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Abstract 
Due to the predictable increase in the fossil fuels price, 
proper to their rarefaction, electric mobility is one of mobility 
alternatives that actually attracting a huge interest. This innovative 
technology requires an intelligent control of electric charging 
stations since the vital issue in this technology is the recharging of 
EVs (Electric Vehicles) batteries. On the other hand, growth of 
EVs will have a significant impact on the power grid due to the 
increase in electric energy consumption. Therefore, it is crucial to 
operate smart and optimized EVs charging.  This latter should be 
optimized for grid load while guaranteeing that trips requirements 
and vehicle owners’ schedules are met. In this paper we propose a 
multi-agent based system which aims to provide an optimal set of 
available charging station for each vehicle in reply to the drivers’ 
request. First, we propose a mathematical formulation of the 
problem before solving it using improved A* algorithm which 
forms a backbone of vehicle navigation systems. The Multi-agent-
based system is built around a hierarchical and distributed 
architecture of subsystems represented by agents. These agents 
interact between them for performing a mission according to a 
distributed-coordination approach. 
Key words: 
Electric vehicle, smart grid, multi-agent system, heuristic, 
distributed-coordination approach, charging station.  

1. Introduction 

The development of Electric Vehicles (EVs) is part of the 
switching from fossil fuels to alternative energies in the 
sense of reducing dependency on fossil energy as well as 
CO2 emissions; therefore, they are a major approach to 
solving environmental problems as we move toward 
greener future [1]. This trend is sustained by the latest 
advances in battery and converter technology. Also 
sustained by government policies of energy independence 
and resilience promoted by the introduction of electric 
vehicles (EVs) and their close relatives Plug-in Hybrid 
Electric Vehicles (PHEVs) by major car manufacturers [2] 
[3]. Although there are diverging forecasts about the growth 
rate of the EV population [4], there is agreement that it is 
going to represent a substantial portion of the car fleet by 
2025 - 2030. Manifestly, penetration rates could be 
significantly higher than these estimates depending on 
battery costs, petrol prices, government policies, and the 
availability of charging infrastructure. However, electric 
mobility brings with it new challenges, such as EVs 

charging problems due to three reasons: i) simultaneous 
charging of several EVs located in the same area will lead 
to a considerable additional load that can overload the grid, 
ii) EVs should preferably be charged during off-peak hours 
when the power delivery cost is at its lowest [5], and iii) 
The need to integrate various renewable energy sources in 
order to reduce the energetic bill among others. Therefore, 
EVs are considered as one of the major consumers of 
electricity in smart grid [6]. These numbers are expected to 
grow considerably over the next few years. As a natural 
consequence, analyzing the effect of EV charging on smart 
grid and designing an optimal charging strategy for EVs are 
crucial [6][7]. The most clear-cut strategy for charging EVs 
is to charge EVs when the price of electricity is low, e.g., at 
night time. In [6], the fluctuation of the power level of the 
grid was controlled by managing the charging of EVs. 
Furthermore, EV charging was analyzed and optimized by 
using state-of-the-art mathematical techniques. In [8], the 
comportment of EVs which try to be charged at minimum 
cost was analyzed using a mean-field game. Particle swarm 
optimization was applied in [9] to find the optimal EV 
charging schedule. In [10], a distributed congestion control 
for Internet traffic was modified to control EV charging in 
a distributed approach. Moreover, consumer preferences 
for EV charging were investigated in [7]. 

2. Method 

The EVs are equipped with rechargeable batteries which 
can be charged by connecting it to an electric power source 
called charging station. Batteries differ in terms of charging 
capability as defined in the SAE J1772 standard for EV and 
PHEV Conductive Charge Coupler [11]:  

 Level 1 (slow charging) using AC energy 
connected to the on-board charger of the vehicle, 
providing 120V /16A for 1.92kW through charging 
time tc ≈ 10 h. 

 Level 2 (standard charging) using AC energy 
connected to the onboard charger of the vehicle, 
providing   208-240V AC, single phase, 12A-80A 
for 2.5-19.2kW through charging time tc ≈ 6-8 h. 

 Level 3 (fast charging) using DC energy from an 
off-board charger; there is no minimum energy 
requirement but the maximum current specified is 
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400A and 240kW continuous power supplied, 
through charging time tc ≈ 30 min. 

