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Abstract 
Fractal analysis is useful for studying complex fluctuation 

phenomena that exhibit scaling behavior. In this work, fractal 

analysis is used to characterize transient dynamics of gravity-

driven surface granular flow down inclined plane. Intensity 

fluctuation of light scattered from granular flow is modelled by 

multifractional Brownian motion with time-varying Hurst 

exponent. Temporal variations in the Hurst exponents over the 

time-development of flow are analyzed for different particle sizes 

and opening sizes of the hopper. 
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1. Introduction 

Understanding the dynamics of granular flow helps us to 
understand the natural phenomena such as land-slides, 
blockage of rivers due to mud flow, snow avalanches etc. 
[1][2][3]. In addition to these natural phenomena, there are 
many engineering systems which involve granular flows 
[4][5]. These flows can be categorized in three dynamical 
states such as dilute or rapid flow (gas-like), dense or slow 
flow (fluid-like), and the jammed (solid-like) state [6]. 
Structural (flow) phase transition among the flow regimes 
can be explained by the Savage Number [7][8]. Grains 
contacts and frictional forces are generally used to describe 
these transitions [9][10]. Mostly, a dilute granular flow will 
evolve to dense flow, and finally to the jammed state due to 
energy dissipation through inelastic collisions and friction 
[11]. These phase transitions have fascinated granular 
scientists since the last two decades or so [12]. Particularly, 
the intermediate flow regimes of transitional flows are still 
not well understood [9]. 

For lower frictional base, the flow is approximately two-
dimensional [13][14][15] and this termed as surface granular 
flow which is the case considered in this work. There occur 
many natural and man-made surface granular flow 
phenomena such as the luggage flow on conveyor belts, the 
transport of bottles in factories, traffic jam in a city, etc. [16].  

Nevertheless, there have been relatively few studies 
reported on surface granular flow, particularly for gravity-
driven 2𝐷  flows. Drake and his co-workers measured 
velocity and density profiles of granular flow down narrow 
2𝐷  channels [16][17]. Similar measurements were also 
carried out in another study and the authors explained their 
results with prediction from a kinetic theory [18]. 

Recently, Yang 𝑒𝑡 𝑎𝑙.  have examined the structural 
phase transition of granular flows down a chute using DEM 
simulations [11]. In quasi- 2𝐷  granular channels, Zhong 
𝑒𝑡 𝑎𝑙. have investigated the transition from dilute to dense 
flow [8]. The dilute to dense transition depends on the global 
properties of channel, while that of dense to jammed state 
depends only on the ratio of size of hopper opening to 
particle size [14][19]. In spite of these studies, a very little is 
known about how the transition in flow occurs. There is not 
even a quantitative explanation of such transition and 
fluctuation of particles density. 

Even though previous studies have concluded that 
controlling parameters such as hopper opening, particle size, 
inclination angle etc. are responsible for transition to occur, 
a general theory of the granular flows is still lacking [20]. 
Difficulty in modeling such an equation arises partially from 
the fact that sharp boundary between two regimes during 
transition is not examined carefully. One of the difficulties 
is that the velocity fluctuations at short time scale in these 
complex flows is difficult to measure. Dynamic light 
scattering (DLS) techniques have provided powerful tools to 
probe temporal dynamics which can corroborated with 
particle visualization and velocimetry analysis [21][22]. In 
DLS, coherent light beams are scattered by moving particles 
resulting in fluctuation in the interference patterns, also 
known as speckles. One can then extract useful transport 
characteristics by analyzing the light intensity fluctuation. 
DLS have been used for determining particle transport 
mechanisms and structural phase transition in complex dusty 
plasmas [23]. Menon 𝑒𝑡 𝑎𝑙. [22] used Diffusive-Wave 
Spectroscopy to probe the interior dynamics of 3𝐷 flow of 
sand, which is difficult to study otherwise. Light scattering 
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techniques are found to be useful for probing creep motion 
in glass beads when particles appear as a static solid [24]. 
Kang 𝑒𝑡 𝑎𝑙.  have studied non-uniform flow behavior of 
fluidized particles using stochastic method [25]. 

