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Summary 
Processing In Memory (PIM) is in demand more than ever to cope 
with the growth of Big Data, memory wall and power wall. It 
eliminates the overhead of data movement between processing 
unit and memory resulting in high bandwidth, massive parallelism, 
and high energy efficiency. Most existing PIM works are 
concentrated on near-memory processing (NMP) and/or in-
memory processing (IMP). In this paper we present a compute-
line based computational memory architecture (CCMA) 
supporting in compute-line processing, or simply compute-line, 
using a controlled inverter (CINV) for pull-down and/or pull-up 
the line. In one clock cycle, with one single and simple instruction, 
the compute-line allows multiple pull-downs and/or pull-ups for 
some bitwise logic computation and multiple writes, 
simultaneously.  
The architecture is easily backward compatible with conventional 
Static/Dynamic Random Access Memory (SRAM/DRAM) but it 
has advantage of not using bit-line pre-charging and sensing for 
read and write operations. It reduces bit-line activities by more 
than half. When used as an in-memory computing, it also 
eliminates overhead of data movement demonstrating a great 
potential to reduce bandwidth and energy consumption. The 
proposed compute-line is validated and tested to show 
considerable performance and effectiveness according to the new 
capabilities offered. This architecture can support a variety of 
interconnect topologies between multiple compute-lines which 
will benefit many parallel applications. 
Key words: 
SRAM Memory, Built-in Computing, compute-line, in-place 
processing. 

1. Introduction 

The growth of Big Data, memory wall and power wall are 
posing unprecedented demand for Processing In-Memory 
(PIM) [1]. The PIM solutions proposed to move processing 
logic near the cache [2], [3] or main memory [4], [5]. 3D 
stacking can make this possible [6]. Compute Caches 
significantly push the envelope by enabling in- place 
processing using existing cache elements, where at least one 
of the operands used in computation has cache locality for 
data-centric applications.  Furthermore, for on-chip 
processors caches are not necessary. Several Processor-in-
Memory architectures have been proposed [7, 8], and some 
have been implemented [9, 10, 11].  

Authors in [12] proposed Compute Caches architecture  that 
uses an emerging SRAM circuit technology, which can be 
referred to as bit-line computing [13], [14]. A study of 
logical memories based on Akers logical arrays and 
generalize these arrays to non-binary symbols was 
introduced in [15]. Akers logical arrays are particular for 
symmetric binary and sorting functions. For deep-neural-
network (DNN) processors [16], the product-sum (PS) 
operation predominates the computational workload for 
both convolution (CNVL) and fully-connect (FCNL) 
neural-network (NN) layers. 
Static/Dynamic Random Access Memory (SRAM/DRAM) 
has been the predominant technology used to implement 
memory cell in computer systems [17]. In conventional 
SRAM (and/or DRAM), bit-lines need to be pre-charged 
prior any read operation and requires differential sensing or 
amplification of its voltage levels. To address the challenges 
of sub-Vt SRAM, in [18], an 8T bit-cell that uses two port 
topology with 6T storage cell and a 2T read-buffer to 
isolates the data-retention structure during read-accesses. 
The two port topology is used to eliminate read Static Noise 
Margin (SNM) and peripheral assists, controlling Buffer-
Foot and VDD to manage bit-line leakage and write errors. 
The author proposed a low-power non precharge-type two-
port SRAM for video processing. In their prior  study that 
saves the charge/discharge  power on a read bit-line, a 
majority logic circuit and data-bit reordering are 
accommodated to write "1"s in as many as possible [19] as 
MJ SRAM. 
The focus was more on field-programmable gate array 
(FPGA)-based solutions using a semiconductor device on 
which designers can reprogram desired digital circuits. In 
recent years, FPGAs are used in both high-performance 
systems [20] and embedded systems [21]. 
Today, in [22], RRAM was viewed as a promising 
candidate that can meet future storage and computing needs. 
Author discussed potential computing applications enabled 
by RRAM devices within both conventional and emerging 
computing paradigms and introduced a concept of RRAM 
based Memory Processing Unit (MPU). In their 
investigation, due to the sneak-path effect and the tradeoff 
between data retention and endurance, device-level and 
system level innovations are still needed for large-scale 
implementation and storage systems. RRAM device tends 
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to be applicable for LUT-based circuitry to store truth table 
of a Boolean function and for programmable switch to link 
other CMOS sub-circuits in field-programmable gate arrays 
(FPGAs).  
In our previous work [24], we introduced a bit-line based 
computational memory architecture (BMCA) that uses 
select-line to choose in which bit-line to run an operation. It 
uses a bit-line KEEPER to stabilize the selected bit-line 
when all memory cells involved in a read operation have 
their bit value is set to 0. In this work, we tried to get rid of 
the KEEPER and its overhead imposed. In contrary, in this 
paper, we introduce a pull up and pull down logics to 
establish all other combinational logic instead of the 
complete logical operations NAND, NOR, or a combination 
of NOT with AND or OR.  
We present a compute-line based Computational Memory 
Architecture (CCMA) that supports either Static or 
Dynamic Random Access Memory (SRAM or DRAM). 
The logic read operation is based on either pulling up the 
bit-line if one of the involved memory cells has its memory 
state is low or pulling down the bit-line when one of the 
involved memory cells has its memory state is high. If both 
cases fail to satisfy the condition, the bit-line keeps its state 
unchanged. The final bit-line result can be applied to a 
memory cell by activating its write line. A detailed study 
and analysis of the CCMA based DRAM is introduced. In 
the next section we start with an introduction of the 
compute-line based computational memory architecture. In 
the third section we describe it functionality and analyze the 
results. Finally, we conclude with perspective remarks. 

