
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

265

Manuscript received May 5, 2019
Manuscript revised May 20, 2019

Mapping of Concepts in Program Comprehension

Anas Ali Ahmad Salman Khan

Department of Computer Science & IT. Department of Software Engineering.
University of Lahore, Pakistan University of Lahore, Pakistan

Summary
Software system’s understanding is the essential part of the
software maintenance. Documentation and program source code
could be the first aspect in software system’s understanding and
its inner work-flow. This understanding of code is known as
Program Comprehension (PC). With the advancement in
technology and rapid growth in industry, information systems
require frequent changes. This change need to be implement a
specific idea or behavior which is named as “Concept”. Concept
(variable, class, method) is referred as a typical behavior of code
performing specific functionality like a student enrollment in
student portal. In large scale systems, to locate the concept in the
code is a very challenging task which require massive amount of
time if performed in conventional ways. The conventional ways
mean start finding the location by going through each and every
file of the code. Programmer tries to locate these concepts with
the help of domain knowledge using concept location techniques
like static, dynamic and textual concept location technique.
In this paper, we focused on static concept location technique
and proposed a hybrid model for concept location in program
comprehension.
Key words:
Program comprehension PC, Concept location CL, Concept
location technique CLT, Cognitive model CM.

1. Introduction

Software system undergoes many changes for correction,
updation and enhancements. The rapid changes in code
make it difficult for maintainer to understand the program. .
Software quality effects when a system comes into
maintenance phase. Almost 58% effort of developer spent
on this task in the software maintenance process [1].
Understanding the existing system is the first step in the
maintenance phase. This understanding of the system is
known as “program comprehension” (PC). Program
comprehension is one of the basic pillar of software
engineering which is aimed to give techniques, methods,
strategies and processes those facilities developer in clear
understanding of the system. Many researchers work on
this topic for decreasing maintenance cost by reducing the
time of understanding. According to different researches,
program comprehension is a time-consuming task [1, 2].
Comprehension is necessary for change in software
without comprehension no change can be performed [3]. In
the past few years, researchers have paid more attention

towards program comprehension. In result, two classic
theories have been presented with respect to program
comprehension named as Top-down and Bottom-up
theories [4]. In top-down theory a programmer creates
particular hypothesis, its acceptance and rejection are
based on bacon which acts as evidence derived from its
code. The false hypothesis is declined while the true
hypothesis becomes a part of program comprehension.
Moreover, top-down theory is used in the early stages of
comprehension [5]. Chunking (collection of code
statements into a code block) is considered as the base for
program comprehension in a bottom-up theory [3]. In this,
the programmer splits code into different chunks and
combine these chunks to get high-level knowledge of the
Code, which leads to a systematic view instead of a
localized view of the program. However, the bottom up
approach is used in maintenance purpose. Furthermore, the
combination of both approaches leads to integrated model
[6].
In program comprehension the location of a specific idea
(method, function, data member, class or an object
performing some activity) is known as “Concept”.
Sometimes this term is also refereed as a feature. Concept
or feature is a high level term, used to address a specific
functionality of the system. For instance, the module about
payment method in a large scale application is referred as
“payment concept”. Comprehension is not limited to top
down and bottom approach, concepts play a significant
role in program comprehension. In software maintenance
and evolution, change request occurs when we have to add
or modify a specific concept in the program. Concept
location is the process in which software engineer tries to
locate specific concept (feature) according to their domain
knowledge. However, as “needed strategy” is used to
understand the concept reflected from the code [7, 8]. The
size of software causes an increase in complexity of
concept location. Concept location technique goal is to
identify the concept by analyzing the code. Different
techniques are defined for such purposes. Some techniques
for concept analysis, such as static analysis, dynamic
analysis, and textual analysis [9]. Dynamic analysis is
runtime analysis in which they perform analysis on
execution trace. Static analysis is pre-execution analysis in
which focus is on code structure, dependencies, and
control flow. Textual analysis is basically string matching

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 266

pattern in which programmer provide a string to match a
string or to locate concept name [9].
In this paper, we focused on static analysis in concept
location to comprehend a program, because we are more
interested in pre execution activity. We proposed a model
to map the location of concept in large scale applications.
Our focus is how individual programmer performs a
comprehension with help of static concept analysis. Our
goal is to capture programmer’s activities and the process
to map a concept in program comprehension.
This paper further categorized into four parts. In section 2
we discussed our research method, section 3 is about
related work in program comprehension and concept
location in program comprehension. In section 4, we
discussed our proposed model as in result and section 5
covers the conclusion of out paper.