This study presents a new statistical fractal approach to 
probe temporal dynamics of granular flow based 
multifractional Brownian motion (MBM). Time-varying 
Hurst exponent of the light intensity fluctuation will be used 
to characterize the transient as well as the stable state of the 
gravity driven quasi-two-dimensional granular flow. 

2. Time-varying Fractal Stochastic Model 

Fractal time series 𝑋(𝑡) satisfies scale invariance or self-
similarity property, namely 𝑋(𝑎𝑡) ≡ 𝑎−𝐻𝑋(𝑡), where 𝑎 is a 
scale factor with scaling exponent 0 < 𝐻 < 1 . Here, the 
equivalence is in the sense of the probability distributions 
and it follows that key statistical properties such as the 
correlation function, variance and power spectral density 
exhibit power-law behavior. 

 One important and widely used fractal stochastic process 
with Gaussian probability distribution is the fractional 
Brownian motion (FBM) defined by [26] as presented in 
𝐸𝑞. (1)  for 𝐵𝐻(𝑡) . Where 0 < 𝐻 < 1  is the self-similar 
Hurst exponent and 𝐵(𝑡) is the Gaussian Brownian motion.  

 The multiplicative constant 𝑉𝐻 = 𝛤(2𝐻 + 1) ∙ 𝑠𝑖𝑛(𝜋𝐻) 

is normalizing factor so that 𝐸 [(𝐵𝐻(1) − 𝐵𝐻(0))
2

] = 𝐾2, 

with 𝐾 is a constant [27].  

 For a standard FBM when 𝐾 = 1, 𝐵𝐻(𝑡) has zero mean 
with covariance 𝑅𝐵𝐻

(𝑡1, 𝑡2) as shown in 𝐸𝑞. (2). 

 Fractional Gaussian noise (FGN) 𝑊𝐻(𝑡)is defined as the 
generalized derivative of FBM [26]. A discrete version 
represented as 𝑊𝐻(𝑡) ≡ 𝐵𝐻(𝑡 + 1) − 𝐵𝐻(𝑡)is a stationary 
Gaussian process with zero mean and covariance given by 
𝑅𝑊𝐻

(𝜏)  in 𝐸𝑞. (3) . As the lag 𝜏 → ∞ , then 

𝑅𝑊𝐻
(𝜏) ~ 𝐻(2𝐻 − 1) ∙ |𝜏|2𝐻−2 . It follows from the 

covariance that FGN is uncorrelated for 𝐻 = 0.5 , hence 
corresponds to the standard Gaussian white noise. FGN is 
widely used for modelling stationary fractal noises with 
long-range correlation. FGN is said to be persistent when 
1

2
< 𝐻 < 1 and anti-persistent for 0 < 𝐻 <

1

2
. 

 While FBM and FGN have been tremendously useful for 
modelling fractal time series with constant scaling 
exponent 𝐻 , they are not appropriate for characterizing 
transient or time dependent scaling behavior. A natural way 
to cater for this need is generalize the fractional Brownian 
motion with constant 𝐻 to a process called multi fractional 
Brownian motion (MBM) with time-varying Hurst exponent 
𝐻(𝑡). MBM was introduced independently by Peltier and 
Levy-Vehel [28] and Benassi 𝑒𝑡 𝑎𝑙.  [29]. Following 
𝐸𝑞. (1), the moving average version of MBM is derived as  
𝐸𝑞. (4) presented by [28]. 

The deterministic multiplicative factor 𝐾′ is assumed to 
be a slowly time-varying function and its estimation for 
empirical data is a non-trivial effort.  

