
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

60

Manuscript received June 5, 2019
Manuscript revised June 20, 2019

Compute-Line based Computational Memory Architecture
supporting Binary Logic with two Coloring States

Driss Azougagh, Ahmed Rebbani and Omar Bouattane

SSDIA Laboratory, ENSET Mohammedia, Hassan II University of Casablanca
BP 159 Bd Hassan II, Mohammedia Morocco

Summary
Processing In Memory (PIM) is in demand more than ever to cope
with the growth of Big Data, memory wall and power wall. It
eliminates the overhead of data movement between processing
unit and memory resulting in high bandwidth, massive parallelism,
and high energy efficiency. Most existing PIM works are
concentrated on near-memory processing (NMP) and/or in-
memory processing (IMP). In this paper we present a compute-
line based computational memory architecture (CCMA)
supporting in compute-line processing, or simply compute-line,
using a controlled inverter (CINV) for pull-down and/or pull-up
the line. In one clock cycle, with one single and simple instruction,
the compute-line allows multiple pull-downs and/or pull-ups for
some bitwise logic computation and multiple writes,
simultaneously.
The architecture is easily backward compatible with conventional
Static/Dynamic Random Access Memory (SRAM/DRAM) but it
has advantage of not using bit-line pre-charging and sensing for
read and write operations. It reduces bit-line activities by more
than half. When used as an in-memory computing, it also
eliminates overhead of data movement demonstrating a great
potential to reduce bandwidth and energy consumption. The
proposed compute-line is validated and tested to show
considerable performance and effectiveness according to the new
capabilities offered. This architecture can support a variety of
interconnect topologies between multiple compute-lines which
will benefit many parallel applications.
Key words:
SRAM Memory, Built-in Computing, compute-line, in-place
processing.

1. Introduction

The growth of Big Data, memory wall and power wall are
posing unprecedented demand for Processing In-Memory
(PIM) [1]. The PIM solutions proposed to move processing
logic near the cache [2], [3] or main memory [4], [5]. 3D
stacking can make this possible [6]. Compute Caches
significantly push the envelope by enabling in- place
processing using existing cache elements, where at least one
of the operands used in computation has cache locality for
data-centric applications. Furthermore, for on-chip
processors caches are not necessary. Several Processor-in-
Memory architectures have been proposed [7, 8], and some
have been implemented [9, 10, 11].

Authors in [12] proposed Compute Caches architecture that
uses an emerging SRAM circuit technology, which can be
referred to as bit-line computing [13], [14]. A study of
logical memories based on Akers logical arrays and
generalize these arrays to non-binary symbols was
introduced in [15]. Akers logical arrays are particular for
symmetric binary and sorting functions. For deep-neural-
network (DNN) processors [16], the product-sum (PS)
operation predominates the computational workload for
both convolution (CNVL) and fully-connect (FCNL)
neural-network (NN) layers.
Static/Dynamic Random Access Memory (SRAM/DRAM)
has been the predominant technology used to implement
memory cell in computer systems [17]. In conventional
SRAM (and/or DRAM), bit-lines need to be pre-charged
prior any read operation and requires differential sensing or
amplification of its voltage levels. To address the challenges
of sub-Vt SRAM, in [18], an 8T bit-cell that uses two port
topology with 6T storage cell and a 2T read-buffer to
isolates the data-retention structure during read-accesses.
The two port topology is used to eliminate read Static Noise
Margin (SNM) and peripheral assists, controlling Buffer-
Foot and VDD to manage bit-line leakage and write errors.
The author proposed a low-power non precharge-type two-
port SRAM for video processing. In their prior study that
saves the charge/discharge power on a read bit-line, a
majority logic circuit and data-bit reordering are
accommodated to write "1"s in as many as possible [19] as
MJ SRAM.
The focus was more on field-programmable gate array
(FPGA)-based solutions using a semiconductor device on
which designers can reprogram desired digital circuits. In
recent years, FPGAs are used in both high-performance
systems [20] and embedded systems [21].
Today, in [22], RRAM was viewed as a promising
candidate that can meet future storage and computing needs.
Author discussed potential computing applications enabled
by RRAM devices within both conventional and emerging
computing paradigms and introduced a concept of RRAM
based Memory Processing Unit (MPU). In their
investigation, due to the sneak-path effect and the tradeoff
between data retention and endurance, device-level and
system level innovations are still needed for large-scale
implementation and storage systems. RRAM device tends