2. Computational Memory Architecture 

A Compute-line based Computational Memory 
Architecture (CCMA) is composed of m compute-lines as 
shown in Fig. 1. The architecture can support two different 
types of memory cell technologies; a static memory cell 
(SMC) using two superposed inverters based on MOSFET 
transistors and a dynamic memory cell (DMC) using 
Charging/Discharging capacitor as in Fig. 1(f) and (g), 
respectively. The logic operation is based on either charging 
selected memory cells for write if one of the memory cells 
selected to pull-up the compute-line is not charged, 
discharging selected memory cells for write if one of the 
memory cells selected for pull-down is charged or do 
nothing when no memory cell is involved in pull-down/up 
or no write operation. A detailed analysis of the CCMA 
based DRAM is introduced. The drawing line in gray colors 
are only for SMC based architecture needs. Without loose 
of generality and due to the symmetry in the drawing of the 
black and gray lines, the attention will be mainly given to 
the black lines except when the gray ones are explicitly 
mentioned. 
 

 

Fig. 1  Bit-Line based Computational Memory Architecture 

2.1 Compute-line 

A compute-line XCLk (and YCLk) can connect any selected 
number nk of computational memory cells (CMCs) based 
on a selection function σk, as in Fig. 1(a). The choice of the 
selection functions (σ1,…,σm) determines which topology 
the CCMA architecture might use. 
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2.2 Computational Memory Cell 

In Fig. 1(b), a CMC can be composed of one output (OUT) 
block and any number d of input blocks (IN1,…,INd) as 
required by the chosen CCMA topology. The output block 
and input blocks share the same internal bit-line XB (and 
YB in case of SMC). Each input block IN i shares a 
compute-line XCLi (and YCLi) with the output block OUT. 
For a given CMC, a compute-line XCLi (and YCLi) with 
no connection to other CMCs need to be omitted with their 
corresponding input block IN i during simulation and/or 
chip fabrication. 

2.3 Input Block 

An input block IN in Fig. 1(c) is composed of one controlled 
multi-phase inverter CINV1 (or two CINV1 and CINV2 in 
case of SMC) shown in Fig. 1(d). It is worth mentioning that 
in case of SMC, the control line XR of IN is wired to both 
XR of INV1 and YR of CINV2. Symmetrically, the control 
line YR of IN is wired to both YR of CINV1 and XR of 
CINV2. This way, the inverter’s phase selected by CINV1 
is guaranteed to be the opposite of the other inverter’s phase 
selected by the CINV2.  