The sample paths of MBMs are locally asymptotically 
self-similar as represented via 𝐸𝑞. (5) for 𝐵𝐻(𝑡)(𝑢), where 

𝐵𝐻(𝑡)(𝑢) is FBM indexed by 𝐻(𝑡) and the equality is in the 

sense of distributions [29]. This property allows one to 
utilize many properties of FBM point-wise or in small time 
window 𝜏 as long as 𝜏 ∕ 𝑡 → 0. 

𝐵𝐻(𝑡) = 
𝐾𝑉𝐻

1
2

Γ (𝐻 +
1
2

)
[ ∫ (|𝑡 − 𝑠|𝐻−

1
2 − |−𝑠|𝐻−

1
2) 𝑑𝐵(𝑠) + ∫ (|𝑡 − 𝑠|𝐻−

1
2) 𝑑𝐵(𝑠)

𝑡

0

0

−∞

] ...(1) 

   

𝑅𝐵𝐻
(𝑡1, 𝑡2) = 

1

2
[|𝑡1|2𝐻 + |𝑡2|2𝐻 − |𝑡1 − 𝑡2|2𝐻] ...(2) 

   

𝑅𝑊𝐻
(𝜏) = 

1

2
[|𝜏 + 1|2𝐻 + |𝜏 − 1|2𝐻 − 2|𝜏|2𝐻] ...(3) 

   

𝐵𝐻(𝑡)(𝑡) = 
𝐾𝑉

𝐻(𝑡)

1
2

Γ (𝐻(𝑡) +
1
2)

[ ∫ (|𝑡 − 𝑠|𝐻(𝑡)−
1
2 − |−𝑠|𝐻(𝑡)−

1
2) 𝑑𝐵(𝑠) + ∫ (|𝑡 − 𝑠|𝐻(𝑡)−

1
2) 𝑑𝐵(𝑠)

𝑡

0

0

−∞

] ...(4) 

   

lim
𝜌→0+

[
𝐵𝐻(𝑡+𝜌𝑢)(𝑡 + 𝜌𝑢) − 𝐵𝐻(𝑡)(𝑡)

𝜌𝐻(𝑡)
] = 𝐵𝐻(𝑡)(𝑢) ...(5) 
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Next, we briefly describe the estimator for the discrete 
time-varying Hurst exponent, 𝐻(𝑖) following the technique 
developed by [27]. Suppose {𝑋𝑖}, where 𝑖 = 1, . . . , (𝑛 − 1) 
is a discretized version of a MBM that locally behaves like 
a FBM as shown in 𝐸𝑞. (6) , where 𝑗 = 𝑖 − 𝛿, … , 𝑖 − 𝑞 ;  

𝑖 = 𝛿 + 1, … , 𝑛; 𝑞 = 1, … , 𝛿. The sum of 𝑘𝑡ℎ order moment 

of the increments is defined as 𝑆𝛿,𝑞
𝑘 (𝑖)  shown in 𝐸𝑞. (7) , 

where 𝑖 = 𝛿 + 1, . . . , 𝑛. The estimator of 𝐻(𝑖) is then given 

by [27] as 𝐻𝛿,𝑞
𝑘 (𝑖) shown in 𝐸𝑞. (8) and 𝐸𝑞. (9). For 𝐾 =

1, i.e., when the time-series is not the standard MBM, then 
there exists a systematic bias in the estimation of local Hurst 
exponent shown in the last term of the right hand side of the 
𝐸𝑞. (9). For empirical time series, 𝐾 is not known and thus 
need to be measured. The technique proposed in [27] uses 
the local properties of a subset of random variable  

𝑉𝑞 = {(𝑋𝑗+𝑞 − 𝑋𝑗)} such that the estimated 𝐻-exponent is 

constant within a fixed small radius 𝜀 , that is  

𝐻𝛿,𝑞
𝑘 (𝑖) ∈ (𝐻 − 𝜀, 𝐻 + 𝜀)  for 𝑗 = 𝑖 − 𝛿, … , 𝑖 − 𝑞 ;  