 
Thus, Level 1 charging is ideal for charging the vehicle at 
home (e.g., at night) at low prices. Level 2 charging is 
suitable for charging while the user resides at a place for a 
long time (e.g., at work), whereas Level 3 is appropriate 
solution for fast charging at higher prices to avoid running 
out of battery, when the user does not stop for long and the 
battery is getting empty. 
Further, due to the normally long parking times of 
individual mobility vehicles, the degrees of freedom in EV 
charging are comparably high [12].  
Recently, various works were published in the research 
domain related to this work. Particularly the optimization 
of EV charging subject to network constraints is addressed 
with several models seeking to determine grid-friendly 
charging strategies [13][14] or simulating the grid effects 
of different charging strategies [15][16]. Other works focus 
on methods to influence consumer behavior to achieve grid-
optimal EV charging [17][18]. Several studies of smart 
charge scheduling algorithms were published [19] [20]. 
Some Multi-Agent Systems (MAS) have also been 
proposed [22][23] to achieve a decentralized optimal 
behavior.  
In the environment of smart EVs charging systems, the 
central controller requires basic information to make 
appropriate decisions and perform basic tasks such as 
identifying and tracking users, resource allocation, the 
queue charge, monitoring of energy consumption, payment 
operations, etc. 
Multi-agent system platform is a software infrastructure 
used as an environment for deployment and execution of 
agent’s set. The developer can then create a platform for 
agents and used on all systems that support this platform 
without changing the code. Furthermore, the platform 
should hide the implementation details of communication 
protocols for developers. Since the choice of platform 
agents has a great influence on the design and 
implementation of agents, FIPA [30] produced the 
standards related to the agent platforms named ACL (Agent 
Communication Language). Several multi-agent platforms 
exist: simulation platforms, development and execution 
platforms. The most known is JADE [24].  

3. JADE Platform: 

JADE Java Agent DEvlopment framework is a multi-agent 
platform created by TILAB laboratory and described by 
Belliffemine et al in [24]. JADE allows the development of 
multi-agent systems and applications conforming to FIPA 
standards [25]. 

The framework architecture is based on the coexistence of 
several Java Virtual Machines (JVM) and their inter-
communications through the RMI (Remote Method 
Invocation) method. Each VM (Virtual Machine) is an 
agent container that provides a complete runtime 
environment for agent execution and allows multiple agents 
to run simultaneously on the same host. JADE consists of 
several agent containers. Each agent container is a runtime 
multi-agent environment made up of execution thread with 
more threads created at runtime by the RMI system to send 
messages. 

4. Optimization approach: 

The main function of the central controller is attributing to 
each EV appropriate charging stations. From there, charge 
managing of each EV can be customized according to 
customer requirements, charging device associated to the 
EV, the electric constraints of local installation or those of 
the distribution network. Furthermore, charge scheduling 
can be influenced by the user’s preferences, the cost of 
electricity and the grid constraints in terms of energy 
consumption and availability of renewable energy sources. 
Moreover, coordination of EV’s charging can also be 
advantageous for grids with a large share of renewable 
energy sources by concentrating the charging interval in 
periods of high renewable generation and therefore 
improving grid reliability, efficiency and economics and 
reducing the Greenhouse Gas emissions [27]. 
Coordinated charging approaches are currently being 
investigated by using devices with bi-directional 
communication capabilities [28]. This type of coordination 
is proposed to minimize the negative impacts on the grid 
due to a large number of vehicles charging at the same time 
by distributing this charge throughout a large period of time, 
smoothing the load peak. 
Smart control over the introduction of new loads into the 
grid provides economic benefits given that peak demands 
involve the grid investments and operational costs [29] [30].  
The algorithm is constrained by available resources. The 
charge optimization algorithm will aim to optimize EVs 
charging to achieve several goals, such as grid stability, 
meeting users’ demands or the use of renewable energy 
sources such as solar or wind energy. The optimization will 
be able to consider any relevant information collectible. We 
can classify this information into two categories: 
Information related to user requests and information related 
to the distribution of electrical energy. The user requests 
Information match the customer perspective such as the 
Battery State of Charge (SOC), the amount of charge 
required, the charging urgency, cost and preference for 
renewable energy with reduced cost. Grid information are 
related to the availability of energy on the grid and her 
stability, the cost of energy in the market, the energy limits 
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of local facilities and availability of renewable energy 
sources. As well, EV charging optimization can help to 
avoid recharges during peak of consumption. 

