
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

147

Manuscript received May 5, 2019
Manuscript revised May 20, 2019

Multi-Core Embedded Controller Security Architecture with
Instruction Stream Detection

Xiaosheng Wang, Yanchun Yang

School of Data Science and Computer, Shandong Women's University, China

Summary
The paper presents a design scheme for multi-core embedded
controller security architecture and a control application runtime
unexpected behavior detection method based on instruction
stream. In the architecture design, the partition and isolation
functions of the hypervisor are used to consolidate the security-
critical system and the non-security-critical system into a single
hardware to be handled by different cores. The two cores
cooperate with hardware-based instruction stream tracking
module dynamically monitors whether the behavior of the
control application executed by the monitored core deviates from
the expectation to implement secure and reliable seamless
control. The compatibility of different instruction sets and the
impact of interrupt on detection are considered synthetically in
the control application security detection algorithm. Finally, the
effectiveness of the proposed method is verified by simulation
experiments on ball and plate system.
Key words:
Multi-core embedded controller, security Architecture,
Hypervisor, Consolidating control unit, Instruction stream
detection

1. Introduction

In the field of modern industrial security-critical control,
such as aerospace, nuclear energy, automobile, Internet of
things, etc., embedded system is usually used as the
controller of the physical plants. The application of the
embedded controllers also brings about security problems
for industrial control system, such as information
tampering, virus attack, etc., which leads to property loss,
environmental damage and even casualties due to control
failure. Recently, there have been many successful cases
of security attacks for embedded control systems. For
example, Iran's nuclear power plant was infected by
W32.Stuxnet making the nuclear facility fail, malicious
code was injected into the information communication
unit of modern cars resulting in brake failure, unmanned
aerial vehicles were hijacked, and smart home equipment
in a family was controlled by hacker [1],[2],[3],[4].
Therefore, the security of embedded control system has
attracted great attention from the industry [5],[6].
Recently, a trend is that high-performance embedded
multi-core processor with low power consumption and
small size (single board instead of multi-board) is used
increasingly in the security-critical industrial control

systems [7],[8]. However, in the multi-core architecture,
some resources (e.g. Cache, Bus, Memory and other
components) are shared among many cores, which may
lead to security vulnerabilities. In addition, in order to
adapt to the needs of high-performance embedded
multi-core system, application software is complicated to
design, and it is easy to result in software vulnerabilities,
and attacker exploit the vulnerability to disrupt the
application behavior by executing unplanned code or
malicious code to endanger the system security. Therefore,
a comprehensive solution is needed to enable embedded
multi-core processor to work in a real-time control system
in a secure and reliable manner. This paper proposes a
design method to improve the overall security of the
system by taking advantage of the hypervisor and
considering the nature of multi-core processors (namely
parallel cores and the convenience they provide).
The remaining sections are organized as follows: in
section 2, the related work is described. A multi-core
embedded controller secure architecture and its working
principle are proposed for the security-critical control
application in section 3. Section 4 presents the dynamic
security detection algorithm based on instruction stream.
The experiment and result analysis are given in section 5,
and the conclusion and future work are proposed in
section 6.

2. Related Work

At present, the architecture security design for multi-core
embedded system mainly draws on the technology of
trusted auxiliary hardware [9],[10] to monitor the
execution behavior of a real-time control application
running on an untrusted main system. Li and Nakajima
propose a multicore embedded secure architecture based
on Limited Local Memory (LLM) [11], which uses a
privileged core with the LLM executing a integrity testing
tool to monitor state of target Operating System (OS)
running on other core, but they did not give specific
detection methods for target OS and application integrity.
Ragel et al present a dual-core embedded processor
architecture (SecureD) [12], which can both detect
application integrity through calculating checksum for
each basic block and prevent the power analysis attack