𝑖 = 𝛿 + 1, … , 𝑛 . Because 𝑉𝑞  is a normally distributed 

process with variance 𝐾2 (
𝑞

𝑛−1
) ∙ 2𝐻 , the factor 𝐾  can be 

measured from the intercept of least square fitting of 

log 𝑣𝑎𝑟[𝑉𝑞] versus log (
𝑞

𝑛−1
). Then again, we propose an 

unrefined however straight forward technique to estimate the 
bias term by ‘stitching’ a standardized fractional Brownian 
motion at the end of the original time-series and utilize this 
chunk of the data for re-adjusting the estimation of 𝐻(𝑖). 

Since 𝐻 =
1

2
 or 0.5 is used as a benchmark, we derive the 

confidence interval for 𝐻(𝑖) = 𝐻 =
1

2
 by letting 𝑘 = 1 and 

𝑞 = 1 in 𝐸𝑞. (9) to get 
1

2
±

𝓏𝛼

2
√𝑣𝑎𝑟[𝐻𝛿,1

1 (𝑖)], with 
𝓏𝛼

2
 is the 

standardized normal distribution at prediction level 
100(1 − 𝛼)%. 

 A detailed discussion on the accuracy and Gaussianity 
test of the estimator can be found in [27]. However, we stress 

here that the choice of the window length 𝛿 should ensure 
that locally asymptotic normality (LAN) condition is 
satisfied so that MBM model requirements are met. In such 
circumstances, one may use the D’Agostino-Pearson test 
[30] that is based on the kurtosis and skewness estimations 
to verify the LAN condition, in this way making the MBM 
model valid. We adopt this method to get a rough estimate 
on optimal window length in order for LAN to be valid for 
all the time series. In order to improve the accuracy of the 
local Hurst exponent estimation, one may be tempted to 
increase the window length, hence reducing the estimator’s 
variance and thus making 𝐻(𝑖) smoother. However, this will 
be at the expense of local characterization. For illustration, 
the sample paths of 𝑁𝑝 -points standard MBM and its 

increments for a particular time-varying Hurst exponent, 
𝐻(𝑡)  namely are shown in Fig.1 for 𝑁 = 1024 . The 
simulation is done using the technique described in [28]. 

 𝑋𝑗+𝑞 − 𝑋𝑗 ~ 𝑁 (0, 𝐾2 (
𝑞

𝑛 − 1
)

2𝐻(𝑖)

) ...(6) 

   

𝑆𝛿,𝑞
𝑘 (𝑖) = 

1

(𝛿 − 𝑞 + 1)
∑ |𝑋𝑗+𝑞 − 𝑋𝑗|

𝑘

𝑖−𝑞

𝑗=𝑖−𝛿

 ...(7) 

   

𝐻𝛿,𝑞
𝑘 (𝑖) = 

1

𝑘 log (
𝑞

𝑛 − 1)
log [

√𝜋𝑆𝛿,𝑞
𝑘 (𝑖)

2
𝑘

2⁄ Γ (
𝑘 + 1

2
) 𝐾𝑘

] ...(8) 

   

𝐻𝛿,𝑞
𝑘 (𝑖) = 

1

𝑘 log (
𝑞

𝑛 − 1
)

log [
√𝜋𝑆𝛿,𝑞

𝑘 (𝑖)

2
𝑘

2⁄ Γ (
𝑘 + 1

2 )
] −

log 𝐾

log (
𝑞

𝑛 − 1
)
 ...(9) 

 

 
Fig.1. (a) An example of time-varying Hurst exponent and sample paths 

of (b) multi- fractional Brownian motion and (c) its increment process. 
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3. Light Scattering Experiment with  