2. Research Method

Systematic Literature Review (SLR) methodology has
been implemented for taxonomy of program
comprehension and concept mapping or locating
approaches in program comprehension. In [10] presented
classification of program comprehension and a taxonomy
of concept location presented in [11]. We use this SLR
methodology to find the common factors, which use to
locate the concept in program comprehension. Furthermore,
in this study we are going to develop a model using
literature about comprehension techniques and concept
location methods.
SLR is a process of critically documenting each step used
in research [12]. The aim of documenting each process is
to keep track of each and every step that could be easily
traceable to others researchers. SLR methodology
suggests a roadmap towards interested research area and
related questions by examining, exploring and classifying
the present literature according to the domain [13].
According to Kitchenham [12] [13] SLR classified into
three levels (i) Planning, (ii) Conducting and (iii) reporting
the review. We followed Kitchenham et al methodology in
this paper. Moreover, we followed three basic level of SLR
described in [3] [4]. In figure 1 we have shown the overall
process of SLR.

Fig. 1 SLR Process

2.1 Research Problem

Software engineers are the most valuable resource of the
any software organization. Almost 58% time of the
software engineer spent their time on comprehending the
code or understanding the code [14] [15] [16]. Although
many researchers introduced techniques, model and
strategies for code comprehension but they are effective to
small scale system. In large scale system, we have to
implement the related concept in code [3]. The aim of our
study is to find the factors in the present literature for
locating the concept in program comprehension and
provide a concept location model to reduce the
comprehension time.

2.2 Research Question

RQ1: What type of methods for static analysis are used for
locating the concepts?
RQ2: What are the common factors used in static concept
location techniques?

2.3 Research Process

In this SLR, we chosen Electronic Data Sources (EDS)
according to our previous research experience and we
followed suggestion of Chen at al provided in [17]. In this
research, we chosen index engine and publisher’s site as
databases. In publisher’s site we get publication of their
own database, whereas in index engine databases contains
citation and other cited data which is published by other
publishing websites. In Table 1 we presented list of
selected databases.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

267

Table 1: EDS
Publisher Indexing Index Search Engine

IEEE xplore
ACM Digital Library

Springer Link
Scientific Research

Google Scholar
Semantic web

Microsoft Academia

We used different search strings in databases mentioned in
table 1. These search strings are constructed on major
keywords and related words to research questions. These
keywords are preferred on the base of existing literature in
context of program comprehension, concept location and
static analysis in concept location. In table 2 we have
shown the major keywords.
We used ‘OR’ and ‘AND’ operators for concatenated the
alternative words and the main keywords to generate
valuable search strings shown in table 2. These search
strings used in selected databases: (‘Program
comprehension’ OR ‘Code comprehension’ OR ‘Program
understanding’ OR ‘System understanding’ OR ‘Code
understanding’) AND (‘Program comprehension strategy’
OR ‘Program comprehension approach’ OR ‘Program
comprehension techniques’ OR ‘The code comprehension
strategy’ OR ‘Strategy of understanding the code) AND
(‘Program comprehension model’ OR ‘The code
comprehension model’ OR ‘ Code understanding model’
OR ‘Program understanding model’) AND (‘Concept
Location in Program Comprehension’ OR ‘Concept
location in code understanding’ OR ‘Formation of concept
in program comprehension’ OR ‘Feature location in
program comprehension’) AND (‘Static Concept analysis
in Program Comprehension’ OR ‘Static feature location in
Program comprehension’ OR ‘Static concept location in
code comprehension’.

Table 2: Key Strings and Alternatives

Main Keywords Alternative Keywords

Program Comprehension

Program understanding,
The code comprehension,
The code understanding,
System understanding,

Program Comprehension
Strategy

Program comprehension approach,
The code Comprehension strategy,
Strategy of understanding the code

