
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

12

Manuscript received June 5, 2019
Manuscript revised June 20, 2019

Code Refactoring and its Impact on Internal and External
Software Quality: An Experimental Study

Mohammed Alawairdhi

Saudi Electronic University, College of Computing and Informatics, Riyadh, Saudi Arabia

Summary
Over a significant period of time, code refactoring has evoved as
an approach to improve effectiveness of legacy systems. Using
refactoring, we can improve the internal structure of application
without having to necessarily modify external behavior. This
helps in improving quality of systems in terms of its reusability,
scalability, understandability and flexibility etc. In this paper, the
code of three components of an existing application under
operation Saudi Electronic University has been refactored using
seven refactoring techniques. The refactored components have
been evaluated for selected internal and external quality measures.
The results show a profound improvement in the internal quality
of refactored components whereas the improvement in external
quality measures has been found to be modest. An analysis of
results has been made at the conclusion of the study.
Key words:
Refactoring; Software Quality; Efficiency; Reusability; Software
Systems, Legacy Systems; Maintainability

1. Introduction

The purpose of refactoring is to modify the internal
structure of a software component in such a way that it is
more understandable and easiliy modifiable without
making any change in its external behavior [1], This is an
effective method of bringing change in a legacy system
without compromising the functionality of system from
external aspect. The number of bugs can be reduced
significantly using refactoring. This also helps in
improvement in internal structure, improved readability,
maintainability and reduced complexity.
Software systems by their core nature need to evolve.
Research has shown that over period of time, maintenance
is a major cost, sometimes consuming up to 90% of
overall software spending [2]. It has been observed that
one effective method of preserving software quality
without increasing maintainability cost is by using code
refactoring techniques. In recent past, several studies have
been conducted to examine the impact of refactoring on
software quality [3.4]. However as the critique of these
works in [5. 6] highlights, the studies lack empirical
evidence of the impact of refactoring on software quality.
Refactoring can be performed manually or with the help of
some software. Manual refactoring in today’s world
though still in practice can be error prone and time
consuming. Automatic refactoring while efficient can also

guarantee preserving system behavior which is a pre-
requite for code refactoring. Automated refactoring
comprises of two steps [7]. First step involves analysis to
determine if refactoring preconditions hold in components
being planned to be refactored. If first steps holds true, in
second step, actual transformation of code takes place.
Some concepts related to refactoring are as follows;
Bad Smells: The term bad smell refers to design flaws in
the code. These are considered problems in the code which
can be removed using refactoring. A few examples of Bad
smell can be Large Class, Long Method, Duplicate Code
etc.
Refactoring Techniques: These techniques used to remove
bad smells and make the code clean using refactoring.
Literature presents dozens of techniques for code
refactoring. Some more prominent ones include Extract
Method, Inline Method, Move Method, Inline Class,
Rename Method etc.
In this paper, effort has been made to quantitatively
evaluate performance of leading refactoring techniques on
the quality of code. This study would help us evaluate on
experimental level if cost and time invested refactoring
would have been used for meaningful advantage. The
study has been carried out on code components of an
existing academic system at Saudi Electronic University.
Remaining paper is arranged as follows. After this brief
introduction, a literature review is presented in section 2.
Section 3 is dedicated to describe the Research
methodology. Section 4 is dedicated to presenting results
and discussion of those results. Paper concludes with
future work in section 5.

2. Literature Review

A growing number of studies in recent years have focused
on understanding the impact of refactoring on software
quality. Unfortunately very few of such studies have
presented any quantitative empirical evidence of this effect.
Most studies Most of the studies have relied on qualitative
and literature oriented discussion. Martin Fowler is
considers one of the earliest proponents of code
refactoring, In his paper [1], he equate code refactoring in
object oriented development as equivalent to restructuring
in more classical models of development. In the same