2.4 Output Block 

The output block OUT is summarized in Fig. 1(e) and is 
constructed based on switches connecting local bit-line XB 
with the compute-lines XCLs using write lines (Ws). As 
mentioned above, the Memory Cell (MC) of the output 
block can use either technologies SMC and DMC. In case 
of SMC, activated write line W i causes a connection 
between the bit-lines (XB and its inverse YB) with the 
compute-lines XCLi and YCL i, respectively. 

2.5 Controlled Inverter 

The controlled multi-phase inverter CINV can have up to 4 
phases; de-active when both switches XR and YR are off, 
pull-down when only the switch XR is on, pull-up when 
only the switch YR is on and invert when both XR and YR 
are on. 

2.6 Dynamic Compute-Line 

For illustration, Fig. 2 shows an example of one simple 
single compute-line based on DMC where each 
computational memory cell CMC has one input block 
composed of one controlled inverter, one output block and 
one dynamic memory cell (a single capacitor). For deep 
study and analysis of the CCMA architecture, we choose 
DMC based technology due to its complicated behaviors 
when capacitors are charging and discharging and it 
includes most cases of the limited and deterministic 
behaviors of SMC based technology. To apply input data to 

the circuit during simulation, we introduced an input IN line 
with three logical states 0, 1 and high impedance. This line 
only affect and alter the value stored in XB0. In the next 
section, we will show that we can inject whatever data to 
the circuit without using the introduced IN line. 

 

 

Fig. 2  Dynamic Compute-Line 

 

Fig. 3  CMC control commands; eight possible combinations (a) ~ (h). 

All the eight possible states of controlling a CMC are 
summarized in Fig. 3. Among these states, it is worth 
mentioning that the last three cases Fig. 3(f), (g) and (h) 
might cause instable outcomes and conflicts if the total 
capacitor of the compute-line XCL is not large enough to 
cancel the recursive effect given that all read lines is always 
applied before any write line. 
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3. Functionality & Results 

A compute-line operation is achieved by using pull-down 
and/or pull-up as basic operations with multiple input 
operands. The compute-line operation is complete and can 
compute all bit-wise basic logic operations including binary 
ones such as NOT, NOR and NAND. If we define 1 and 0 
as stables states for a MC, in case of DMC, the stability of 
the bit information is achieved when the capacitor can 
sustain its charge or discharge level sufficiently higher or 
lower than NMOS or PMOS transistor thresholds, 
respectively, for a considerable period of time (at least 
hundreds of microseconds). 
If no computational memory cell is pulling-up/down the 
compute-line during an operation then the new voltage level 
of the compute-line can be theoretically determined using 
the formula in Eq. 1, where λ is the ratio between the 
capacitances CCL and C of the compute-line and a memory 
cell’s capacitor, respectively. However, the real and exact 
voltage level of the compute-line using this formula for 
existing (semi-conductor) technologies is not practical. 
Therefore, The CMC controller role is to avoid any non-
deterministic state that might cause either conflict between 
pull-downs and pull-ups and/or between multiple compute-
line writes. The search for the right combination of 
commands for each time we wanted to execute a set of 
operations is the role of the Compute-line controller. 
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3.1 Compute-Line Controller 

A timing diagram for the proposed dynamic compute-line 
with two different setups and an identical scenario is shown 
in Fig. 4. The difference choice of setups affects only the 
computation’s speed and in some cases the stability of the 
compute line. The controller need to pre-compute which 
simultaneous combination of pull up and pull down is 
allowed to avoid collision. The second setup uses extra four 
computational memory cells (CMC9 through CMC12) as a 
compute-line’s capacitor buffer by activating their write 
line (W9 through W8) for all the time while executing 
compute-line operations during the simulation. The smaller 
the compute-line’s capacitor the smaller the time consumed 
to execute compute-line operations. The first setup, without 
using a capacitor buffer, registers 26% reduction in the total 
execution of the same scenario compared to the second 
setup. 
 

 

Fig. 4  Dynamic compute-line behavior. 

