitions is blocked by the hypervisor. (Note, this paper 
assumes that the hypervisor is part of the trusted base and 
that there is no malicious code in it.) 
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Fig. 1  Secure architecture multi-core embedded controller with 
hypervisor 

3.1 Security-critical System-Core0 and Core1 

In the security-critical real-time system, core0 (secure 
core) is privileged to run the embedded real-time operating 
system (RTOS), and it combines with the ISTM to 
monitor whether the execution behavior of the core1 
(monitored core, responsible for data acquisition and 
execution control application) is against expectations. The 
core0 mainly executes four modules (processes): security 
controller, decision module, security monitor and IO 
Agent module. The core1 mainly includes perform 
controller (a process, essentially a controller that manages 
the physical plant) and interrupt service routines. Sensor 
data from the physical plant is fed to both the perform 
controller and the security controller by the trusted IO 
Agent process, and each controller using its own internal 
control logic to calculate the actuation command. The 
decision module then may forward the appropriate 
commands to the physical plant according to its 
pre-computed security envelope. Under normal case, the 
plant is actuated by command from the perform controller 
in core1. However, when an abnormal or unexpected 
action of the perform controller is detected, the control 
operation is transmitted to the security controller in core0 
in order to keep the physical plant reliable seamless 
control. Through this mechanism, the reliability of the 
control action can be guaranteed by the decision module 
and the security controller (they can be formally verified) 
based on all entities in the security system trusted. 

In the context of memory protection, I/O channel is 
designed between the processor and plant. The channel is 
managed by IO Agent module (IOA) which runs on the 
secure core0 to manage all I/O of the physical plant to 
prevent the I/O data confusion caused by malicious code 
on other cores. 

3.2 Instruction Stream Detection Components 

We define set BLOCK to represent all basic blocks in the 
control application, and set R is the transition relationship 
between all basic blocks in the control application, so the 
control application can be represented as Control Flow 
Graph G = {BLOCK, R}. The running of the application 
should conform to the set G, and instructions inside the 
base block are always executed sequentially. Thus, 
monitoring the instruction stream executed by the perform 
controller, if the executing instructions violate the G or do 
not conform to the order relationship of instructions in the 
basic block, it is an unplanned instruction to perform 
unexpected acts. Accordingly, the component structure 
designed hardware-independent unexpected acts detection 
is shown in Fig. 2. The relevant components are described 
below. 
 

 

Fig. 2  Instruction stream tracking module 

(i) ISTM. ISTM is a special on-chip hardware unit, 
which is directly attached to the monitored core1 to 
fetch the instruction stream from the perform 
controller at runtime by Instruction Register and 
Program Counter. The ISTM is used at two different 
stages in the system: (a) in the development/test (in 
the security environment), it is used to collect and 
organize (i.e., normalize) the original CFG (OCFG) 
profile of the application, and stored in the CFG 
memory (CFGM), and (b) when the system is actually 
deployed in the control field, the ISTM fetches the 
instruction stream outputted from the perform 
controller in real time and to normalize the 
instructions into real-time CFG (RCFG) profile that 
matches with the OCFG profile and stored into CFGM 
for comparison operations. 

Decision 
Module 

Security 
Monitor 

Security 
Controller 

IO Agent 

Core0 

RTOS 

ISTM 

CFGM 

Core1 

Perform 
Controller 

Interrupt 
Service 
Routine 

RTOS 

Core2 

Display 
Module 

Store 
&forward 
Module 

Encrypt/ 
Decrypt 
Module 

GPOS 

Security-critical system Non-security-
critical system 

Hypervisor 

Plant 

Actuation 
Command 

Sensor 
Data 

Inter-core 
communication pipe 

core1 

Perform 
Controller 

ISTM 

Program 
Counter 

Instruction 
Register 

CFGM 

core0 

Decision 
Modual 

Security 
Monitor 

Abnormal 
detection signal  



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 
 

 

150 

 

(ii) Instruction normalization. Essentially, the detection is 
to know whether the instruction sequence executed by 
the perform controller conforms to the expectation and 
insensitive to the specific content of the instruction, 
i.e., if it can distinguish the instruction sequence then 
it can meet the demand. Thus, substitution expressions 
of the instruction can be implemented by hashing. 
Assume that ins represents binary instructions, y = 
hash(ins, x) represents that the hashing of x bit length 
is given to ins, and if x is given an appropriate value 
then different ins correspond to different y value, so it 
is a kind of equivalent substitution for distinguishing 
instruction sequence, and the length of y has nothing 
to do with the length or format of ins. Accordingly, the 
instruction normalization is a  hash(ins, x) operation 
to ins, i.e., OCFG profile is a result of using hash(ins, 
x) value to substitute instruction ins. In this way, the 
comparison process is independent of the instruction 
set of the embedded processor to make the detection 
method has universal applicability. 