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

61

to be applicable for LUT-based circuitry to store truth table
of a Boolean function and for programmable switch to link
other CMOS sub-circuits in field-programmable gate arrays
(FPGAs).
In our previous work [24], we introduced a bit-line based
computational memory architecture (BMCA) that uses
select-line to choose in which bit-line to run an operation. It
uses a bit-line KEEPER to stabilize the selected bit-line
when all memory cells involved in a read operation have
their bit value is set to 0. In this work, we tried to get rid of
the KEEPER and its overhead imposed. In contrary, in this
paper, we introduce a pull up and pull down logics to
establish all other combinational logic instead of the
complete logical operations NAND, NOR, or a combination
of NOT with AND or OR.
We present a compute-line based Computational Memory
Architecture (CCMA) that supports either Static or
Dynamic Random Access Memory (SRAM or DRAM).
The logic read operation is based on either pulling up the
bit-line if one of the involved memory cells has its memory
state is low or pulling down the bit-line when one of the
involved memory cells has its memory state is high. If both
cases fail to satisfy the condition, the bit-line keeps its state
unchanged. The final bit-line result can be applied to a
memory cell by activating its write line. A detailed study
and analysis of the CCMA based DRAM is introduced. In
the next section we start with an introduction of the
compute-line based computational memory architecture. In
the third section we describe it functionality and analyze the
results. Finally, we conclude with perspective remarks.

2. Computational Memory Architecture

A Compute-line based Computational Memory
Architecture (CCMA) is composed of m compute-lines as
shown in Fig. 1. The architecture can support two different
types of memory cell technologies; a static memory cell
(SMC) using two superposed inverters based on MOSFET
transistors and a dynamic memory cell (DMC) using
Charging/Discharging capacitor as in Fig. 1(f) and (g),
respectively. The logic operation is based on either charging
selected memory cells for write if one of the memory cells
selected to pull-up the compute-line is not charged,
discharging selected memory cells for write if one of the
memory cells selected for pull-down is charged or do
nothing when no memory cell is involved in pull-down/up
or no write operation. A detailed analysis of the CCMA
based DRAM is introduced. The drawing line in gray colors
are only for SMC based architecture needs. Without loose
of generality and due to the symmetry in the drawing of the
black and gray lines, the attention will be mainly given to
the black lines except when the gray ones are explicitly
mentioned.

Fig. 1 Bit-Line based Computational Memory Architecture

2.1 Compute-line

A compute-line XCLk (and YCLk) can connect any selected
number nk of computational memory cells (CMCs) based
on a selection function σk, as in Fig. 1(a). The choice of the
selection functions (σ1,…,σm) determines which topology
the CCMA architecture might use.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

62

2.2 Computational Memory Cell

In Fig. 1(b), a CMC can be composed of one output (OUT)
block and any number d of input blocks (IN1,…,INd) as
required by the chosen CCMA topology. The output block
and input blocks share the same internal bit-line XB (and
YB in case of SMC). Each input block IN i shares a
compute-line XCLi (and YCLi) with the output block OUT.
For a given CMC, a compute-line XCLi (and YCLi) with
no connection to other CMCs need to be omitted with their
corresponding input block IN i during simulation and/or
chip fabrication.

2.3 Input Block

An input block IN in Fig. 1(c) is composed of one controlled
multi-phase inverter CINV1 (or two CINV1 and CINV2 in
case of SMC) shown in Fig. 1(d). It is worth mentioning that
in case of SMC, the control line XR of IN is wired to both
XR of INV1 and YR of CINV2. Symmetrically, the control
line YR of IN is wired to both YR of CINV1 and XR of
CINV2. This way, the inverter’s phase selected by CINV1
is guaranteed to be the opposite of the other inverter’s phase
selected by the CINV2.

2.4 Output Block

The output block OUT is summarized in Fig. 1(e) and is
constructed based on switches connecting local bit-line XB
with the compute-lines XCLs using write lines (Ws). As
mentioned above, the Memory Cell (MC) of the output
block can use either technologies SMC and DMC. In case
of SMC, activated write line W i causes a connection
between the bit-lines (XB and its inverse YB) with the
compute-lines XCLi and YCL i, respectively.

2.5 Controlled Inverter

The controlled multi-phase inverter CINV can have up to 4
phases; de-active when both switches XR and YR are off,
pull-down when only the switch XR is on, pull-up when
only the switch YR is on and invert when both XR and YR
are on.