Program Comprehension
Model

Code comprehension model, code
understanding model, program

understanding model

Concept Location in

Program Comprehension

Concept location in code
understanding,

Formation of concept in program
comprehension,

Feature location in program
comprehension

Static Concept analysis
in

Program Comprehension

Static feature location in Program
comprehension,

Static concept location in code
comprehension

2.4 Selection of Publication

In below sections we provide the detail of Inclusion and
exclusion standards
Inclusion Standards: We considered those studies which
emphasis on activities performed in program
comprehension and locating the concepts in program
comprehension. These studies must be from reputed
journals, workshops, conferences and related books. High
weightage is given to the articles those having empirical
studies with case studies. Major selection has been made
on the basis of relevance to the selected domain and work
provided in this domain.
Exclusion Standards: Those article which did not clearly
discussed program comprehension factors, classifications,
techniques, models and concepts importance in program
comprehension have been excluded. Additional exclusions
made on the base of static concept locating approaches,
those approaches which are not covering the static analysis
in program comprehension. We exclude the articles those
are duplicate because of different electronic source
databases.
Primary Selection: In the primary selection process we
found many research articles, we applied tollgate technique
studied in [18] and refined our selection process shown in
figure 2. The tollgate technique comprised on five levels
explained below.
In first level, we collected total 195 articles from different
search engines. These article were selected on the base of
mentioned inclusion standards.
In second level, we removed duplicate papers collected
from different search engines. We made selection of 130
papers after exclusion.
In third level, selection was made upon the title of the
article and the abstract relevant to the keywords used to
search the paper according to our research questions. We
sort out 72 paper after implementation of this level.
In fourth level, we read ‘introduction and conclusion’ of
the selected articles and made further exclusion or
inclusion. The articles those have empirical studies
relevant to program comprehension in the context of
concepts mapping selected into our study. After
implementation of this level, 55 articles preceded for the
final level.
In the final level, selection of the articles were made upon
full text reading. Articles primarily related to program
comprehension or concept mapping (location) in program
comprehension were included in this level. However, we
selected 30 articles for primary study in our research.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 268

 Fig. 2 Primary Article Selection Process

3. Literature Review

As technology growing with the passage of time, new
technologies are emerging and more complex and
comprehensive systems are being developed. When such
comprehensive and large systems are developed, their
maintenance becomes a challenging and critical task. It is
very difficult for a system designer to understand the
previous version of the code without having a useful
method of system understanding. Program comprehension
means understanding the existing system (code and
documentation) [19]. For this purpose, many researchers
tried to contribute some approaches for better
understanding of the system. In [10] program
comprehension is classified into different categories,
(i)Cognitive model (ii) Software visualization (iii)
Information Extraction.
In this section, we describe these categories in detail and
presents the comprehension methods used for concept
location with a special focus on static analysis.

3.1 Cognitive Model

In Cognitive Model (CM), programmers understand the
code in the context of program comprehension. It is an
important task because it allows different mental process,
techniques, strategies, and concepts that a programmer use
to understand the program.
Concept and terminology: In [6, 10], Store et al
discussed about cognitive model and its impact. He also
discussed terminologies of program comprehension shown
in figure 2.1. Like, Mental model is the developers mental
illustration of the program that how he understands the

system by utilizing temporary information and reasoning
[10]. Furthermore, a piece of code, which shows a typical
behavior in programming known as programming plans.
Like, in sorting code we use a loop for comparing two
numbers in every iteration [10, 20]. According to brooks
[20, 21] bacons are familiar, recognizable point in the code
that represent a specific structure. Like, function name can
represent the implementation in the code. Moreover, the
programming style name convention could be used as
bacon.
Top down approach: Top down comprehension in which
developers create a hypothesis and then look into code and
try to understand the code. Developer search for bacons in
top down manners. Verification or rejection of this
hypothesis dependent on the existence of bacons [3, 6, 20,
22].

Bottom-up approach: In Bottom-up comprehension
developer firstly read the code statement by statement and
check the control flow of the code to form different chunks
(referred as a code block) of high level abstraction.
Combination of these chunks helps in understanding of full
system [3, 6, 20, 23].
Integrated Model: The Integrated model is consists on the
combination of top-down and bottom-up [20]. This model
also represents the program model and the situational
model. Program model refers to chunking the code and
situational model are developed with the abstract level of
the functions. In [6, 22] Mayrhauser et al discussed
integrated meta model, in which he explained integrated
meta model consist on four steps; situational model,
program model, top-down domain model, and knowledge
base. First, three steps used to create a mental model and
knowledge base used for code comprehension.
Knowledge base: A knowledge base model is dependent
upon programmer’s personal knowledge and domain
knowledge related to the system [6, 23]. This knowledge
helps him to make an understanding of the system and to
create a tool and method for better comprehension.
Moreover, some comprehension strategies discussed.
Which are (i) Browsing support (ii) Search Strategy (ii)
multiple views [6].
• Browsing support helps the developer in top down
approach to navigate from higher level to lower level with
the help of bacons [3, 6, 20] for example scrolling up and
down to find a specific code.
• Searching strategy is a tool support which helps
developer in iterative code search [3, 6]. They search the
code with their knowledge and experience with the help of
this tool. For example search through keywords, these
keywords are generated through their knowledge.
• Multiple aspects: In this strategy programmer have
different aspects. For example, one aspect for
programming goal (with the intentions to add, or modify