(iii) CFGM. CFGM is a memory that stores the OCFG 
profile and the RCFG profile and mapped to the 
core0’s address space area by the hypervisor. 

(iv) Compare operations. In the application is running, the 
security monitor in the core0 fetches the instructions 
of the application through the ISTM and normalizes 
them into the RCFG profile and then compares with 
the OCFG profile, if they don’t match, the abnormal 
detection signal will be output to the monitored core1, 
and the security core core0 will carry out subsequent 
processing such as takeover control, etc.. Specific 
detection method is described in section 4. 

3.3 Non-security-critical System-Core2 

In our architecture shown in Fig1., core2 is assigned to a 
non-security-critical system to be responsible for the 
execution of non-real-time parts (or subsystems) of a 
control system, such as the vehicle management 
subsystem in the real-time vehicle control system, or the 
functional parts such as information display, information 
storage and information forwarding, which runs embedded 
GPOS such as µClinux et al. 
In addition, the pipe provided by hypervisor is used to 
complete communication between the non-security-critical 
system and the security-critical system. Since the pipe is 
finished full-duplex communication, two operating system 
domains can send messages to each other through it. At 
the same time, using the hypervisor completes isolation 
between operating system domains or the cores to ensure 
the controller security. 

3.4 Startup and Execution Flow of the Secure 
Controller 

In a multi-core embedded system, only one core will start 
run at startup (power on or reset), and other cores are then 
started after all the hardware checking and initialization is 
done. However, in a virtualized system based on 
hypervisor, the hypervisor should know the number of 
cores that it will manipulate, and the hypervisor plays the 
role of starting the cores. Therefore, the startup sequence 
including the hypervisor has to be modified. The startup 
and execution flow of the designed secure controller as 
shown in Fig. 3. Among them, the execution process of 
components of the security-critical system is described in 
section 3.1. 

4. Instruction Stream Dynamic Detection 
Algorithm 

The main ideas to illustrate whether the architecture is 
secure at run time is whether the instruction (normalized) 
fetched by the ISTM hit the path expected by the OCFG 
profile for security detection. Since the instructions in the 
basic block are always executed sequentially, when the 
instruction comparison is made in the basic block, the 
instruction output by the perform controller are compared 
with an exact instruction in the current position of OCFG 
profile, and the conclusion is clear. However, the CFG 
may contain multiple transfer branches at general transfer 
instruction and interrupt, so how to carry out instruction 
comparison is the key to the detection algorithm. 

4.1 A General Transfer Detection Algorithm 

When the instruction comparison process is made to last 
instruction in the basic block of OCFG profile, it 
determines actual execution path of the application by   
exclusive method: as the instruction compares with all 
possible subsequent branch pointed out by the OCFG 
profile, the matched branches are reserved and 
non-matched branches are cut off constantly until only one 
branch is left, which is the actual executive branch. Since 
subroutine involves a return problem, an address stack 
Substack is kept to determine the subroutine return address. 
Algorithm 1 gives a branch matching process based on 
false branch pruning in a general transfer branch as an 
example, and the remaining branches are similar and run 
in parallel. In the algorithm, Rn is the nth instruction in the 
OCFG profile, Mn is the nth instruction current executed 
by the perform controller, b_i is a flag whether branch i is 
matched, and Rbi_k is the kth instruction of branch i. 
Algorithm 1 Falsebranch_cutoff. -Algorithm of false 
branch pruning and branch match in general transfer 
branch. 
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//if Rn is last instruction in the basic block: 
  Identify entry of branch_i from CFG profile 
  b_i=1 
  if branch_i is an entry returned by a call then 
    push(Rn, Substack)  // Push the Rn address 
       goto L1 
    else 
L1:     k=0 
       while b_ik≠0 do 

n=n+1 
k=k+1 
if Mn≠Rbi_k  then 

           b_i=0 
           end match with the branch 
         end if 
       end while          
   end if 
return 