2.6 Dynamic Compute-Line

For illustration, Fig. 2 shows an example of one simple
single compute-line based on DMC where each
computational memory cell CMC has one input block
composed of one controlled inverter, one output block and
one dynamic memory cell (a single capacitor). For deep
study and analysis of the CCMA architecture, we choose
DMC based technology due to its complicated behaviors
when capacitors are charging and discharging and it
includes most cases of the limited and deterministic
behaviors of SMC based technology. To apply input data to

the circuit during simulation, we introduced an input IN line
with three logical states 0, 1 and high impedance. This line
only affect and alter the value stored in XB0. In the next
section, we will show that we can inject whatever data to
the circuit without using the introduced IN line.

Fig. 2 Dynamic Compute-Line

Fig. 3 CMC control commands; eight possible combinations (a) ~ (h).

All the eight possible states of controlling a CMC are
summarized in Fig. 3. Among these states, it is worth
mentioning that the last three cases Fig. 3(f), (g) and (h)
might cause instable outcomes and conflicts if the total
capacitor of the compute-line XCL is not large enough to
cancel the recursive effect given that all read lines is always
applied before any write line.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

63

3. Functionality & Results

A compute-line operation is achieved by using pull-down
and/or pull-up as basic operations with multiple input
operands. The compute-line operation is complete and can
compute all bit-wise basic logic operations including binary
ones such as NOT, NOR and NAND. If we define 1 and 0
as stables states for a MC, in case of DMC, the stability of
the bit information is achieved when the capacitor can
sustain its charge or discharge level sufficiently higher or
lower than NMOS or PMOS transistor thresholds,
respectively, for a considerable period of time (at least
hundreds of microseconds).
If no computational memory cell is pulling-up/down the
compute-line during an operation then the new voltage level
of the compute-line can be theoretically determined using
the formula in Eq. 1, where λ is the ratio between the
capacitances CCL and C of the compute-line and a memory
cell’s capacitor, respectively. However, the real and exact
voltage level of the compute-line using this formula for
existing (semi-conductor) technologies is not practical.
Therefore, The CMC controller role is to avoid any non-
deterministic state that might cause either conflict between
pull-downs and pull-ups and/or between multiple compute-
line writes. The search for the right combination of
commands for each time we wanted to execute a set of
operations is the role of the Compute-line controller.

∑

∑

=

=
−

−

+

∗+∗
= n

i
i

n

i
XBioldCL

newCL

W

VWV
V

i

0

0

λ

λ
 (1)

3.1 Compute-Line Controller

A timing diagram for the proposed dynamic compute-line
with two different setups and an identical scenario is shown
in Fig. 4. The difference choice of setups affects only the
computation’s speed and in some cases the stability of the
compute line. The controller need to pre-compute which
simultaneous combination of pull up and pull down is
allowed to avoid collision. The second setup uses extra four
computational memory cells (CMC9 through CMC12) as a
compute-line’s capacitor buffer by activating their write
line (W9 through W8) for all the time while executing
compute-line operations during the simulation. The smaller
the compute-line’s capacitor the smaller the time consumed
to execute compute-line operations. The first setup, without
using a capacitor buffer, registers 26% reduction in the total
execution of the same scenario compared to the second
setup.

Fig. 4 Dynamic compute-line behavior.

3.2 Pull-down/up Combinatory Logic

The pull-down, pull-up and write functions used to compute
any non-conflicting compute-line operation is summarized
in Eq. 2 and 3, respectively. Without loose of generality, a
series (ai)k is used to start from 0 for a total of k+1 values
and can be updated for convenience to start from 1 or to end
up to k-1. A program, function or a peace of code can be
composed of any set of such pull-down/up-write
instructions. Any set of such instructions need to be off-line
studied in advance for all possible input data to avoid any
conflict that might lead to inconsistent results.

∏∑
==

+=↑∗=↓

∗↑∗↓=

k

i
iki

k

i
iki

niinii

axaxandaxax

where
BYRBXRCLCL

00
)()(

)()((2)

},...,0{ niforCLWBWB iiii ∈∗+∗= (3)

As summarized in table 1, for any given a and b we have 16
combinatory logics O0 through O15. Each combination O i
can be calculated using one or more pull-down/up functions.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

64

The operations O0 and O15 can be used to write 0 or 1 to
any CMC as an input data instead of any extra circuitry (as
in the input IN inserted to the computational memory cell
CMC0 introduced above).