Two-Dimensional Granular Flow 

A simple setup for gravity-driven channel flow with vertical 
hopper is constructed as shown in Fig.2. The inclined 
channel is fabricated using 3 𝑚𝑚 thick perplex glass sheets. 
The length and the width of channel are 80 𝑐𝑚 and 15 𝑐𝑚, 
respectively. The opening of particle injector is controlled 
by movable shutter. The granular particles are dry, non-
cohesive and mono disperse soda lime glass beads of sizes 
4 𝑚𝑚 , 6 𝑚𝑚  and 8 𝑚𝑚  in diameters, with the mean 
density of 2500 𝐾𝑔/𝑚3. The beads are poured into a hopper 
reservoir connected at the top of inclined channel. The 
channel is inclined at 14° in all trials. 

The hopper is connected to the channel inlet or entrance 
section with a rectangular plate of 15 𝑐𝑚  by 40 𝑐𝑚 . The 
opening width of entrance section is adjustable. We are also 
interested to study the influence of opening width on the 
granular flow transitions. Therefore, three different opening 
widths are set, namely 3-bead size width, 5-beads size width 
and 7-bead size width. We observed that there was no steady 
flow (but a jammed state) below 3-bead size width. Another 
plate of same dimension but slightly longer is inserted 
between the adjustable entrance plate and the channel to 
block the particles. We call this plate as a shutter for 
opening. After filling up the hopper, the shutter is pulled out 
very quickly and granular flows are begun by allowing 
particles to fall under the influence of the gravity. The total 
mass of the beads filling in the hopper is kept at a constant 
2 𝐾𝑔 for all runs. 

DLS techniques can be used to explore micro dynamics 
of three-dimensional granular packing. The experiment 
described here is however in quasi-2𝐷 system as the flow 
consists of one-bead thick layer of surface flow. Therefore, 
we introduce a modified version of speckle-visibility 
spectroscopy [31]. In this method, we transmit laser beam 
through the 2𝐷 granular bed instead of back-scattering as 
proposed by Dixon 𝑒𝑡 𝑎𝑙. [31]. The initial beam of laser light 
diffuses through the flowing particles and forms an 
interference pattern known as speckle. These interference 
patterns carry whole information of inside of the sample. 
This technique is capable of resolving the evolution of 
microscopic dynamics throughout the course of a granular 
flow. DLS method is very sensitive to a small particle 
displacements (in the order of the wavelength of the light 
used). But, in our case, the size of particle is far greater than 
the wavelength of laser light. To solve this issue, we follow 
[32] to capture the inter-particle dynamics of even of larger 
particles. 

A 3 𝑚𝑊  polarized 𝐻𝑒 − 𝑁𝑒  laser with wavelength of 
𝜆 = 636 𝑛𝑚 is used as the light source. The laser beam is 
expanded up to a few millimeters in diameter using a plano 
convex lens for illuminating a wider area for investigation. 
Intensity of scattered beam which transmitted through the 
surface granular flow is measured. Before focusing the beam 
onto a photo detector, Newport Photo diode 918𝐷, scattered 
beam is first filtered from any ambient light using a bandpass 
filter and a polarizer. Signal from the photo detector is 
recorded using Newport 1936 − 𝐶  single channel optical 
power meter operating at the sampling rate of 10 𝑘𝐻𝑧.  

 
Fig.2. Experimental set-up for gravity-driven surface granular flow. 
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The whole experiment is carried out in an enclosure with 
minimum ambient light interference. A sample of the 
measured photodiode current corresponding to the light 
intensity fluctuation is shown in Fig.3. The flow experiments 
are repeated 5 times for each case i.e. different bead sizes 
and different hopper opening sizes. The light intensity 
fluctuation is normalized by subtracting its mean and 
dividing the de-mean time series by its standard deviation to 
allow easily comparison of the normalized intensity 
fluctuations. The time-varying Hurst exponent 𝐻(𝑡)  is 
estimated for the normalized time series using 𝐸𝑞. (8)  as 
shown in Fig.4 [33][34][35][36][37][38]. 