4.2 Interrupt Detection Algorithm 

Interrupt processing is often used in real-time control 
systems, so interrupt detection is very important. Interrupt 
is also a kind of transfer instruction, but because of its 
randomness, and each instruction is likely to be an 
interrupt instruction in the comparison process, the general 
transfer detection method cannot be adopted. In the paper, 
the fallback method can be adopted for the interrupt 
detection, and the basic idea of the method is that if the 
instruction executed by the perform controller does not 
match the OCFG profile with the normal process, we then 
check whether it conforms to the interrupt process, if so, 
the specific interrupt service program is determined, and 
the comparison will continue, if not, the unplanned 
instruction execution is determined. There is a case the 
embedded system has entered an interrupt before the 
comparison process finds an instruction mismatch. To 
solve the problem, the method to back q instructions is 
adopted, that is, at the executing nth instruction In, if the 
comparison process find In different from the expected 
instruction Jn of the OCFG profile, then the process of 
(In-q) to In is checked to see whether it has entered the 
interrupt service program. Since the system usually has 
more than one interrupt service program, the exclusive 
method also is adopted to determine the actual execution 
path of the application, i.e., the instruction comparison is 
operated for all possible interrupt service programs 
indicated by OCFG profile, and cuts off non-matched 
interrupt branch until only one interrupt branch is left. 
Algorithm 2 takes one interrupt branch as an example, and 
the other interrupt branches are processed similarly and 
executed in parallel. In this algorithm, IF_i  is a flag 
whether the interrupt branch I is matched, Rinti_k represents 
the k-th instruction of interrupt branch I, back represents 
the number of backtracking instruction and its initial value 

is q (q=0,1,2,3...), and S represents a flag whether the 
interrupt branch is matched. 
Algorithm 2 Int_JudgAndIntB_Cutoff. -Interrupt 
judgment and interrupt branch pruning algorithm. 
if Mn≠Rn  then 
  identify entry of INT_i from OCFG profile 
   IF_i=1 
   push(Rn, Intstack)      //Push the Rn address 
   k=1 
   back=q 
   x=0 
   while Mn-x≠Rint_k  do 
      if  x<q  then 

x=x+1 
      else 
         goto L1 
      end if 
   end while 

whie IF_ik≠0 do 
      n=n-x+1 

k=k+1 
if Mn≠Rinti_k  then 

L1:     IF_i=0 
        S=0 
        end the match with the interrupt branch 
      end if  
   end while 
   S=1 
end if 
return 

4.3 Comprehensive Algorithm for Instruction Stream 
Detection 

Based on the above considerations, the comprehensive 
algorithm for instruction stream detection designed is 
shown in Algorithm 3. The algorithm is executed when the 
controller runs the control application. 
Algorithm 3 Comprehensive detection algorithm. 
for the executing instruction Mn is not the end of the 
entire program do 

if Mn≠Rn then 
     call Int_JudgAndIntB_Cutoff  
     if S==1 then 
       raise detection exception sign 
     else  

n=n+1 
     end if 

else 
if Rn is the first instruction in a subroutine that needs 

to be returned then 
     push (Rn-1, Substack)     
     goto L1 
   else 
L1:  if Rn is last instruction from the basic block then 
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       if Rn is jump addresses frame then 
         call Falsebranch_cutoff 
         n=n+1 
       else 
         if Rn is the interrupt return then 
           pop(Intstack, n)  
         else 
            if Rn is the end instruction in a subroutine 
that needs to be returned then 
              pop(Substack, n)   
           else 
              n=n+1 

end if 
         end if 
      end if 
   end if 
end for 

5. Experiment and Results 

5.1 The Controller Prototype Implementation 

We have implemented a secure multi-core embedded 
controller prototype on Simics [22] platform, it is a 
full-system simulator that can runs real hardware platform 
such as firmware, device drivers, OS, and hypervisors, and 
allows the processor architecture modifications. We use 
Freescale QorIQ P4080 processor platform containing 
eight e500mc cores, only 3 cores are enabled, i.e., core0 
and core1 are used in security-critical system as secure 
core and monitored core (includes perform controller) 
respectively, and core2 is used in non-security-critical 
system as processor core. The core0 and core1 run Linux 
kernel 2.6.34, and the core2 run general-purpose OS 
(µClinux). The implementation and experimental 
parameters are shown in Table 1. 

Table 1: The experiment platform parameter configuration 
Component Description 

Processor 
Clock 1000MHz 

L1 Cache D-Cache 16KB, I-Cache 
16KB 

L2 Cache 128KB unified Cache 

VM, OS 

hypervisor Xen hypervisor 
Security-critical 

system 
Assign core0 and core1, and 
run the Linux kernel 2.6.34 

Non-security-cri
tical system Assign core2, runs µClinux 
Inter-core 

communication 
pipe 

32B 

ISTM FPGA Xilinx XC5VLX50T 
CFGM SRAM 64KB, mapped to core0's 

address space 
 
Based on Xilinx FPGA chip XC5VLX50T, the ISTM is 
realized and hooked into the core0 (security core) on the 
security-critical system. Meanwhile, CFG of instruction 

stream can be monitored by connecting to Program 
Counter (PC) and Instruction Register (IR). 
The hypervisor is configured to completely separate the 
memory space between the cores and to set the monitored 
core to a partition that is managed under the security core 
(core0 can reset core1 by one-way doorbell reset). 
Finally, some of the processes such as security monitor, 
decision module, IO Agent, and security controller are all 
running in user space. The data sent/received through the 
inter-core communication pipe is done by the kernel 
module requested a hypervisor call. 