Table 1: Binary logic operations using pull-down and pull-up operations.

3.3 Case Study: Full Adder

The proposed case study, implements a Full adder in a
compute line. This arithmetic operation is the most used in
any computation unit today. For demonstration purpose, a
Full adder is implemented in the proposed compute-line. It
takes two input operands and one carry, and returns an
output and a carry. It can be easily extended to support
addition of integers.
A number of entries required to show all combination of
three operands, as in the full adder, is 256 entries. Due to
space limit we choose not to investigate on such a table.
Instead, we implemented a scanner program that can give
us the minimum number of compute-line read-write
instructions required to achieve a given output. The result
summary is in the Fig. 5. All possible combinations of three
operands can be checked in the vertical bit-wise alignment
between the following three hexadecimal values 0x55, 0x33
and 0x0F. Applying a bit-wise full adder of this three value
we get 0x69 as an output and 0x17 as a remainder.
While scanning, in Fig. 5(a), the only possible first
occurrence of 0x17 is at the fifth operation after the first 3
initial operations reserved to load 0x55, 0x33 and 0x0F in
the given order. The first occurrence of 0x69 tokes two
more operation in comparison to the first occurrence of
0x17. When we scanned for the first occurrence of 0x17
given that 0x69 is occurred Fig. 5(b) we saved one operation
in comparison to scanning for 0x69 given 0x17 Fig. 5(c).
The drawing in Fig. 5(a) is repeated in the Fig. 5(b) and (c)
for comparison purpose only.

Fig. 5 pull-down/up scan based on fixed input data 55:33:0F.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

65

The scanning revealed 20 sets of 8 operations with distinct
paths (and 34 sets with repeated paths and less efficiency)
that generate 0x17. For the result 0x69, the scanner detected
40 possible sets of 10 operations with distinct paths (28 sets
with repeated paths and less efficient) where 4 cases
registered an average minimum 5 of bit flips for read-lines
and compute-line combined.
Given 40 sets of 0x69, scanning for 0x17 generated 348
distinct paths with repeated ones reached 2714. The list
below shows 6 best candidate paths having an average bit
flip count equal to 5:

(s1) 55 33 0F 08 FE F6 80 EE 60 69 7F 17
(s2) 55 33 0F 08 FE F6 80 EE E0 69 1F 17
(s3) 55 33 0F 08 FE F6 80 EE E0 69 7F 17
(s4) 55 33 0F EF 80 90 FE 88 F8 69 01 17
(s5) 55 33 0F EF 80 90 FE 88 F8 69 07 17
(s6) 55 33 0F EF 80 90 FE 88 F9 69 01 17

Two sets S2 and S4 are chosen to introduce the functions
involved to get the resulting path as shown in table 2. The
reason behind this choice is to show the power and the
flexibility the compute-line it can provide. Function with 3
operands is used in the 5th line. Inverse function can be seen
in the 11th line for S2. Line 10 shows a safe appearance of
both pull-down and pull-up functions for the given
sequence of functions from line 4 through 9. If this sequence
of functions changes the line 10 might not be safe to
compute. Different sequence of functions might generate
different paths as it is the case for S2 and S4.

Table 2: set of functions involved to compute a full adder for S2 and S4.
 S2 S4

12
11
10
9
8
7
6
5
4
3
2
1

170),(
10)()(
690)()(

00)(
0),(

800),(
60)(

0),,(
080),(

00
330
550

617

667

346

56

45

34

123

12

1

xxxxr
Fxxxvx

xxxxv
xEcxx

xEEbaxx
xbaxx

xFxxx
xFEcbaxx

xbacx
Fxc

xb
xa

=↓=

=↑↓=

=↑↓=

=↓=

=↑=

=↓=

=↓=

=↑=

=↓=

=
=
=

170),(
010)(

690)()(
80)(
880),(

0),(
900)(

800),,(
0),(

00
330
550

617

47

436

56

45

34

123

12

1

xxxxr
xxvx

xxxxv
xFcxx

xbaxx
xFEbaxx

xxxx
xcbaxx

xEFbacx
Fxc

xb
xa

=↑=

=↓=

=↑↓=

=↑=

=↓=

=↑=

=↑=

=↓=

=↑=

=
=
=

The temporary variables x1 through x7 are used to keep the
intermediate values required to compute the sum and the
remainder of a full adder. The number of these variables can
be reduced by reusing the ones that are not referred any
further and for this examples we can save up to two
temporary locations without overwriting a, b and c.