3.2 Pull-down/up Combinatory Logic 

The pull-down, pull-up and write functions used to compute 
any non-conflicting compute-line operation is summarized 
in Eq. 2 and 3, respectively. Without loose of generality, a 
series (ai)k is used to start from 0 for a total of k+1 values 
and can be updated for convenience to start from 1 or to end 
up to k-1. A program, function or a peace of code can be 
composed of any set of such pull-down/up-write 
instructions. Any set of such instructions need to be off-line 
studied in advance for all possible input data to avoid any 
conflict that might lead to inconsistent results. 
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As summarized in table 1, for any given a and b we have 16 
combinatory logics O0 through O15. Each combination O i 
can be calculated using one or more pull-down/up functions. 
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The operations O0 and O15 can be used to write 0 or 1 to 
any CMC as an input data instead of any extra circuitry (as 
in the input IN inserted to the computational memory cell 
CMC0 introduced above). 

Table 1: Binary logic operations using pull-down and pull-up operations. 

 

3.3 Case Study: Full Adder 

The proposed case study, implements a Full adder in a 
compute line. This arithmetic operation is the most used in 
any computation unit today. For demonstration purpose, a 
Full adder is implemented in the proposed compute-line. It 
takes two input operands and one carry, and returns an 
output and a carry. It can be easily extended to support 
addition of integers. 
A number of entries required to show all combination of 
three operands, as in the full adder, is 256 entries. Due to 
space limit we choose not to investigate on such a table. 
Instead, we implemented a scanner program that can give 
us the minimum number of compute-line read-write 
instructions required to achieve a given output. The result 
summary is in the Fig. 5. All possible combinations of three 
operands can be checked in the vertical bit-wise alignment 
between the following three hexadecimal values 0x55, 0x33 
and 0x0F. Applying a bit-wise full adder of this three value 
we get 0x69 as an output and 0x17 as a remainder.  
While scanning, in Fig. 5(a), the only possible first 
occurrence of 0x17 is at the fifth operation after the first 3 
initial operations reserved to load 0x55, 0x33 and 0x0F in 
the given order. The first occurrence of 0x69 tokes two 
more operation in comparison to the first occurrence of 
0x17. When we scanned for the first occurrence of 0x17 
given that 0x69 is occurred Fig. 5(b) we saved one operation 
in comparison to scanning for 0x69 given 0x17 Fig. 5(c). 
The drawing in Fig. 5(a) is repeated in the Fig. 5(b) and (c) 
for comparison purpose only. 

 

Fig. 5  pull-down/up scan based on fixed input data 55:33:0F. 
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The scanning revealed 20 sets of 8 operations with distinct 
paths (and 34 sets with repeated paths and less efficiency) 
that generate 0x17. For the result 0x69, the scanner detected 
40 possible sets of 10 operations with distinct paths (28 sets 
with repeated paths and less efficient) where 4 cases 
registered an average minimum 5 of bit flips for read-lines 
and compute-line combined.  
Given 40 sets of 0x69, scanning for 0x17 generated 348 
distinct paths with repeated ones reached 2714. The list 
below shows 6 best candidate paths having an average bit 
flip count equal to 5: 

 
(s1) 55 33 0F 08 FE F6 80 EE 60 69 7F 17 
(s2) 55 33 0F 08 FE F6 80 EE E0 69 1F 17 
(s3) 55 33 0F 08 FE F6 80 EE E0 69 7F 17 
(s4) 55 33 0F EF 80 90 FE 88 F8 69 01 17 
(s5) 55 33 0F EF 80 90 FE 88 F8 69 07 17 
(s6) 55 33 0F EF 80 90 FE 88 F9 69 01 17 

 
Two sets S2 and S4 are chosen to introduce the functions 
involved to get the resulting path as shown in table 2. The 
reason behind this choice is to show the power and the 
flexibility the compute-line it can provide. Function with 3 
operands is used in the 5th line. Inverse function can be seen 
in the 11th line for S2. Line 10 shows a safe appearance of 
both pull-down and pull-up functions for the given 
sequence of functions from line 4 through 9. If this sequence 
of functions changes the line 10 might not be safe to 
compute. Different sequence of functions might generate 
different paths as it is the case for S2 and S4.  