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

13

paper, Fowler discussed the concept of bad smells. The
two steps of refactoring were proposed by Roberts [7]
where first is analysis and second is execution.
When coming to quality assessment of code refactoring.
Bois and Mens proposed a metrics based technique to
evaluate refactoring impact of quality of software [8]. The
results of their work were inconclusive as those were
without any experimental evaluation. Stroggylos and
Spinellis [6] studied and analyzed impact of change due to
refactoring on the source code of four open source
software. They concluded that refactoring had no
measurable impact on quality of the system. Bois et al. [9]
developed guidelines for coupling in order to improve
cohesion and coupling. They applied these guidelines on
an open source software.
Kannangara and Wijayanayake [10] evaluated ten
refactoring techniques to understand their impact on
software code with respect to five quality measures. Their
study showed that code refactoring had visibly positive
impact on maintainability. In another study, Kannangara
and Wijayanayake [11] again applied ten refactoring
techniques and evaluated their impact on four different
quality attributes. However their study found no noticeable
improvement. Moser et al. [12] proposed a methodology to
study thhe impact of refactoring on software reusability.
Their study found that code refactoring has a visible
positive impact of software reusability, The study carried
out by Alshayeb [13] quantitatively assessed the impact of
code refactoring on software quality. However this study
as well failed to establish any positive correlation between
code refactoring and software quality. Shatnawi and Li
[14] applied several dozen refactoring techniques on two
open source software systems to analyze their impact on
software quality. Their study empirically found that most
refactoring techniques have positive impact on software
quality. However, they also noted that some refactoring
techniques don’t have any visible positive impact of
external quality of the software.
As of the recent most exciting developments in the domain
of refactoring, Chapparo et al [20] propsoed a method
called RIPE (Refactoring Impact Prediction) to estimate
the impact of refactoring techniques on quality of source
code. Dallal et al. [16] presented an empirical literature
review of several dozen previous studies summarizing the
impact of code refactoring on software quality. Their
findings indicated that application of different refactoring
techniques produced opposite quality results for refactored
components. Dallal [17] also developed a framework to
evaluate the impact of various primary studies carried out
on evaluating impact of refactoring on quality of software
application. Jason in his work [18] worked on application
which was being modified and refactored simultaneously.
His results indicated positive effects of refactoring on
application quality measures. Ouni Ali et al. [19] proposed
a multi-criterion refactoring approach where refactoring

was carried out using different techniques simultaneously
in an automated manner. Their results showed positive
impact of refactoring on software cyclomatic complexity.
To summarize all of the work in a nutshell, we come up
with following understandings about the impact of code
refactoring on software quality from literature perspective;

1. There is no definite conclusion yet about whether
code refactoring has a positive impact on
software quality and to what extent.

2. Most of the studies have either focused on
internal quality aspect of external quality aspect.
No study has covered both aspects of quality in a
comprehensive manner.

3. Number of components evaluated were not
representative in magnitude or quantity of the
software systems from which those were
extracted.

Keeping these factors in mind, we have used significant
amount of components from application for case study.
We have experimented with both internal and external
quality aspects with significant number of refactoring
techniques

3. Research Methodology

Selected Refactoring Techniques
As mentioned earlier, the purpose of this study was to
examine the impact of code refactoring on both internal
and external quality factors in a quantitative manner. The
second major objective of this study was to measure the
impact with as many software components as possible. In
this section, the research method adopted would be
explained in sufficient detail.
Fowler in their work [1] identified 72 refactoring
techniques. Out of these, following techniques have been
used in this study;

1. Duplicate Observed Data
2. Replace Type Code with Subclass
3. Replace Conditional with Polymorphism
4. Extract Subclass
5. Extract Interface
6. Form Template Method
7. Introduce Null Objects

Code refactoring is considered effective when it is applied
to object oriented environment. Keeping this consideration
in mind, we chose an application which was designed in
PhP. The application used as case study is the student
management system currently in use in Saudi Electronic
University. Three components of this system were
extracted for experimentation. These components were (1)
Course Withdrawal (2) Semester Registration and (3)
Transcript Generation. Source code comprised of