3.4 Compute-Line instruction

For simplicity, we generalized all instructions into one
formula Eq. 4 where x, y and w are alphabet letters and

xni)(,
ynj)(and

wnk)(are, respectively, series of index

values to the involved computational memory cells. An
empty series has it corresponding letter omitted from the
instruction line and example codes in the following will
illustrate clearly the compute-line instruction usage.

;)()()(
wyx nnn kwjyix (4)

Given an instruction, the controller will pull-down all
computational memory cells with indices in the series (i),
pull-up all computational memory cells with indices in the
series (j), and write results into all computational memory
cells with indices in the series (k). When only the letter x is
present in the instruction, the compute-line can be
discharged if any of the CMCi has a charged capacitor.
Symmetrically, when only the letter y is present in the
instruction, the compute-line can be charged if any of the
capacitor of CMCj is in a discharged state. Alternatively,
when only the letter w used for the instruction, a balance
between capacitors in the selected CMCk will take place as
well as the compute-line’s capacitor due to the length of the
wiring. For a period of time, as explained above, the
compute-line can be adjusted to have a different capacitance
if the write line of a set of CMCs is kept set to 1 during all
the period. Therefore, the time to run an instruction depends
mainly on the number of values in the series (kw).

3.5 Results

If the three input operands (a,b, and c) are already loaded
into CMC0, CMC1 and CMC2, respectively, the instruction
sets for the above two sets of operations S2 and S4 are
introduced as in Table 3. For spice simulation, we used
45nm PTM model, as cited in [25], for high-performance
application (PTM-HP), incorporating high-k metal gate and
stress effect (level=54 & version=4.0). The associated
Timing diagram of S2 is shown in Fig. 6.

Table 3: set of functions involved to compute a full adder for S2 and S4.
 S2 S4

12
11
10
9
8
7
6
5
4

x 0 1 w 5;
y 0 1 2 w 3;
x 5 w 6;
x 0 1 w 4;
y 0 1 w 3;
x 2 w 7;
x 4 y 6 w 3;
x 7 y 7 w 6;
x 5 7 w 4;

y 0 1 w 5;
x 0 1 2 w 3;
y 5 w 6;
y 0 1 w 4;
x 0 1 w 3;
y 2 w 7;
x 6 y 4 w 3;
x 4 w 6;
y 5 7 w 4;

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

66

Fig. 6 Timing diagram of full adder in a dynamic compute-line.

The simulation gives correct results and confirms with the
study and the analysis presented so far. The compute-line
have promising potential to change the way program
execution might be conducted.

4. Conclusion

A generalized compute-line based computational memory
architecture that supports both common (static and
dynamic) memory technologies was presented. In order to
deeply investigate the capabilities of the compute-line, we
choose the dynamic version due to its rich possibilities and
it covers most of the issue the static one has. We showed the
potential of using compute-line to compute any
combinatory logic operation with different ways. This can
unleash different real-time programming optimizations.
We showed that 50% of total compute-line activities can be
saved during computation if the CMCs’ stored data are
taken in consideration while choosing the right set of the
instructions to execute the code. Reducing the complexity
of the instruction sets into a single and simple one helped a
lot to study the behavior of the compute-line. Translating
existing codes to the compute-line language and scaling the
architecture to adopt complex topologies are scheduled for
future work.

References
[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall:

Implications of the obvious,” SIGARCH Comput. Archit.
News, vol. 23, no. 1, pp. 20–24, Mar. 1995. [Online].
Available: https://doi.org/10.1145/216585.216588

[2] P. A La Fratta and P. M Kogge, “Design enhancements for
in-cache computations,” Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 01 2009. [Online].
Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5
77.4395{\&}\\rep=rep1{\&}type=pdf

[3] F. Duarte and S. Wong, “Cache-based memory copy
hardware accelerator for multicore systems,” IEEE
Transactions on Computers, vol. 59, no. 11, pp. 1494–1507,
Nov 2010. [Online]. Available:
https://doi.org/10.1109/TC.2010.41