Table 2: set of functions involved to compute a full adder for S2 and S4. 
 S2 S4 

12
11
10
9
8
7
6
5
4
3
2
1
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The temporary variables x1 through x7 are used to keep the 
intermediate values required to compute the sum and the 
remainder of a full adder. The number of these variables can 
be reduced by reusing the ones that are not referred any 
further and for this examples we can save up to two 
temporary locations without overwriting a, b and c. 

3.4 Compute-Line instruction 

For simplicity, we generalized all instructions into one 
formula Eq. 4 where x, y and w are alphabet letters and 

xni)( , 
ynj)( and 

wnk)( are, respectively, series of index 

values to the involved computational memory cells. An 
empty series has it corresponding letter omitted from the 
instruction line and example codes in the following will 
illustrate clearly the compute-line instruction usage. 

;)()()(
wyx nnn kwjyix    (4) 

 
Given an instruction, the controller will pull-down all 
computational memory cells with indices in the series (i), 
pull-up all computational memory cells with indices in the 
series (j), and write results into all computational memory 
cells with indices in the series (k). When only the letter x is 
present in the instruction, the compute-line can be 
discharged if any of the CMCi has a charged capacitor. 
Symmetrically, when only the letter y is present in the 
instruction, the compute-line can be charged if any of the 
capacitor of CMCj is in a discharged state. Alternatively, 
when only the letter w used for the instruction, a balance 
between capacitors in the selected CMCk will take place as 
well as the compute-line’s capacitor due to the length of the 
wiring. For a period of time, as explained above, the 
compute-line can be adjusted to have a different capacitance 
if the write line of a set of CMCs is kept set to 1 during all 
the period. Therefore, the time to run an instruction depends 
mainly on the number of values in the series (kw). 

3.5 Results 

If the three input operands (a,b, and c) are already loaded 
into CMC0, CMC1 and CMC2, respectively, the instruction 
sets for the above two sets of operations S2 and S4 are 
introduced as in Table 3. For spice simulation, we used 
45nm PTM model, as cited in [25], for high-performance 
application (PTM-HP), incorporating high-k metal gate and 
stress effect (level=54 & version=4.0). The associated 
Timing diagram of S2 is shown in Fig. 6. 

Table 3: set of functions involved to compute a full adder for S2 and S4. 
 S2 S4 

12
11
10
9
8
7
6
5
4

 

x 0 1 w 5; 
y 0 1 2 w 3; 
x 5 w 6; 
x 0 1 w 4; 
y 0 1 w 3; 
x 2 w 7; 
x 4 y 6 w 3; 
x 7 y 7 w 6; 
x 5 7 w 4; 

y 0 1 w 5; 
x 0 1 2 w 3; 
y 5 w 6; 
y 0 1 w 4; 
x 0 1 w 3; 
y 2 w 7; 
x 6 y 4 w 3; 
x 4 w 6; 
y 5 7 w 4; 
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Fig. 6  Timing diagram of full adder in a dynamic compute-line. 

The simulation gives correct results and confirms with the 
study and the analysis presented so far. The compute-line 
have promising potential to change the way program 
execution might be conducted. 

4. Conclusion 

A generalized compute-line based computational memory 
architecture that supports both common (static and 
dynamic) memory technologies was presented. In order to 
deeply investigate the capabilities of the compute-line, we 
choose the dynamic version due to its rich possibilities and 
it covers most of the issue the static one has. We showed the 
potential of using compute-line to compute any 
combinatory logic operation with different ways. This can 
unleash different real-time programming optimizations.  
We showed that 50% of total compute-line activities can be 
saved during computation if the CMCs’ stored data are 
taken in consideration while choosing the right set of the 
instructions to execute the code. Reducing the complexity 
of the instruction sets into a single and simple one helped a 
lot to study the behavior of the compute-line. Translating 
existing codes to the compute-line language and scaling the 
architecture to adopt complex topologies are scheduled for 
future work. 
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