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

148

through using two processor cores running complementary
encryption program to defense power analysis attack,
however, its disadvantage is need to change the original
binary code and instruction set, and not have versatility.
In security detection technology for application, most of
the research is focused on control flow detection and the
program execution time detection. Literature [10] and [13]
use reconfigurable logic connected to the main CPU to
detect the integrity of program code executed by the CPU,
but a specific detection algorithm is not given, and this
method is not universal. Abadi et al. [14] propose a control
flow detection method based on the hardware without
changing the processor core, which can check out the
basic block granularity of malicious code by using the
output processor instructions or information to determine
whether a control flow graph legal [15],[16], but this
approach is insensitive to unexpected code which does not
change the control flow (e.g., non-jump instruction
overrides). Literature [17] proposed a multi-security
strategy combining information flow tracking and memory
monitoring based on hardware, which can detect more
malicious attacks, however, it needs to change the
microarchitecture of the embedded system and not easily
applicable to multi-core embedded architecture. Sanjeev et
al [18] proposed a fine-grained control flow integrity
detection method at the basic block level to prevent
malicious attacks based on buffer overflow, but this
strategy only considered the detection of function calls and
jump instructions, but it did not include the detection on
interrupts. Mohan et al [19] used the method based on the
program execution time to detect malicious behavior, but
this method requires application structure fixation and
need to change the original binary program (insert
additional check code) [20] and causes large detection
latency. Instruction flow detection method can
comprehensively solve the contradiction faced by control
flow detection between detection coverage and software
interference, which has gradually become an important
research. However, the current literature does not consider
the compatibility of security monitors to processors of
different instruction sets and the impact of interrupts on
detection.
This paper firstly proposes a multi-core embedded
controller architecture based on hypervisor and instruction
stream detection mechanism referring to the S3A [19], and
then implements abnormal behavior detection method for
the control application program, which comprehensively
considers the impact of interrupt on algorithm and the
universality of algorithm to processors with different
instruction set. Therefore, our work is different from the
above because we focus on the domain-specific
characteristics of these systems, and in particular their
interrupt real-time nature.
As the main contributions of this paper, we propose the
secure multi-core embedded controller architecture where,

(i) In the architecture design, leveraging hypervisor
features and multi-core conditions, the
security-critical real-time system and non-real-time
system are consolidated into a single hardware with
minimum cost, and the consolidation allows for
spatial (memory area) and temporal (time) isolation
between applications (processor cores) to guarantee
software executing in parallel.

(ii) Security detection with minimum granularity based on
instruction stream.

(iii) Instruction set independence design to achieve
compatibility of processors with different instruction
set.

(iv) The security detection component is independent of
the control application.

3. Secure Multicore Embedded Controller
Architecture

A proposed architecture of secure multi-core embedded
controller with hypervisor for control systems, as shown in
Fig. 1, which are capable of detecting abnormal behavior
in real time during the execution of the control application
and ensuring seamless control for physical plants. The
architecture consists of three main components: i)
security-critical system, ii) non-security-critical system,
iii) the hypervisor. The security-critical system is consists
of core0 and core1, RTOS (e.g., µCOS), and the on-chip
Instruction Stream Trace Module (ISTM). The
non-security-critical system consists of core2 and
embedded general-purpose OS (GPOS).
The hypervisor provides a virtualized hardware resource
for the architecture through partition and consolidation, in
which each core is divided into a virtual machine VM0,
VM1, and VM2 respectively [21]. The isolation of space
and time and resource utilization is supervised through the
interface provided by hypervisor between the hardware
and the application to work independently for each
application. In the architecture, core0 and core1 are
allocated to (used as) security-critical system and
non-security-critical system respectively taking into
account the requirements of real-time systems. To protect
a security-critical system from malicious tampering by a
compromised non-security-critical system, the hypervisor
provides a clean isolated memory space by designing the
MMU, and the hypervisor itself runs in its own protected
memory space. So any attempt to access memory across
partitions is blocked by the hypervisor. (Note, this paper
assumes that the hypervisor is part of the trusted base and
that there is no malicious code in it.)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