5.2 The Control Application Model 

As our physical control system, we use a ball and plate 
device as the control object, which has two mutually 
perpendicular rotating axial plates in order to allow a 
freely rolling ball to balance at a specific position on the 
plate or to roll along a certain trajectory [23]. The rotation 
of the plate around the X axis and Y axis is driven by two 
motors. The sensor obtains the position of the ball on the 
plate and then feeds back to the controller executed on 
Simics, and the controller uses a certain control strategy to 
calculate the actuation command to control rotation angle 
of the plate to achieve the control of the balance position 
and trajectory of the ball. In the simulation, PD control is 
adopted for ball position control and PID control for servo 
control. The control application binary code size is 
53.42KB, which consists of the simple functions to read 
reference input and control loop. In each execution of the 
loop, the function responsible for reading the sensor data 
is called first, and the sensor data is read by interrupt 
mode. 

5.3 Instruction Stream Detection Experiments 

Experiment 1: Detection rate and OCFG profile size. 
The length x (bit) of hashing is closely related to OCFG 
profile size and unexpected behavior detection rate. 
Taking different x values and introducing single-bit error 
and continuous instruction error in the control application, 
detection rate and OCFG profile size are tested. The 
results of 100 experiments are shown in table 2. 

Table 2: The test results of detection rate and OCFG profile size 
Length x 

for 
hashing 

(bit) 

Size of 
OCFG 
profile 
(KB) 

Times of 
single-bi

t error 
detected 

Times of bias 
detected for 
continuous 

two ins. 

Times of bias 
detected for 
continuous 
three ins. 

4 31.15 96 98 99 
8 35.80 99  100 100 
16 41.67 100 100 100 
32 54.13 100 100 100 

  
The experimental results in table 2 shows when the bit 
length x for hashing is more than half of the length of 
binary instruction, the proposed method can detect single- 
bit bias, i.e., it can detect the finest granularity unplanned 
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code, but the detection method based on control flow 
cannot do that. In this way, the size of granularity and 
OCFG profile can be comprehensively coordinated to 
meet different control application requirements by 
adjusting the bit length for hashing. 
Experiment 2: Detection latency. 
Detection latency refers to the time from the beginning of 
the controller running unplanned codes to the system 
detecting out it. We mainly consider the detection latency 
from interrupt due to the backtracking instruction number 
q will affect the detection latency in a large extent. We 
take the hashing bit length x = 4 and introduce continuous 
three instruction errors in the random position of the 
application binary source code, and let q take different 
values, and carry out 100 tests of the detection latency 
respectively. Timing starts when the unplanned instruction 
is entered into the ISTM, and ends when the abnormal 
detection signal is output by security core (i.e., core0). 
The experimental results are shown in Fig. 4. 
 

 

Fig. 4  Detection latency. (a) Detection rate and (b) Average detection 
latency with q value 

The test results in figure 4 shows that increasing the q 
value can improve the detection rate, but the detection 
latency also increases. But when q=3, the detection rate 
reaches the maximum and it is kept. Since almost all 

interrupt service routines execute several instructions 
protecting the field first, q=3 had been enough to 
distinguish them. The proposed method has the ability to 
detect the unexpected behavior of the control application 
within 0.5µs, and it can not only meet the requirements of 
the security-critical control systems, but also outperforms 
the detection method based on control flow and execution 
time. 

6. Conclusion 

This paper proposes a hypervisor-based multi-core 
embedded controller security architecture and control 
application runtime unexpected behavior detection method. 
The architecture integrates the security-critical system and 
the non-security-critical system, and they are processed by 
different processor cores. One of the cores is used as the 
security core and combined with the instruction stream 
tracking module (ISTM) to dynamically detect unexpected 
behavior of the control application. This mechanism has 
certain advantages over independent (off-chip) security 
detection systems :(1) rapidity, i.e., a CPU core can more 
closely monitor the execution behavior of software 
running on other potentially unsecure cores; (2) this is not 
easy to reverse engineer. 
Intrusion detection methods based on instruction stream 
realizes the detection of the fast, independent, application 
free of interference. Compared with the current 
mainstream detection methods based on control flow and 
execution time, the method proposed by this paper has 
better detection granularity and lower detection latency. 
In the future works, on the one hand, we will further study 
an effective measure to enhance the security of the 
hypervisor used in the system, because the hypervisor 
itself is threatened in the first place, the whole security 
mechanism may collapse. On the other hand, we should 
further optimize the detection algorithm to further shorten 
the detection latency. 
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Fig. 3  Start-up and execution flow of the secure controller based on hypervisor 