[4] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K.
Keeton, C. Kozyrakis, R. Thomas, and K. Yelick, “A case for
intelligent ram,” IEEE Micro, vol. 17, no. 2, pp. 34–44, Mar
1997. [Online]. Available: https://doi.org/10.1109/40.592312

[5] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Rowclone: Fast and energy-
efficient in-dram bulk data copy and initialization,” in 2013
46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), ser. MICRO-46. New York,
NY, USA: ACM, Dec 2013, pp. 185–197. [Online].
Available: https://doi.org/10.1145/2540708.2540725

[6] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled
instructions: A low-overhead, locality-aware processing-in-
memory architecture,” in 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA).
ACM, June 2015, pp. 336–348. [Online]. Available:
https://doi.org/10.1145/2749469.2750385

[7] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K.
Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K.
Keeton, R. Thomas, N. Treuhaft, and K. Yelick, “Scalable
processors in the billion-transistor era: Iram,” Computer, vol.
30, no. 9, pp. 75–78, Sep 1997. [Online]. Available:
https://doi.org/10.1109/2.612252

[8] M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: a
computation model for intelligent memory,” in Proceedings.
25th Annual International Symposium on Computer
Architecture (Cat. No.98CB36235). Washington, DC, USA:
IEEE Computer Society, Jun 1998, pp. 192–203. [Online].
Available: https://doi.org/10.1109/ISCA.1998.694774

[9] D. G. Elliott, W. M. Snelgrove, and M. Stumm,
“Computational ram: A memory-simd hybrid and its
application to dsp,” in 1992 Proceedings of the IEEE Custom
Integrated Circuits Conference, May 1992, pp. 30.6.1–30.6.4.
[Online]. Available:
https://doi.org/10.1109/CICC.1992.591879

[10] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and
R. Mckenzie, “Computational ram: implementing processors
in memory,” IEEE Design Test of Computers, vol. 16, no. 1,
pp. 32–41, Jan 1999. [Online]. Available:
https://doi.org/10.1109/54.748803

[11] J. C. Gealow and C. G. Sodini, “A pixel-parallel image
processor using logic pitch-matched to dynamic memory,”
IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 831–

https://doi.org/10.1145/216585.216588
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.4395%7b%5C&%7d%5C%5Crep=rep1%7b%5C&%7dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.4395%7b%5C&%7d%5C%5Crep=rep1%7b%5C&%7dtype=pdf
https://doi.org/10.1109/TC.2010.41
https://doi.org/10.1109/40.592312
https://doi.org/10.1145/2540708.2540725
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1109/2.612252
https://doi.org/10.1109/ISCA.1998.694774
https://doi.org/10.1109/CICC.1992.591879
https://doi.org/10.1109/54.748803

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.6, June 2019

67

839, Jun 1999. [Online]. Available:
https://doi.org/10.1109/4.766817

[12] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D.
Blaauw, and R. Das, “Compute caches,” in 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), Feb 2017, pp. 481–492. [Online].
Available: https://doi.org/10.1109/HPCA.2017.21

[13] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28
nm configurable memory (tcam/bcam/sram) using push-rule
6t bit cell enabling logic-in-memory,” IEEE Journal of Solid-
State Circuits, vol. 51, no. 4, pp. 1009–1021, April 2016.
[Online]. Available:
https://doi.org/10.1109/JSSC.2016.2515510

[14] M. Kang, E. P. Kim, M. s. Keel, and N. R. Shanbhag,
“Energy-efficient and high throughput sparse distributed
memory architecture,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), Lisbon,
Portugal, May 2015, pp. 2505–2508. [Online]. Available:
https://doi.org/10.1109/ISCAS.2015.7169194

[15] E. Yaakobi, A. A. Jiang and J. Bruck, “In-memory computing
of akers logic array,” in 2013 IEEE International Symposium
on Information Theory, July 2013, pp. 2369–2373. [Online].
Available: https://doi.org/10.1109/isit.2013.6620650

[16] W. Khwa et al., “A 65nm 4kb algorithm dependent
computing-in-memory sram unit-macro with 2.3ns and
55.8tops/w fully parallel product-sum operation for binary
dnn edge processors,” in 2018 IEEE International Solid -
State Circuits Conference - (ISSCC), Feb 2018, pp. 496–498.
[Online]. Available:
https://doi.org/10.1109/ISSCC.2018.8310401