149

Fig. 1 Secure architecture multi-core embedded controller with
hypervisor

3.1 Security-critical System-Core0 and Core1

In the security-critical real-time system, core0 (secure
core) is privileged to run the embedded real-time operating
system (RTOS), and it combines with the ISTM to
monitor whether the execution behavior of the core1
(monitored core, responsible for data acquisition and
execution control application) is against expectations. The
core0 mainly executes four modules (processes): security
controller, decision module, security monitor and IO
Agent module. The core1 mainly includes perform
controller (a process, essentially a controller that manages
the physical plant) and interrupt service routines. Sensor
data from the physical plant is fed to both the perform
controller and the security controller by the trusted IO
Agent process, and each controller using its own internal
control logic to calculate the actuation command. The
decision module then may forward the appropriate
commands to the physical plant according to its
pre-computed security envelope. Under normal case, the
plant is actuated by command from the perform controller
in core1. However, when an abnormal or unexpected
action of the perform controller is detected, the control
operation is transmitted to the security controller in core0
in order to keep the physical plant reliable seamless
control. Through this mechanism, the reliability of the
control action can be guaranteed by the decision module
and the security controller (they can be formally verified)
based on all entities in the security system trusted.

In the context of memory protection, I/O channel is
designed between the processor and plant. The channel is
managed by IO Agent module (IOA) which runs on the
secure core0 to manage all I/O of the physical plant to
prevent the I/O data confusion caused by malicious code
on other cores.

3.2 Instruction Stream Detection Components

We define set BLOCK to represent all basic blocks in the
control application, and set R is the transition relationship
between all basic blocks in the control application, so the
control application can be represented as Control Flow
Graph G = {BLOCK, R}. The running of the application
should conform to the set G, and instructions inside the
base block are always executed sequentially. Thus,
monitoring the instruction stream executed by the perform
controller, if the executing instructions violate the G or do
not conform to the order relationship of instructions in the
basic block, it is an unplanned instruction to perform
unexpected acts. Accordingly, the component structure
designed hardware-independent unexpected acts detection
is shown in Fig. 2. The relevant components are described
below.

Fig. 2 Instruction stream tracking module

(i) ISTM. ISTM is a special on-chip hardware unit,
which is directly attached to the monitored core1 to
fetch the instruction stream from the perform
controller at runtime by Instruction Register and
Program Counter. The ISTM is used at two different
stages in the system: (a) in the development/test (in
the security environment), it is used to collect and
organize (i.e., normalize) the original CFG (OCFG)
profile of the application, and stored in the CFG
memory (CFGM), and (b) when the system is actually
deployed in the control field, the ISTM fetches the
instruction stream outputted from the perform
controller in real time and to normalize the
instructions into real-time CFG (RCFG) profile that
matches with the OCFG profile and stored into CFGM
for comparison operations.

Decision
Module

Security
Monitor

Security
Controller

IO Agent

Core0

RTOS

ISTM

CFGM

Core1

Perform
Controller

Interrupt
Service
Routine

RTOS

Core2

Display
Module

Store
&forward
Module

Encrypt/
Decrypt
Module

GPOS

Security-critical system Non-security-
critical system

Hypervisor

Plant

Actuation
Command

Sensor
Data

Inter-core
communication pipe

core1

Perform
Controller

ISTM

Program
Counter

Instruction
Register

CFGM

core0

Decision
Modual

Security
Monitor

Abnormal
detection signal

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

150

(ii) Instruction normalization. Essentially, the detection is
to know whether the instruction sequence executed by
the perform controller conforms to the expectation and
insensitive to the specific content of the instruction,
i.e., if it can distinguish the instruction sequence then
it can meet the demand. Thus, substitution expressions
of the instruction can be implemented by hashing.
Assume that ins represents binary instructions, y =
hash(ins, x) represents that the hashing of x bit length
is given to ins, and if x is given an appropriate value
then different ins correspond to different y value, so it
is a kind of equivalent substitution for distinguishing
instruction sequence, and the length of y has nothing
to do with the length or format of ins. Accordingly, the
instruction normalization is a hash(ins, x) operation
to ins, i.e., OCFG profile is a result of using hash(ins,
x) value to substitute instruction ins. In this way, the
comparison process is independent of the instruction
set of the embedded processor to make the detection
method has universal applicability.