4. Results and Discussion 

Gravity-driven granular flow experiments were performed 
for two different cases, namely by (1) varying the bead 
diameters and (2) the opening size of the hopper. The light 

scattering intensity fluctuation were determined for three 
different bead diameters (4 𝑚𝑚, 6 𝑚𝑚, 8 𝑚𝑚) and for each 
of these bead sizes, three different hopper opening sizes were 
tried (3 beads, 5 beads, 7 beads opening width). 

Fig.5 shows the time series and the corresponding time-
dependent Hurst exponents for granular flows of beads of 
different diameters for a fixed hopper opening width. 
Generally speaking, when the hopper opening width is 
increased, the density of beads in channel is also increased 
which changes the overall flow behavior. For smaller 
opening entrance, lesser particles are flown in the channel 
and the fluctuation pattern behaves Brownian motion with 
Hurst exponent closer to 0.5. This behavior is observed for 
hopper opening width of three beads diameter as shown in 
Fig.5(a). If shutter opening is increased further, the 
fluctuation becomes more regular with Hurst exponents 
greater than 0.5  as seen in Fig.5(b) and in Fig.5(c) for 
opening width of 5-beads and 7-beads, respectively. 

 
 

Fig.3. Typical light intensity fluctuation time series from Power Meter 

for flow of glass beads of 𝑑 = 6𝑚𝑚 when shutter opening is set to  

7-bead size. 

 

 
 

Fig.4. (Above): Normalized scattered light intensity time series of Fig.3.  
(Below): Hurst exponent of time series calculated using the method  

given in Section-2. 

 

      
Fig.5. (Color online) 𝐻(𝑡) estimation for same opening size of shutters while the diameter of particles is varied.  

The opening shutter is (a) 3-bead size, (b) 5-bead size, and (c) 7-bead size. 
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We noticed that the variation of Hurst exponent can also 
provide evidence for qualitative description of the flow state. 
Based on Fig.6, there appears to be a general trend in the 
𝐻(𝑡) plots over time for larger hopper opening widths. We 
can roughly classify the flow into three temporal regimes, 
namely the initial transient front (head), followed by the 
steady state flow (body) and finished by the residual 
transient flow (tail). For the flow front regime, the Hurst 
exponent increases (from irregular to more regular 
fluctuation), before settling to steady flow with 
approximately constant Hurst exponent. During the tail flow, 
the residual particles produce intense fluctuation, hence the 
drop in the Hurst exponent values. In Fig.7, we show the 
𝐻(𝑡)  plots drawn for fixed bead diameter but different 
hopper opening widths. Flow characteristics do not change 
very much for larger hopper openings ( 5  beads and 7 
beads), and the trend is maintained for the 3 bead diameters 
considered here. 

5. Conclusion 

We have described the use of light scattering intensity 
fluctuation and fractal stochastic process with time-varying 
Hurst exponent, namely multi fractional Brownian motion to 
characterize granular flow states. The technique can be 
adopted as a combined probe to other visualization 
approaches to study granular flow. Intensity fluctuation is 
found to corroborate well with the flow development over 
time. The time-varying Hurst exponent were used to 
determine three different regimes, denoted as front, body 
and tail flows. The flow characteristics were found to be less 
affected by larger hopper openings (5 beads and 7 beads). It 
is suggested that the time-varying fractals may be useful for 
modelling (audio) signals generated by landslides or 
avalanche. 
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Fig.6. Curve is divided into three sections according to arrival and 

departure of particles in channel. Fluctuation in 𝐻-exponent  

correlates the phases of flow. 

 
Fig.7. (Color online) Fluctuation in 𝐻-exponent for same bead diameter 

as a function of size of opening entrance:  

(a) 𝑑 = 4𝑚𝑚, (b) 𝑑 = 6𝑚𝑚,  and (c) 𝑑 = 8𝑚𝑚. 
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