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

269

code) and other is to understand its relationships (e.g. 10
quality assurance dept. to understand the core
functionalists of the system) [6].
Systematic and As needed strategy: A systematic
strategy is about the understanding of whole system during
maintenance. Aim of this strategy is to get design of
program created by real programmer which helps them in
maintenance (modification or bug correction) of the system.
Whereas, as needed strategy is used at the current situation
in which a developer understood specific chunk of code
which is going to be modified [5, 25].

3.2 Software Visualization

In the process of software visualization, a programmer
analyzes the system properties e.g. the architecture of its
source code or metrics of their runtime behavior.
Visualization can be classified into three groups as; (i)
Algorithm visualization (ii) Program Visualization (iii)
system Visualization [10].
 Algorithm visualization: In this type of visualization
main goal is to teach data structure and algorithms This
software visualization (SV) method concerned with the
student, this model is used in a learning process [10].
Program visualization: The aim of this method is to
realize the functionality of program and analyze the
relation in its component e.g. classes, hierarchy (inherit ice,
polymorphous, and composition), objects, methods
performing specific actions, and data members. The main
concern of this method is to study the behavior of the
program [10, 26].
System visualization: This method is concerned to study
large program which consists on different modules.
Therefore, visualize technique will be applied on every
module to understand the system. However, algorithm
visualization and program visualization can be used in this
method [10].

3.3 Information Extraction

 In this Information Extraction, a technique code
instrumentation is used to extract system information [10].
In this technique, the useful statements are inserted into
source code e.g. checkpoints, or temporary variables. Start
and end of the function are used as a checkpoint of the
code and these checkpoints are used as an Inspection
function. These inspection function prints parameters,
names and function name which can be used by a
programmer to form a strategy for the system.

Concept Location in Program Comprehension
Concept location is the process of implementing the
software requirements into source code which maps those
requirement [28]. In program comprehension, typically

programmer has knowledge about domain concepts. He
understands them very well but unaware of their presence
in the program code. Fetching knowledge about domain
concepts is easier than code knowledge because the use of
program gives a lot of knowledge to comprehend domain
concepts [27]. Moreover, user manual also provides
information for domain concepts. The aim of gathering
domain knowledge is the correct implementation of
concepts in the code. All relevant concepts should be
implemented on the piece of code or different piece of
code. The concept location process helps to find out the
formulation of these relevant concepts in the code [3, 27]
According to object-oriented programming, the object is
referred as a concept. Each class in object oriented
programming mentions its concept e.g. salary or bonus.
Many classes represent different concepts or may be
distinct from each other. Like this, many programmer uses
design patterns in which different classes collaborates to
implement a single concept [29].This kind of concept
needs to be identified in the source code and we need to
change this unique concept because we have to make a
change in all the classes those have an impact on this
concept. Furthermore, concept location process is highly
dependent upon programmer’s personal skills. However,
there are multiple ways to locate concepts (feature) in the
program. We discussed concept location techniques and
their use how and where these techniques are implemented.
Many researchers [3, 29–31] have work into this for
making it more comprehend. These techniques are (i)
Dynamic concept location (ii) Static concept Location (iii)
Textual concept Location [3, 29, 30]. In this literature we
focused on static concept location techniques.