(iii) CFGM. CFGM is a memory that stores the OCFG
profile and the RCFG profile and mapped to the
core0’s address space area by the hypervisor.

(iv) Compare operations. In the application is running, the
security monitor in the core0 fetches the instructions
of the application through the ISTM and normalizes
them into the RCFG profile and then compares with
the OCFG profile, if they don’t match, the abnormal
detection signal will be output to the monitored core1,
and the security core core0 will carry out subsequent
processing such as takeover control, etc.. Specific
detection method is described in section 4.

3.3 Non-security-critical System-Core2

In our architecture shown in Fig1., core2 is assigned to a
non-security-critical system to be responsible for the
execution of non-real-time parts (or subsystems) of a
control system, such as the vehicle management
subsystem in the real-time vehicle control system, or the
functional parts such as information display, information
storage and information forwarding, which runs embedded
GPOS such as µClinux et al.
In addition, the pipe provided by hypervisor is used to
complete communication between the non-security-critical
system and the security-critical system. Since the pipe is
finished full-duplex communication, two operating system
domains can send messages to each other through it. At
the same time, using the hypervisor completes isolation
between operating system domains or the cores to ensure
the controller security.

3.4 Startup and Execution Flow of the Secure
Controller

In a multi-core embedded system, only one core will start
run at startup (power on or reset), and other cores are then
started after all the hardware checking and initialization is
done. However, in a virtualized system based on
hypervisor, the hypervisor should know the number of
cores that it will manipulate, and the hypervisor plays the
role of starting the cores. Therefore, the startup sequence
including the hypervisor has to be modified. The startup
and execution flow of the designed secure controller as
shown in Fig. 3. Among them, the execution process of
components of the security-critical system is described in
section 3.1.

4. Instruction Stream Dynamic Detection
Algorithm

The main ideas to illustrate whether the architecture is
secure at run time is whether the instruction (normalized)
fetched by the ISTM hit the path expected by the OCFG
profile for security detection. Since the instructions in the
basic block are always executed sequentially, when the
instruction comparison is made in the basic block, the
instruction output by the perform controller are compared
with an exact instruction in the current position of OCFG
profile, and the conclusion is clear. However, the CFG
may contain multiple transfer branches at general transfer
instruction and interrupt, so how to carry out instruction
comparison is the key to the detection algorithm.

4.1 A General Transfer Detection Algorithm

When the instruction comparison process is made to last
instruction in the basic block of OCFG profile, it
determines actual execution path of the application by
exclusive method: as the instruction compares with all
possible subsequent branch pointed out by the OCFG
profile, the matched branches are reserved and
non-matched branches are cut off constantly until only one
branch is left, which is the actual executive branch. Since
subroutine involves a return problem, an address stack
Substack is kept to determine the subroutine return address.
Algorithm 1 gives a branch matching process based on
false branch pruning in a general transfer branch as an
example, and the remaining branches are similar and run
in parallel. In the algorithm, Rn is the nth instruction in the
OCFG profile, Mn is the nth instruction current executed
by the perform controller, b_i is a flag whether branch i is
matched, and Rbi_k is the kth instruction of branch i.
Algorithm 1 Falsebranch_cutoff. -Algorithm of false
branch pruning and branch match in general transfer
branch.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

151

//if Rn is last instruction in the basic block:
 Identify entry of branch_i from CFG profile
 b_i=1
 if branch_i is an entry returned by a call then
 push(Rn, Substack) // Push the Rn address
 goto L1
 else
L1: k=0
 while b_ik≠0 do