5. Optimization Algorithm: 

The optimization algorithm is an improved algorithm, built 
around an A* algorithm widely used in pathfinding and 
graph traversal. Such algorithm solves problems by 
searching among all possible paths to the target for the one 
with smallest cost (least distance travelled, shortest time, 
etc.). Pathfinding problem is formulated in terms of 
weighted graphs: starting from a specific node of a graph, 
it constructs a tree of paths starting from that node, 
expanding paths one step at a time, until one of its paths 
ends at the predetermined target node. Specifically, A* 
algorithm selects the path that minimizes: 

𝑓𝑓(𝑥𝑥) =  𝑔𝑔(𝑥𝑥) +  ℎ(𝑥𝑥)        
Where x is the last node on the path, g(x) is the cost of the 
path from the start node to x, and h(x) is a problem-specific 
heuristic that estimates the cost of the lowest-cost path to 
the target. In our case, h(x) heuristic estimates the x node 
cost as function of several attributes of x node (Average of 
service time, average of waiting time, Maximum Power 
delivered, EV Battery’s SoC, etc.). Therefore, the h(x) 
heuristic is hybridisation of two pondered heuristics namely 
h1(x) and h2(x), like: 

ℎ(𝑥𝑥) =  𝛼𝛼. ℎ1(𝑥𝑥) +  𝛽𝛽. ℎ2(𝑥𝑥) 
where: 
− ℎ1(𝑥𝑥) is the distance to destination based heuristic.  
− ℎ2(𝑥𝑥)  is the average service time and waiting time   

based heuristic. 
− 𝛼𝛼 +  𝛽𝛽 = 1 
Thus, ℎ2(𝑥𝑥)  heuristic is described by the following 
expression: 

ℎ2(𝑥𝑥) =  � ��𝑇𝑇�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑗𝑗 +  𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠𝑗𝑗  �
𝑁𝑁𝑁𝑁_𝐶𝐶𝐶𝐶

𝑗𝑗=1

× 𝑁𝑁𝑁𝑁_𝐸𝐸𝐸𝐸_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑗𝑗� 
Where: 
− 𝑇𝑇�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑗𝑗  is the average waiting time at charge station j. 
− 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠𝑗𝑗  is the average service time at charge station j. 
− NB_CS is total number of charge stations at LCA 

location. 
− 𝑁𝑁𝑁𝑁_𝐸𝐸𝐸𝐸_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑗𝑗  is number of waiting EV at charge 

station j. 
On the other hand, the instantaneous power provided in 
LCA location associated to x node is: 

𝑃𝑃𝐿𝐿𝑇𝑇(𝑊𝑊) =  �𝑃𝑃𝑠𝑠𝑖𝑖  

𝑤𝑤

𝑤𝑤=1

(𝑊𝑊) ≤ 𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀  

The power available in LCA location is giving by : 

𝑃𝑃𝐿𝐿𝑀𝑀(𝑊𝑊) =  𝑃𝑃 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 −  �𝑃𝑃𝑠𝑠𝑖𝑖  

𝑤𝑤

𝑤𝑤=1

(𝑊𝑊) 

Where 𝑃𝑃𝑠𝑠𝑖𝑖  (𝑊𝑊) is instantaneous power delivered by charge 
station i and n number of charge stations at LCA location. 
𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀  represent the maximum power value delivered at 
LCA location. 
Also, the instantaneous power delivered by each charge 
station i  is constrained as below: 

𝑃𝑃𝐶𝐶𝑤𝑤  (𝑊𝑊)  ≤  𝑃𝑃𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀  
The battery state of charge of each EV is constrained by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑤𝑤𝑤𝑤 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸 (𝑊𝑊)  ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑤𝑤𝑀𝑀  
 

S Start node 
T Set of terminal nodes 
h(x) Node cost heuristic  
k(x,y) Cost of edge (x,y) of the graph  
C(Closed) Set of developed nodes (successor generated) 
O(Opned) Set of generated nodes not developed yet 
g(x) Cost of path from s to x 
f(x) Total cost estimated of path from s to T passing 

through x 

A* Algorithm 
O  {S}   ;   C  ∅   ;   g(S) 0   ;   f(S) h(S) 
while  O <> ∅   do 
 Extract  from  O  element  x  such that  f(x)  is minimal 
 Insert  x  in  C 
 if   x ∈ T  
 then   Exit    // solution finded 
 else 
  for  y  successor of  x 
  do 
   if  y ∉ (C ∪ O)  or  g(y)> g(x) + k(x,y) 
   then 
    g(y)    g(x) + k(x,y) 
    f(y)    g(y) + h(y) 
    Parent(y)   x 
    Insert  y  in  O 
   endif 
  endfor 
 endif 
endwhile 