[17] A. Valero, S. Petit, J. Sahuquillo, P. LÃ¸spez, and J. Duato,
“Design, performance, and energy consumption of
edram/sram macrocells for l1 data caches,” IEEE
Transactions on Computers, vol. 61, no. 9, pp. 1231–1242,
Sept 2012. [Online]. Available:
https://doi.org/10.1109/TC.2011.138

[18] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8t
subthreshold sram employing sense-amplifier redundancy,”
IEEE Journal of Solid- State Circuits, vol. 43, no. 1, pp. 141–
149, Jan 2008. [Online]. Available:
https://doi.org/10.1109/JSSC.2007.908005

[19] H. Noguchi, Y. Iguchi, H. Fujiwara, Y. Morita, K. Nii, H.
Kawaguchi, and M. Yoshimoto, “A 10t non-precharge two-
port sram for 74video processing,” in IEEE Computer
Society Annual Symposium on VLSI (ISVLSI ’07), March
2007, pp. 107–112. [Online]. Available:
https://doi.org/10.1109/ISVLSI.2007.2

[20] A. Putnam et al., “A reconfigurable fabric for accelerating
large-scale datacenter services,” in 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA),
June 2014, pp. 13–24. [Online]. Available:
https://doi.org/10.1109/ISCA.2014.6853195

[21] J. Viktorin, P. Korcek, T. Fukac, and J. Korenek, “Network
monitoring probe based on xilinx zynq,” in 2014 ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems (ANCS), ser. ANCS ’14. New
York, NY, USA: ACM, Oct 2014, pp. 237–238. [Online].
Available: https://doi.org/10.1145/2658260.2661769

[22] M. A. Zidan and W. D. Lu, “Rram fabric for neuromorphic
and reconfigurable compute-in-memory systems,” in 2018

IEEE Custom Integrated Circuits Conference (CICC), April
2018, pp. 1–8.

[23] P. Kim, Jaeyoung; Mazumder, “A robust 12t sram cell with
improved write margin for ultra-low power applications in
40nm cmos,” Integration, the VLSI Journal, vol. 57, 03 2017.
[Online]. Available:
https://doi.org/10.1016/j.vlsi.2016.09.008

[24] Driss Azougagh, Ahmed Rebbani, and Omar Bouattane,
“Computational Memory Architecture Supporting in Bit-
Line Processing”, IJCSNS International Journal of Computer
Science and Network Security, VOL.18 No.7, July 2018

[25] “Predictive technology model.” [Online]. Available:
http://ptm.asu.edu/

Driss Azougagh received his B.S. degree in
Computer Science in 1995 from Mohamed
ben Abdellah University, Fes, Morocco. He
received his Master degree in Computer
Science in 2002 from Korea Advanced
Institute of Science and Technology,
Deajeon, Korea. He is a Ph.D. student at the
University Hassan II Mohammedia, ENSET
Institute. His research is focused on

computer architecture. His research interests include (Massively
Distributed and Parallel) Computer Architecture and Processing.

Ahmed Rebbani received the B.S. degree in
Electronics in 1988 the M.S. degree in
Applied Electronics in 1992 from the
ENSET Institute, Mohammedia, Morocco.
He received the DEA diploma in
information processing in 1997 from the
Faculty of Sciences Ben Msik, Casablanca,
Morocco. He is now teacher and researcher
at the Hassan II University of Casablanca,

ENSET Institute Mohammedia. His research is focused on Internet
of things and renewable energy.

Omar Bouattane has his Ph.D. degree in
2001 in Parallel Image Processing on
Reconfigurable Computing Mesh from the
Faculty of Science Ain Chock,
CASABLANCA, Morocco. He has
published more than 30 research
publications and brevets in various National,
International conference proceedings and
Journals. His research interests include

Massively Parallel Architectures, cluster analysis, pattern
recognition, image processing and fuzzy logic.

https://doi.org/10.1109/4.766817
https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/ISCAS.2015.7169194
https://doi.org/10.1109/isit.2013.6620650
https://doi.org/10.1109/ISSCC.2018.8310401
https://doi.org/10.1109/TC.2011.138
https://doi.org/10.1109/JSSC.2007.908005
https://doi.org/10.1109/ISVLSI.2007.2
https://doi.org/10.1109/ISCA.2014.6853195
https://doi.org/10.1145/2658260.2661769
https://doi.org/10.1016/j.vlsi.2016.09.008
http://ptm.asu.edu/