n=n+1
k=k+1
if Mn≠Rbi_k then

 b_i=0
 end match with the branch
 end if
 end while
 end if
return

4.2 Interrupt Detection Algorithm

Interrupt processing is often used in real-time control
systems, so interrupt detection is very important. Interrupt
is also a kind of transfer instruction, but because of its
randomness, and each instruction is likely to be an
interrupt instruction in the comparison process, the general
transfer detection method cannot be adopted. In the paper,
the fallback method can be adopted for the interrupt
detection, and the basic idea of the method is that if the
instruction executed by the perform controller does not
match the OCFG profile with the normal process, we then
check whether it conforms to the interrupt process, if so,
the specific interrupt service program is determined, and
the comparison will continue, if not, the unplanned
instruction execution is determined. There is a case the
embedded system has entered an interrupt before the
comparison process finds an instruction mismatch. To
solve the problem, the method to back q instructions is
adopted, that is, at the executing nth instruction In, if the
comparison process find In different from the expected
instruction Jn of the OCFG profile, then the process of
(In-q) to In is checked to see whether it has entered the
interrupt service program. Since the system usually has
more than one interrupt service program, the exclusive
method also is adopted to determine the actual execution
path of the application, i.e., the instruction comparison is
operated for all possible interrupt service programs
indicated by OCFG profile, and cuts off non-matched
interrupt branch until only one interrupt branch is left.
Algorithm 2 takes one interrupt branch as an example, and
the other interrupt branches are processed similarly and
executed in parallel. In this algorithm, IF_i is a flag
whether the interrupt branch I is matched, Rinti_k represents
the k-th instruction of interrupt branch I, back represents
the number of backtracking instruction and its initial value

is q (q=0,1,2,3...), and S represents a flag whether the
interrupt branch is matched.
Algorithm 2 Int_JudgAndIntB_Cutoff. -Interrupt
judgment and interrupt branch pruning algorithm.
if Mn≠Rn then
 identify entry of INT_i from OCFG profile
 IF_i=1
 push(Rn, Intstack) //Push the Rn address
 k=1
 back=q
 x=0
 while Mn-x≠Rint_k do
 if x<q then

x=x+1
 else
 goto L1
 end if
 end while

whie IF_ik≠0 do
 n=n-x+1

k=k+1
if Mn≠Rinti_k then

L1: IF_i=0
 S=0
 end the match with the interrupt branch
 end if
 end while
 S=1
end if
return

4.3 Comprehensive Algorithm for Instruction Stream
Detection

Based on the above considerations, the comprehensive
algorithm for instruction stream detection designed is
shown in Algorithm 3. The algorithm is executed when the
controller runs the control application.
Algorithm 3 Comprehensive detection algorithm.
for the executing instruction Mn is not the end of the
entire program do

if Mn≠Rn then
 call Int_JudgAndIntB_Cutoff
 if S==1 then
 raise detection exception sign
 else

n=n+1
 end if

else
if Rn is the first instruction in a subroutine that needs

to be returned then
 push (Rn-1, Substack)
 goto L1
 else
L1: if Rn is last instruction from the basic block then

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

152

 if Rn is jump addresses frame then
 call Falsebranch_cutoff
 n=n+1
 else
 if Rn is the interrupt return then
 pop(Intstack, n)
 else
 if Rn is the end instruction in a subroutine
that needs to be returned then
 pop(Substack, n)
 else
 n=n+1

end if
 end if
 end if
 end if
end for

5. Experiment and Results

5.1 The Controller Prototype Implementation

We have implemented a secure multi-core embedded
controller prototype on Simics [22] platform, it is a
full-system simulator that can runs real hardware platform
such as firmware, device drivers, OS, and hypervisors, and
allows the processor architecture modifications. We use
Freescale QorIQ P4080 processor platform containing
eight e500mc cores, only 3 cores are enabled, i.e., core0
and core1 are used in security-critical system as secure
core and monitored core (includes perform controller)
respectively, and core2 is used in non-security-critical
system as processor core. The core0 and core1 run Linux
kernel 2.6.34, and the core2 run general-purpose OS
(µClinux). The implementation and experimental
parameters are shown in Table 1.