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

14

approximately 2850 LOC and bad smells were pre-
identified.
External and Internal Quality Metrics
External quality measures used to evaluate the impact of
code refactoring on software systems were selected from
ISO Quality model [15], Four quality measures were
identified and studied which include;
Maintainability: The degree of effort needed to make
specified modifications.
Efficiency: The quality attribute representing relationship
between desired level of performance and resources
utilized to maintain that performance.
Reusability: This quality attribute refers to the capacity of
system or components of the system to be reused in other
applications of systems
Performance: This quality attribute refers to the
responsiveness of the system to perform given task in
allocated time interval.
To measure the impact of code refactoring on internal
quality of software, following six code measures were
used;
Cyclomatic Complexity: Number of linearly independent
paths through the application code. Less cyclomatic
complexity means better designed source code.
Weighted Methods per Class (WMC): This metric is the
sum of complexities of all class methods in given software
component.
Lack of Cohesion of Methods (LCOM): This metric
measures whether any given class in source code
represents a single abstraction or multiple abstractions,
Depth of Inheritance Tree: This metric measures the
maximum length from root to the node of tree in give
source code or application or its component.
Class Coupling: This metric measures the coupling to
unique classes through parameters, local variables, return
types, method calls etc.
Line of Code: This metric counts the lines of code
excluding empty lines and comments (containing actual
source code).

4. Experimental Design

Experimentation for Internal Quality Measures:
Experimentation on each of three components was
performed in following steps;

1. For each component
2. Run the legacy Program
3. Measure the complexity and other internal quality

measures before making changes
4. Identify code for refactoring
5. Apply appropriate refactoring technique
6. Test refactored code to check if any error was

introduced
7. In case of error, return to legacy program and

correct the error. This would be followed by
applying refactoring technique again and
following step 5.

8. Repeat process for all refactoring techniques.
9. Measure internal quality metrics on refactored

code.
10. Repeat from step 2-9 for each component.

Fig. 1 Impact of Refactoring on Internal Quality Measures for Course
Withdrawal Module

Fig. 2 Impact of Refactoring on Internal Quality Measures for Semester
Registration Module

Experimentation for External Quality Measures
(a) Maintainability: A threshold was defined for effort
required to make one change. Two changes in each
component (legacy as well as refactored)were performed
by similar software engineer and effort was required and
compared against threshold.
(b) Efficiency: Time required to learn functionality by a
novice user was calculated for legacy code as well as
refactored code for each software component.
(c) Reusability: Percentage code candidate for reusability
in legacy code as well as refactored code of each
application component was recorded and compared.
(d) Performance: Similar used was asked to work with
application component with legacy code as well as
refactored code. Number of errors reported by the user for

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

15

both was compared. The process was repeated for each of
three components.

Fig. 3 Impact of Refactoring on Internal Quality Measures for Transcript
Generation Module

Fig. 4 Cumulative Average of impact of Refactoring on Internal Quality
Measures for all Modules

5. Experimental Results and Analysis

In this section, results and findings of experiments
performed according to experimental design are presented.
Results and Analysis for Internal Quality Measures
The results of experimentation performed with internal
quality measures is shown in figure 1,2,3 and 4. each
figure represents results for one module while figure 4
shows cumulative change for all internal quality measures.
The experiments exhibit interesting information. It is
evident from the table that code refactoring had the most
profound impact on reducing the cyclomatic complexity.
All the components which were refactored showed
significant reduction in complexity with component 2
showing a complexity reduction of up to 20%.
One area of concern however was line of code which in all
cases showed negative trend. It means that after
refactoring, the Line of code for each component increased.
This increase was most profound in the case of component
one where an increase of 15% was registered. Evidence

also showed that WMC for component 1 was also most
adversely effected. It needs to be seen in future work if
there exists a correlation between negative WMC at the
end of code refactoring as increase in Line of code.