Static Concept Location
Static concept location approaches do not need any
information about the execution of software system. In this
technique, developer statically analyzed the source code.
However, its structure and dependencies can be explored
automatically or manually [3]. Some other static concept
location techniques (CLT) are involved in data
dependencies and different control 13 types. Whereas,
other static concept location techniques use structural
dependencies of software system [30]. Furthermore, static
CLTs is not limited to dependency graph but also on
software artifacts set e.g. developers feedback and
historical information [30, 31]. These set of artifacts works
as an initial point which helps in the analysis to obtain
program element related to initial set [30]. However, the
developer specified these initial artifact set.
In [32] chen et al presented a method named as Abstract
System Dependence Graph (ASDG). Abstraction of the
system dependence graph (SDG) performed in this method.
Global variables or function used as a node in ASDG and
control dependencies between different function or data

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 270

flow among variables used as the edges between different
nodes [32]. The static CLTs which implements ASDG’s
needs statically developed a dependence graph as a starting
node and input as well [30, 32]. However, this input is
chosen by the developer. A program element which is
relevant to the concept could be the starting node, which
might be known by the programmer or he selected any
node randomly as a starting node or it can be related to the
main method. Developers feedback required in each step
of CLTs. Like, the selected node is relevant to the concept
or irrelevant. Moreover, CLTs keep track of visited node
and search gaps on the basis of developer’s feedback and
try to fill the search gaps and try to keep the relevant nodes.
This process remains to continue till all the program
element relevant to the maintenance find by the developer.
This technique supported by a tool named as Ripples [30].
These ripples help in generating ASDG from the code of
programming language (C) and helps the developer to
visualize the graph and select the node which is relevant to
the concept.
Another method named as Concern Graph Representation.
Concern graph representation is developed by Robillard et
al. this graph representation allows an abstract image of a
concept or concern which helps in creating mapping and
it’s storing between source code and feature. Program
elements subsets and relation between these sets are
encapsulated in the concern graph representation. Static
dependencies among the program elements are the base of
this relation. The supporting tool of concern graph
representation is named as Feature Exploration and
Analysis Tool (FEAT) [33] . However, through this tool
developers can visualize the concern graph, analyze the
course code and its relation to the graphs program
elements and give permission to the developers to change
the concern graph.

 In [34] Saul et al presented an approach name as Finding
with Random walks (FRAN). This approach suggests
relevant program elements on the basis of some input as a
starting point. FRAN uses systems structural information
and simplifies Robillards method [34]
. It take an input (Program 14 element e) of developer’s
interest and build a graph of program which has
dependency to the neighbor of e. Moreover, this approach
uses large number of correlated program elements and uses
Kleinberg et al [30] algorithm on the dependency graph for
ranking program elements.
Trifu el al [35] presented a feature location technique
which is based on static analysis of data. This technique
takes many variables as an input known as information
sinks. However, these variables are chosen by the
developers and utilized as initial points to recognize the all
chunks of the code where variables values propagate.

Dependencies in data flow are used to track them into code
[30].
 Trifu et al used concept information base to improve this
approach named as data flow based concern identification.
However, this conceptual information defines the
limitation of the concern.
Zhao et al [36] introduced an approach named as a static,
non-interactive approach to feature location (SNIAFL).
This approach uses combination of information retrieval
(IR) and branch reserving call graph (BRCG). Moreover,
this approach uses branch information with call graph
expanded version. Information retrieval is used to locate
initial program elements to locate a specific feature and
BRCG is used to find other related elements.
In [37] Ratiu et al presented an approach, which recovers
an abstract picture of relevant chunks of the code and real
world concepts. Although, this approach not exactly for
concept location but it helps to locate the concept with the
help of developers point of view according to their domain
knowledge [30, 37]. Moreover, they introduced a schema
that discussed logical error generated by inappropriate
variable naming style and developed an algorithm that
used to retrieve the concepts between program elements
and ontology elements. This algorithm exploits graph
matching for mapping program elements and concepts.
However, concepts are formulated in ontology and graph
are used for program abstraction.
In table 3, we tried to compare some of above static
concept location techniques and shown their detail with
respect to different factors.

Table 3: Comparison of Static Concept Location Techniques
Static

Analysis Input type Programming
Language Data Sources Output

Papers Query Program
element JAVA C++ Dependency

Graph

Compilable
Source
Code

Class Method

K.Chen
[32] ✖ ✔ ✖ ✔ ✔ ✔ ✖ ✔

Robillard
[33] ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✔

M.Saul
[34] ✖ ✔ ✖ ✔ ✔ ✔ ✖ ✔

Trifu
[35] ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔

Zhao [36] ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✔

This table addressed our first research question answer and
conclude the detail comparison of the static concept
location techniques. Moreover, with this literature we
identify some factors which used in static analysis for
concept location (RQ2). These factors are listed below.