Table 1: The experiment platform parameter configuration
Component Description

Processor
Clock 1000MHz

L1 Cache D-Cache 16KB, I-Cache
16KB

L2 Cache 128KB unified Cache

VM, OS

hypervisor Xen hypervisor
Security-critical

system
Assign core0 and core1, and
run the Linux kernel 2.6.34

Non-security-cri
tical system Assign core2, runs µClinux
Inter-core

communication
pipe

32B

ISTM FPGA Xilinx XC5VLX50T
CFGM SRAM 64KB, mapped to core0's

address space

Based on Xilinx FPGA chip XC5VLX50T, the ISTM is
realized and hooked into the core0 (security core) on the
security-critical system. Meanwhile, CFG of instruction

stream can be monitored by connecting to Program
Counter (PC) and Instruction Register (IR).
The hypervisor is configured to completely separate the
memory space between the cores and to set the monitored
core to a partition that is managed under the security core
(core0 can reset core1 by one-way doorbell reset).
Finally, some of the processes such as security monitor,
decision module, IO Agent, and security controller are all
running in user space. The data sent/received through the
inter-core communication pipe is done by the kernel
module requested a hypervisor call.

5.2 The Control Application Model

As our physical control system, we use a ball and plate
device as the control object, which has two mutually
perpendicular rotating axial plates in order to allow a
freely rolling ball to balance at a specific position on the
plate or to roll along a certain trajectory [23]. The rotation
of the plate around the X axis and Y axis is driven by two
motors. The sensor obtains the position of the ball on the
plate and then feeds back to the controller executed on
Simics, and the controller uses a certain control strategy to
calculate the actuation command to control rotation angle
of the plate to achieve the control of the balance position
and trajectory of the ball. In the simulation, PD control is
adopted for ball position control and PID control for servo
control. The control application binary code size is
53.42KB, which consists of the simple functions to read
reference input and control loop. In each execution of the
loop, the function responsible for reading the sensor data
is called first, and the sensor data is read by interrupt
mode.

5.3 Instruction Stream Detection Experiments

Experiment 1: Detection rate and OCFG profile size.
The length x (bit) of hashing is closely related to OCFG
profile size and unexpected behavior detection rate.
Taking different x values and introducing single-bit error
and continuous instruction error in the control application,
detection rate and OCFG profile size are tested. The
results of 100 experiments are shown in table 2.

Table 2: The test results of detection rate and OCFG profile size
Length x

for
hashing

(bit)

Size of
OCFG
profile
(KB)

Times of
single-bi

t error
detected

Times of bias
detected for
continuous

two ins.

Times of bias
detected for
continuous
three ins.

4 31.15 96 98 99
8 35.80 99 100 100
16 41.67 100 100 100
32 54.13 100 100 100

The experimental results in table 2 shows when the bit
length x for hashing is more than half of the length of
binary instruction, the proposed method can detect single-
bit bias, i.e., it can detect the finest granularity unplanned

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

153

code, but the detection method based on control flow
cannot do that. In this way, the size of granularity and
OCFG profile can be comprehensively coordinated to
meet different control application requirements by
adjusting the bit length for hashing.
Experiment 2: Detection latency.
Detection latency refers to the time from the beginning of
the controller running unplanned codes to the system
detecting out it. We mainly consider the detection latency
from interrupt due to the backtracking instruction number
q will affect the detection latency in a large extent. We
take the hashing bit length x = 4 and introduce continuous
three instruction errors in the random position of the
application binary source code, and let q take different
values, and carry out 100 tests of the detection latency
respectively. Timing starts when the unplanned instruction
is entered into the ISTM, and ends when the abnormal
detection signal is output by security core (i.e., core0).
The experimental results are shown in Fig. 4.

Fig. 4 Detection latency. (a) Detection rate and (b) Average detection
latency with q value

The test results in figure 4 shows that increasing the q
value can improve the detection rate, but the detection
latency also increases. But when q=3, the detection rate
reaches the maximum and it is kept. Since almost all

interrupt service routines execute several instructions
protecting the field first, q=3 had been enough to
distinguish them. The proposed method has the ability to
detect the unexpected behavior of the control application
within 0.5µs, and it can not only meet the requirements of
the security-critical control systems, but also outperforms
the detection method based on control flow and execution
time.