 

https://en.wikipedia.org/wiki/Pathfinding
https://en.wikipedia.org/wiki/Graph_traversal
https://en.wikipedia.org/wiki/Weighted_graph
https://en.wikipedia.org/wiki/Node_%28graph_theory%29
https://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://en.wikipedia.org/wiki/Heuristic
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6. Problem modeling 

 

Fig. 1  Graph problem Modeling 

Figure1 illustrates the graph modeling the network of 
charging stations. In that graph, each node represents a local 
controller handling a set of charging stations. Each local 
controller is characterized by a set of attributes (Maximal 
Power provided, number of charging stations handled, 
mode of EV battery’s charging, Geographical coordinates, 
etc.). Likewise, the charging station it characterized by 
(Power provided value, Maximum charging current, 
Maximum output voltage, etc.) 

7. Multi-agent system design: 

The design of the proposed multi-agent systems is 
illustrated in Figure2, wherein the central controller is 
represented by an agent, Central Controller Agent (CCA). 
The network of charging stations being structured in 
domains. Domain may be a residence, commercial or 
workplace areas. However, a domain may also correspond 
to an isolated charging station on the highway. Each 
domain is under the control of a local controller represented 
by an agent, Local Controller Agent (LCA), providing 
communication between charging stations of the domain 
which it is associated and the central controller.  
On the other hand, each charging station is also represented 
by an agent, Charge Station Agent (CSA). The set of CSA 
agents in a given domain is directly connected to the LCA 
of the same domain. 

 

Fig. 2  Architecture of Multi-agent system 

In the figure3, we depict the implementation platform of 
Multi-agent system proposed. This agent platform is 
splited on several hosts. Only one application agent, and 
then only one Java Virtual Machine (JVM), is executed 
on each host. Each JVM is a basic container of agents 
that provides a complete run time environment for agent. 
The main-container is the container where the AMS and 
DF lives. The other containers connect to the main 
container and provide a complete run-time environment 
for the execution of set of JADE agents. 
 

 

Fig. 3  JADE Agent Platform of  Multi-agent system 
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8. Agent UML Interaction Protocol Diagrams 

Agent Interaction Protocol (AIP) describes, with 
admissible sequences and constraints on the content of 
messages between agents having different roles, a 
communication pattern. Moreover, AIP diagram illustrate a 
semantics that is consistent with the communicative acts 
(CAs) within this communication pattern [26].  
As claimed in FIPA [25], Agent Communication Language 
(ACL), messages must satisfy standardized communicative 

acts which define the type and the content of the messages. 
Protocols constrain the parameters of message exchange, 
their order or types, according to relationships between the 
agents or the intention of the communication.  
This depiction of cooperation between software agents, 
combining sequence diagrams with the notation of state 
diagrams, characterize the exact behavior of a group of 
cooperating agents. In fig.4, we illustrate the Protocol 
Diagrams related to our Multi-agent system. 

 

 

Fig. 4  Interaction Protocol Diagrams of Multi-agent system 

Whenever charging is needed, Vehicle Agent associated to 
the vehicle try to establish communication with Central 
Controller Agent seeking to locate available and especially 
closest in distance charge station to avoid running out of 
battery on the way to the charging station, queuing if 
necessary, and recharging the battery until an upper 
threshold Tu is reached. This behavior is triggered 
whenever the State of Charge (SOC) is less than or equal to 
a lower threshold designated by Tl.. Therefore, Central 
Controller Agent sends an information request to all Local 
Controller Agents LCAs that, in turn, will send similar 
information requests to Charging Station Agents under 
their control in their respective domain. These CSAs 
propose their availability in reply to the Local Controller 
Agent of their domain. All the Multi-agent system LCA’s 
transmit to the Central Controller Agent a list of available 

charging stations under their control. The Central 
Controller Agent gather available charging stations through 
the network. Then, it proposes an ordered charging stations 
list to the vehicle agent apt to meet customer demand and 
through which the Vehicle Agent will have to choose the 
suitable charging station. Then, it will send a booking 
request to the Charging Station Agent concerned. Once the 
request is received by the Charging Station Agent, it sends 
a message of acceptance of the reservation request in regard 
addressed to the vehicle agent. 