Fig. 5 Impact of Refactoring on External Quality Measures for Course
Withdrawal Module

Fig. 6 Impact of Refactoring on External Quality Measures for Semester
Registration Module

All other internal quality factors showed positive trend
mostly with only two exceptions. Results showed that
Weighted Methods Per Class actually increased for
component 1 after code refactoring. Also Class coupling
registered a modest increase after refactoring for
component 2.
Another interesting discovery of experimentation was that
code refactoring had minimal effect on Depth inheritance
Tree. The depth inheritance Tree showed no change for
component 1 and component 2. However for component 3,
code refactoring was able to reduce depth by one level.
When we look at overall accumulative effect of refactoring
for various internal quality attributes, it is evident that
code refactoring has most profound positive impact on
cyclomatic complexity. It also has a positive impact on all
other chosen quality measures except Line of Code which
show a significant increase after code refactoring.
Results and Analysis for Internal Quality Measures
Results of applying code refactoring on external quality
measures are shown in figure 5,6,7 and 8. These results

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

16

showed an interesting picture. As is evident from the
results, code refactoring didn’t have any major impact on
external quality attributes. Except for maintainability
which was found to be requiring more effort for refactored
code, all other quality attributes showed very minimal
change. This change can very well be classified as within
the margin of error. One other interesting pattern observed
was that performance was reported to be slightly lower for
the component which had high line of code for both legacy
as well as refactored component. This may indicate that
with increase in size of code, probability of making errors
in the system increases during refactoring. Results found
no major change in reusable components after refactoring
and efficiency was also found to be approximately similar
for both legacy as well as refactored components.

Fig. 7 Impact of Refactoring on Internal Quality Measures for Transcript
Generation Module

Fig. 8 Cumulative Average of impact of Refactoring on External Quality
Measures for all Modules

One interpretation that can be drawn from these results is
that code refactoring has a profound impact on internal
quality measures as it significantly improves the internal
structure of the application. However, for the external
behavior, this impact is minimal because the focus is not
on modifying the functionality of the system. Rather it is
to restructure the legacy code to make it easier to change
in future and maintain it. At the same time, the study can

be cited as inconclusive since it covers only four external
quality measures. In future, any new study can
accommodate more external quality measures and reach to
a more definitive conclusion.

6. Conclusion and Future Work

Code refactoring is an important approach for improving
the quality of code in legacy systems. In recent years a lot
of work has been done to catalogue various refactoring
techniques. This has opened a new area of research where
the quality of application or application components after
refactoring is being examined. After going through
literature, one comes across two limitations of current
evaluation studies. One limitation is that most of studies
rely on qualitative data rather than experimentation with
refactoring techniques. Second limitation that studies
either focus on Internal quality measures of external
quality measures. No comprehensive study has appeared
which shows satisfactory quantitative analysis for both
external and internal quality measures and their possible
relationships.
This paper presents an empirical study of impact of code
refactoring on selected internal and external quality
measures. Three component of legacy management system
at Saudi Electronic University have been chosen and seven
refactoring techniques have been applied on each of the
component. After refactoring, each component has been
quantitatively evaluated for six internal and 4 external
quality measures. Results show that code refactoring has
significant impact on internal quality aspects of application.
However, the impact of code refactoring on external
quality measures is not so profound,
In future, there is a need to expand the scope of current
work by increasing the dataset for experimentation as well
as increasing the number of refactoring techniques being
applied for refactored components. Another important area
of interest can be to include more external quality
measures from ISO standards and deeply observe the
behavior of application after refactoring. One more
interesting area can be to apply both architectural as well
as code refactoring on legacy systems and observe their
impact on external as well as internal quality of the new
refactored system.

Acknowledgments

The author will like to acknowledge and express his
gratitude to Saudi Electronic University and Ministry of
Education, Saudi Arabia for providing conducive
environment in order to perform studies and research in
various disciplines which has always been instrumental in
carrying out my work.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

17

References
[1] Martin Fowler, Kent, John Brant, William Opdyke, Don

Roberts, D. B. “Refactoring: Improving the Design of
Existing Code”, Addison-Wesley, New York, (1999).

[2] Koskinen J. (2010). Software Maintenance Costs.
Jyväskylä: University of Jyväskylä.

[3] Kataoka Y, Imai T, Andou H, Fukaya T. A (2002).
Quantitative evaluation of maintainability enhancement
by refactoring. In Proceedings of the IEEE International
Conference on Software Maintenance, Montreal, Quebec,
Canada.

[4] Wilking D, Khan U, Kowalewski S. (2007). An
empirical evaluation of refactoring, e-Informatica
Software Engineering Journal, 1, 27-42.