6. Conclusion

This paper proposes a hypervisor-based multi-core
embedded controller security architecture and control
application runtime unexpected behavior detection method.
The architecture integrates the security-critical system and
the non-security-critical system, and they are processed by
different processor cores. One of the cores is used as the
security core and combined with the instruction stream
tracking module (ISTM) to dynamically detect unexpected
behavior of the control application. This mechanism has
certain advantages over independent (off-chip) security
detection systems :(1) rapidity, i.e., a CPU core can more
closely monitor the execution behavior of software
running on other potentially unsecure cores; (2) this is not
easy to reverse engineer.
Intrusion detection methods based on instruction stream
realizes the detection of the fast, independent, application
free of interference. Compared with the current
mainstream detection methods based on control flow and
execution time, the method proposed by this paper has
better detection granularity and lower detection latency.
In the future works, on the one hand, we will further study
an effective measure to enhance the security of the
hypervisor used in the system, because the hypervisor
itself is threatened in the first place, the whole security
mechanism may collapse. On the other hand, we should
further optimize the detection algorithm to further shorten
the detection latency.

Acknowledgment

The authors would like to express their cordial thanks to
reviewing experts for his valuable advice.

References
[1] D. Kushner, “The Real Story of Stuxnet”, IEEE Spectrum,

Vol.50, No.3, pp. 48–53, 2013.
[2] K. Koscher, A. Czeskis, F. Roesner, et al, “Experimental

Security Analysis of A Modern Automobile”, In Proceeding
of the IEEE Symposium on Security and Privacy,
pp.447–462, 2010.

[3] D. Shepard, J. Bhatti, T. Humphreys, “Drone hack:
Spoofing Attack Demonstration on A Civilian Unmanned
Aerial Vehicle” , GPS World, Vol.23, No.8, pp.30-33, 2012.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

154

[4] M.Pieter, G. Johannes, C. Ruan, et al, “Hardware-Based
Trusted Computing Architectures for Isolation and
Attestation”, IEEE Transactions on Computers, Vol.67,
No.3, pp. 361-374, 2017.

[5] S. Ponomarev, T. Atkison, “Industrial Control System
Network Intrusion Detection by Telemetry Analysis”, IEEE
Transactions on Dependable and Secure Computing, Vol.13,
No.2, pp. 252-260, 2016.

[6] F. Wang, Z.Q. Huang, Z.B. Yang, S.L. Kan, G.H. Shen,
G.Y. Chen, “A Requirements Traceability Approach for
Safety-critical Embedded System”, Chinese Journal of
Computers, Vol.40, Online Publishing No. 140, 2017.

[7] F. Johannes, U. Sascha, “Closed Loop Controller for
Multicore Real-time Systems”, Architecture of Computing
Systems, Vol.10793, pp.45-56, 2018.

[8] G. Macher, M. Bachinger, M. Stolz, “Embedded Multi-core
System for Design of Next Generation Powertrain Control
Units”, In Proceedings of 2017 13th European Dependable
Computing Conference (EDCC), Geneva, Switzerland,
pp.4-8, Sept., 2017.

[9] D. Arora, S. Ravi, A. Raghunathan, N.K. Jha, “Secure
Embedded Processing through Hardware-assisted Run-time
Monitoring”, Design, Automation & Test in Europe , Vol. 1,
No.1, pp. 178-183, 2005.

[10] X. Wang, Q. Shen, P. Du, R. Zhang, W. Wang, L. Li, B. Xu,
H.H. Ji. “Hardware-assisted Monitoring for Code Security
in Embedded System”, 2015 IEEE 12th International
Conference on Ubiquitous Intelligence and Computing and
2015 IEEE 12th Intl Conference on Autonomic and Trusted
Computing and 2015 IEEE 15th International Conference
on Scalable Computing and Communications and Its
Associated Workshops (UIC-ATC-ScalCom), pp.1393-1396,
2015.