9. Results & Discussion 

On fig.6 and fig.7 we exhibit a simulations graph result 
performed by our developed software application based on 
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our Multi-agent distributed system. That weighted graph 
was obtained with a value set of nodes and edges attributes. 
Resulted weights used by the optimization algorithm are 
also displayed over each node and edge of that graph. The 
Tab. 1 and Tab. 2 boards illustrate the ordered node list 
proposed to EV driver. This node list represents all 
charging facilities that EV driver can uses to feed his 
vehicle in order to reach his destination. Each entry of the 
tables Tab. 1 and Tab. 2 informs in addition to the name of 
the node, the longitude and latitude coordinates of the node. 
These coordinates will allow the driver to easily locate the 
node on the map. Both simulations were performed with 
different α and β weighting coefficients in order to 
illustrate the effect of the ℎ1(𝑥𝑥) and ℎ2(𝑥𝑥) heuristics.  

In comparison with   energy management for a large-scale 
PHEV/PEV enabled municipal parking deck proposed by 
W. Su and al. in [20] and also that proposed by P. 
Kulshrestha, and al. in [19], our proposed smart charging 

system based on Multi-agent system is easily adaptable due 
to it distributed structure. Furthermore, our distributed 
system allows to reduce a bandwidth use and computing 
power needs thanks to Multi-agent system proactivity. 
Indeed, agents are proactive in seeking to meet their needs 
or objectives based on their roles and constraints. A charge 
station will therefore seek to flat local load power, as well 
as a central controller will seek to flat a global load power. 
In case of need, agents can also get the information they 
need to make decisions and plan actions. Therefore, we note 
that the characteristics of Multi-Agent Systems match with 
those required by our proposed smart charging system 
insofar as it is flexible, thanks to it distributed hierarchical 
architecture, and can therefore adapt to changes of the 
network, whether it is faults, adding or removing some of 
its components (Charge station out of service state), 
whether or not these events have been foreseen in the 
system configuration. Our system is therefore fault-tolerant 
and allow degraded operation and plug & play. 

 

 

Fig. 6  Simulation result graph with α=0,2 and β=0,8 

Table 1: List of proposed nodes with α=0,2 and β=0,8 
N°_Node Node_Name Node_Longitude Node_Latitude Node_Cost Cumul_Node_Cost 

0 S 185 96 0 0 
4 LCA4 221 211 115 51,28158467 

10 LCA10 633 189 200 113,0159114 
12 LCA12 1073 179 69 144,2484785 
18 LCA18 1195 377 69 169,072483 
21 LCA21 1425 504 126 202,3580224 
26 T 1624 698 0 206,9880224 
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Fig. 7  Simulation result graph with α=0,8 and β=0,2 

Table 2: List of proposed nodes with α=0,8 and β=0,2 
N°_Node Node_Name Node_Longitude Node_Latitude Node_Cost Cumul_Node_Cost 

0 S 185 96 0 0 
4 LCA4 221 211 115 114,4551981 
3 LCA3 333 141 69 181,0985871 
6 LCA6 524 8 126 300,7170397 

12 LCA12 1073 179 69 373,7486106 
18 LCA18 1195 377 69 440,6216111 
21 LCA21 1425 504 126 558,8648036 
26 T 1624 698 0 563,4948036 

 

10. Conclusion 

In the present work, the distributed Multi-agent systems 
theory was investigated and applied to the design of 
intelligent EV charging system. The Multi-agent system 
developed consisted of hierarchical community of agents 
which cooperated and communicated with each other 
playing up distributed intelligence in order to propose an 
optimal set of available charging stations to each Electric 
Vehicle further to vehicle owners’ request.  That Multi-
agent system has the capability to optimally schedule EVs 
charging in order to safely maximize the use of available 
grid resources for charging EVs and by this means increase 
the number of EVs that can be connected to the grid while 
enhancing grid stability. The EVs charging system consists 
of a controller agent connected through the Internet. The 

proposed control system is network neutral and can connect 
to other devices and systems through Internet for data 
gathering and information exchange. Our Perspectives for 
future works related can be the improvement of 
optimization algorithm by means of queuing theory in order 
to introduce the concept of average arrival rate, average 
service rate, service efficiency, as nodes heuristic.  
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