[5] Mens T, Demeyer S, Bois B D, Stenten H, Gorp P V.
(2003). Refactoring: Current Research and Future Trends.
Electronic Notes in Theoretical Computer Science, 80(3).

[6] Stroggylos K, Spinellis D. (2007) Refactoring – does it
improve software quality?, In Proceedings of 5th
International Workshop on Software Quality
(WoSQ’07:ICSE Workshops), 10–16.

[7] Roberts, D. B “Practical Analysis for Refactoring”, PhD
thesis, Department of Computer Science , University of
Illinois at Urbana-Champaign, (1999).

[8] Bois B.D, Mens T. (2003). Describing the impact of
refactoring on internal program quality, In Proceedings
of the 8. International Workshop on Evolution of
Large-scale Industrial Software Applications, Amsterdam,
The Netherlands, 37-48.

[9] Bois B D, Demeyer S, Verelst J. (2004). Refactoring –
improving coupling and cohesion of existing code. In
Proceeding of the 11th Working Conference on Reverse
Engineering (WCRE’04), 144–151.

[10] S. H. Kannangara and W.M.J.I. Wijayanayake,
“Measuring the Impact of Refactoring on Code Quality
Improvement Using Internal Measures”, In Proc. of the
International Conference on Business & Information, Sri
Lanka, December 2013.

[11] S. H. Kannangara and W.M.J.I. Wijayanayake, “Impact
of Refactoring on External Code Quality Improvement:
An Empirical Evaluation”, In Proc. of International
Conference on Advances in ICT for Emerging Regions,
Sri Lanka, December 2013.

[12] Moser R, Abrahamsson P, Pedrycz W, Sillitti A, Succi
G. (2007). A case study on the impact of refactoring
on quality and productivity in an agile team. In
Proceeding of the Central and East-European Conference
on Software Engineering Techniques, Poznan, Poland.

[13] Alshayeb M. (2009). Empirical investigation of
refactoring effect on software quality. Information and
Software Technology Journal, 51(9), 1319–1326.

[14] Shatnawi R, Li W. (2011). An Empirical Assessment
of Refactoring Impact on Software Quality Using a
Hierarchical Quality Model, International Journal of
Software Engineering and Its Applications, 5(4).

[15] ISO/IEC 9126-1 Standard. (2000).
http://www.cse.unsw.edu.au/~cs3710/PMmaterials/Resourc
es/9126-1%20Standard.pdf. Accessed 10 July 2014.

[16] Al Dallal, Jehad, and Anas Abdin. "Empirical Evaluation of
the Impact of Object-Oriented Code Refactoring on Quality

Attributes: A Systematic Literature Review." IEEE
Transactions on Software Engineering (2017).

[17] Al Dallal, Jehad. "Evaluating quality of primary studies on
determining object-oriented code refactoring candidates."
Proceedings of the The International Conference on
Engineering & MIS 2015. ACM, 2015.

[18] Jonsson, Alan. "The Impact of Refactoring LegacySystems
on Code Quality Metrics." (2017).

[19] Ouni, Ali, et al. "Multi-criteria code refactoring using
search-based software engineering: An industrial case
study." ACM Transactions on Software Engineering and
Methodology (TOSEM) 25.3 (2016): 23.

[20] Chaparro, Oscar, et al. "On the impact of refactoring
operations on code quality metrics." Software Maintenance
and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014.

Mohammed Alawairdhi received his
Bachelor degree in information Systems
from King Saud University, Saudi Arabia.
Then he received his Master degree in
Computer Science from California State
University, Chicago, USA. He earned his
Ph.D. degree in Computer Science from
De Montfort University, UK in 2009. He
works as an Assistant Professor in the
college of Computer and Information

Sciences, Al - Imam Muhammad ibn Saud Islamic University.
He was also vice dean of Graduate Studies and Research, College
of Computer and Information Sciences until June 2012. He is
currently working as vice president of research and higher studies
at the Saudi Electronic University. His research interests include
software engineering, ubiquitous computing, business process re-
engineering, computational intelligence and human computer
interaction (culture and cyberspace).