• Dependencies (Abstract system dependencies)
• Ranking (Concern Graph)
• Point of view (Developer understanding view)
• Intention (maintenance or development)
• Concept name (domain knowledge specific or

experience)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019

271

4. Result

The studied literature lead towards a preliminary model for
CL with the help of static analysis which shown an activity
diagram in Figure 3. We proposed a hybrid model for
concept location. In this model programmer starts the
activity and perform these step respectively (i)Cognitive
Model (ii) Create the chunk of code (iii)Categorize the

Chunk (iv) Comprehend the code (v) Formulate the
Concept.

• Cognitive Model In this activity, programmer start with
a cognitive model e.g. mental model [6, 11]. This model
helps the programmers to understand the code in context of
program comprehension. It is an important task because it
allows different mental process, techniques, strategies and
concepts that a programmer use to understand the program.
• Create the Chunk of Code In this activity, programmer
uses bottom up approach and perform action of reading the
code statement by statement in order to obtain group of
code or chunks of code as an output [3, 6, 10, 12, 23].
• Categorize the Chunk In this activity, programmer has
many different chunks .These chunks categorized into a
group on the basis of relationships and dependencies
between them [1, 3, 5, 6, 10]. These dependencies and
relationship is given as input to categorized the chunk
activity to get high level abstraction and a comprehended
code as an output. After this step, static analysis will be
performed on comprehended code. In this analysis
programmer gives initial input and checks data sources to
get output as an program element(Class, function) [23].
• Concept Formulation In this activity, we have a
comprehended code in which static analysis is already
performed. Programmer will investigate and formulate the
needed concept. After formulation of concept, this activity
will be ended

Fig. 3 Activity Diagram of Hybrid Model for CL

5. Conclusion

Concept location is an important task in program
comprehension. Many techniques and methods are
proposed in this context. But still there is no existing
model for concept location. We proposed a hybrid model
concept location model by combining the approaches and
implementing the basic factor of static analysis in concept
location model. In future, we will validate our model
through case study and industrial survey. We will try to
improve our model with the help of developer’s feedback.

References
[1] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li,

“Measuring program comprehension: A large-scale field
study with professionals,” IEEE Transactions on Software
Engineering, vol. 44, no. 10, pp. 951– 976, 2018.

[2] I. Schr¨oter, J. Kr¨uger, J. Siegmund, and T. Leich,
“Comprehending studies on program comprehension,” in
Program Comprehension (ICPC), 2017 IEEE/ACM 25th
International Conference on. IEEE, 2017, pp. 308–311.

[3] V. Rajlich and N. Wilde, “The role of concepts in program
comprehension,” in Program Comprehension, 2002.
Proceedings. 10th International Workshop on. IEEE, 2002,
pp. 271–278.

[4] J. Siegmund, “Program comprehension: Past, present, and
future,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER),
vol. 5. IEEE, 2016, pp. 13–20.

[5] A. Karahasanovi´c, A. K. Levine, and R. Thomas,
“Comprehension strategies and difficulties in maintaining
object-oriented systems: An explorative study,” Journal of
Systems and Software, vol. 80, no. 9, pp. 1541–1559, 2007.

[6] M.-A. Storey, “Theories, tools and research methods in
program comprehension: past, present and future,” Software
Quality Journal, vol. 14, no. 3, pp. 187–208, 2006.

[7] N. Alhindawi, J. Alsakran, A. Rodan, and H. Faris, “A
survey of concepts location enhancement for program
comprehension and maintenance,” 2014.

[8] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A.
Sergeyev, “Static techniques for concept location in object-
oriented code,” in Pro28 BIBLIOGRAPHY 29-gram
Comprehension, 2005. IWPC 2005. Proceedings. 13th
International Workshop on. IEEE, 2005, pp. 33–42.

[9] M. Revelle and D. Poshyvanyk, “An exploratory study on
assessing feature location techniques,” in Program
Comprehension, 2009. ICPC’09. IEEE 17th International
Conference on. IEEE, 2009, pp. 218–222.

[10] M. H. P. P. M. J. &. U. R. Berón, "Program inspection to
interconnect behavioral and operational view for program
comprehension," 2007.

[11] B. R. M. G. M. &. P. D. Dit, "Feature location in source
code: a taxonomy and survey.," Journal of software:
Evolution and Process, vol. 25(1), pp. 53-95, 2013.