[11] N. Li, T. Nakajima, “Local-Memory-Based Integrity
Checking for Embedded Systems”, in Proceedings of the
2013 IEEE 16th Computational Science and Engineering
(CSE), pp.742-750, 2013.

[12] R.G. Ragel, J.A. Ambrose, S. Parameswaran. “SecureD: A
Secure Dual Core Embedded Processor”, Computer Science,
2015.

[13] D.Y. Deng, D. Lo, G. Malysa, S. Schneider, G.E. Suh,
“Flexible and Efficient Instruction-Grained Run-Time
Monitoring Using on-chip Reconfigurable Fabric”, In
Proceedings of the IEEE/ACM International Symposium on
Microarchitecture, pp.137–148, 2010.

[14] M. Abadi, M. Budiu, U.Erlingsson, J. Ligatti, “Control-flow
Integrity Principles, Implementations, and Applications”,
ACM Transactions on Information and System Security,
Vol.13, No.1, pp.1-40, 2010.

[15] A. Rajabzadeh, S.G. Miremadi, “CFCET: A
Hardware-based Control Flow Checking Technique in
COTS Processors Using Execution Tracing”,
Microelectronics and Reliability, Vol.46, No. 5, pp.959-972,
2006.

[16] F.A.T Abad, J.V.D. Woude, Y. Lu, et al, “On-Chip Control
Flow Integrity Check for Real Time Embedded Systems”,
2013 IEEE 1st International Conference on Cyber-physical
Systems, Networks, and Applications (CPSNA), pp.26-31,
2013.

[17] D.F. Li, X. Zhang, Q.L. Tong, X.C. Zou, Z.L. Liu, “The
Desighn and Implementation of Embedded Security CPU

Based on Multi-strategy”, Chinese Journal of Electronics,
Vol. 25, No.5, pp.801-806, 2016.

[18] D.Sanjeev, W. Zhang, Y. Liu. “A Fine-Grained Control
Flow Integrity Approach against Runtime Memory
Attacks for Embedded Systems”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Vol.24,
No.11, pp.3193-3207, 2016.

[19] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, M. Caccamo,
“S3A: Secure System Simplex Architecture for Enhanced
Security and Robustness of Cyber-physical Systems”, In
Proceedings of the ACM International Conference on High
Confidence Networked Systems, pp.65-74, 2013.

[20] Z Gu, C. Wang, M. Zhang, Z. Wu, “WCET-Aware Partial
Control-Flow Checking for Resource-constrained Real-time
Embedded Systems,” IEEE Transactions Industrial
Electronics, Vol. 61, No.10, pp. 5652-5661, 2014.

[21] A. Crespo, M. Masmano, J. Coronel, S. Peiró, P. Balbastre,
J. Simó, “Multicore Partitioned Systems Based on
Hypervisor”, IFAC Proceedings Volumes, Vol.47, No.3,
pp.12293-12298, 2014.

[22] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hllberg, J. Hgberg, F. Larsson, A. Moestedt, B. Werner,
“Simics: A Full System Simulation Platform”, IEEE
Computer, Vol.35, No.2, pp.50–58, 2002.

[23] H.R. Wang, Y.T. Tian, S.Y. Fu, et al, “Nonlinear Control
for Output Regulation of Ball and Plate System”, In
Proceedings of the 27th Chinese Control Conference,
Kunming, IEEE, pp.382-387, 2008.

Xiaosheng Wang received his
Diploma and M.Sc. Degree from Computer
Science and Technology of Jilin University,
China, in 1988 and 2003, respectively. He
is currently a professor, engaged in
teaching and research work in Computer
Architecture and Embedded Systems in
School of Data Science and Computer at
Shandong Women's University. His

research interests include computer architecture, embedded
systems, and intelligent computing.

Yanchun Yang received the B.E.
degrees of Software Engineering from
Shandong University, China in 2006.
Currently, she is an associate professor of
Information Technology School at
Shandong
Women’s University, China. Her research
interests include computer networks,
information security, etc.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

155

Fig. 3 Start-up and execution flow of the secure controller based on hypervisor