[12] B. B. O. P. B. D. T. M. B. J. &. L. S. Kitchenham,
"Systematic literature reviews in software engineering–a
systematic literature review.," Information and software
technology, vol. 51(1), pp. 7-15, 2009.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 272

[13] B. Kitchenham, "Procedures for performing systematic,"
Keele, UK, Keele University, vol. 33(2004), pp. 1-26, 2004.

[14] B. Z. A. V. D. A. M. L. &. K. R. Cornelissen, "A systematic
survey of program comprehension through dynamic
analysis," IEEE Transactions on Software Engineering, vol.
35(5), pp. 684-702., 2009.

[15] S. M. Dekleva, "The influence of the information systems
development approach on maintenance," MIS quarterly, , pp.
355-372, 1992.

[16] R. T. K. WALID MAALEJ, "On the Comprehension of
Program Comprehension," ACM Transactions on
Embedded Computing Systems, vol. 9(4), March 2014.

[17] L. A. B. M. &. Z. H. Chen, "Towards an evidence-based
understanding of electronic data sources," 2010.

[18] A. A. &. K. J. Khan, "Systematic review of success factors
and barriers for software process improvement in global
software development," IET Software, vol. 10(5), no. IET,
pp. 125-135, 2016.

[19] S. Letovsky, “Cognitive processes in program
comprehension,” Journal of Systems and software, vol. 7,
no. 4, pp. 325–339, 1987.

[20] M. P. Obrien, “Software comprehension–a review &
research direction,” Department of Computer Science &
Information Systems University of Limerick, Ireland,
Technical Report, 2003.

[21] R. Brooks, “Towards a theory of the comprehension of
computer programs,” International journal of man-machine
studies, vol. 18, no. 6, pp. 543–554, 1983

[22] A. Von Mayrhauser and A. M. Vans, “Program
comprehension during software maintenance and
evolution,” Computer, no. 8, pp. 44–55, 1995.

[23] B. Shneiderman and R. Mayer, “Syntactic/semantic
interactions in programmer behavior: A model and
experimental results,” International Journal of Computer &
Information Sciences, vol. 8, no. 3, pp. 219– 238, 1979.

[24] S. Letovsky and E. Soloway, “Delocalized plans and
program comprehension,” IEEE Software, vol. 3, no. 3, p.
41, 1986.

[25] J. Koenemann and S. P. Robertson, “Expert problem
solving strategies for program comprehension,” in
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 1991, pp. 125–130.

[26] M. Ben-Ari, “Program visualization in theory and practice,”
2001.

[27] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An
information retrieval approach to concept location in source
code,” in Reverse Engineering, 2004. Proceedings. 11th
Working Conference on. IEEE, 2004, pp. 214–223.

[28] A. Armaly, J. Klaczynski, and C. McMillan, “A case study
of automated feature location techniques for industrial cost
estimation,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2016,
pp. 553–562.

[29] E. Gamma, Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[30] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk,
“Feature location in source code: a taxonomy and survey,”
Journal of software: Evolution and Process, vol. 25, no. 1,
pp. 53–95, 2013.

[31] H. E. Salman, A.-D. Seriai, and M. Hammad, “Quality-
driven feature identification and documentation from source
code,” Journal of Theoretical and Applied Information
Technology, vol. 84, no. 2, pp. 183–195, 2016.

[32] K. Chen and V. Rajlich, “Case study of feature location
using dependence graph,” in Program Comprehension, 2000.
Proceedings. IWPC 2000. 8th International Workshop on.
IEEE, 2000, pp. 241–247.

[33] M. P. Robillard and G. C. Murphy, “Concern graphs:
finding and describing concerns using structural program
dependencies,” in Proceedings of the 24th international
conference on Software engineering. ACM, 2002, pp. 406–
416.

[34] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird,
“Recommending random walks,” in Proceedings of the the
6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2007, pp. 15–24.

[35] M. Trifu, “Using dataflow information for concern
identification in object-oriented software systems,” in
Software Maintenance and Reengineering, 2008. CSMR
2008. 12th European Conference on. IEEE, 2008, pp. 193–
202.

[36] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “Sniafl:
Towards a static noninteractive approach to feature
location,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 15, no. 2, pp. 195–226, 2006

[37] D. Ratiu and F. Deissenboeck, “From reality to programs
and (not quite) back again,” in Program Comprehension,
2007. ICPC’07. 15th IEEE International Conference on.
IEEE, 2007, pp. 91–102.

