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Summary 
Clinical decision-support systems (CDSSs) are systems designed to 

influence clinician decision making regarding specific patients. 

They provide information related to a specific clinical situation and 

produce recommendations. Ambiguities in the cancer screening 

process and uncertainties in the identification of cancer symptoms, 

as well as concerns about providing referrals in primary care, lead 

to a complex cancer detection process for the general practitioner 

(GP). In addition, there is fragmentation in cancer care between 

primary and secondary care, which increases patients’ feelings of 

uncertainty. Clinical interoperability guidelines are being used to 

help general primary care practitioners make appropriate decisions 

for the given clinical circumstances and improve adherence to 

paper-based guidelines. In this work, a CDSS is developed based 

on clinical practice guidelines (CPGs) and using the PROforma 

methodology, which employs the task network model (TNM). The 

TNM outperforms other models because it supports the guideline’s 

steps, which are revealed over time, and it can explicitly model 

sequences of tasks or alternative pathways. CDSSs will assist GPs 

in challenges associated with detecting cancer in individual patients 

in a specific clinical situation. 
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1. Introduction 

Clinical decision support systems (CDSSs) provides 

knowledge and person-specific information to clinicians, 

patients, staff, or others in the clinical context, filtered 

intelligently or provided in appropriate times, to support 

health care [1]. The quality of the knowledge, among other 

factors, is the key determinant of the quality and utility of a 

knowledge-based CDSS; guideline-based healthcare 

practice has well-defined medical knowledge [2]. Clinical 

practice guidelines (CPGs) are documents that contain 

recommendations to ensure the best patient care as 

confirmed by an assessment of the benefits and harms of 

alternative care options based on the systematic review of 

evidence [3].  

Cancer has recently become a big public health issue in 

many countries of the world, specifically breast cancer 

which considered as one of the common cancer types 

affecting women [4]. It is important to diagnose cancer at 

an early stage, where an early diagnosis is the first point to 

support survival in many cancers [5], and giving the general 

practitioners (GPs) the ability to identify those who need a 

rapid referral more easily can play an important role in 

delivering this earlier diagnosis [6]. Unfortunately, GPs are 

not always adequately prepared to meet the earlier cancer 

detection demands; in addition, the cancer diagnosis 

process is unclear for them because of the uncertainties in 

cancer symptom identification and referral decision 

determination in primary care which mostly results in 

misdiagnosis.  This research is presenting a part of a 

master thesis aims to develop a guideline based CDSS using 

breast cancer screening and diagnosis CPG of the National 

Comprehensive Cancer Network (NCCN). To represent and 

execute the guidelines in this study, a formal knowledge 

representation language called PROforma [7], which have 

employed for extracting and representing the structure and 

content of a clinical guideline so that it can be interpreted 

by a computer using the Tallis software suite. 

2. Related Work 

Different knowledge-based and non-knowledge-based 

CDSSs for cancer are available, they can be classified based 

on the objectives of the systems. A review of the related 

work on these systems is provided in this section.  

2.1 CDSSs for Risk assessment and diagnosis process 

Risk Assessments in Genetics (RAGs) [8] is a system 

provided to the GPs that used family history data to evaluate 

a patient’s genetic risk of cancer. it assesses the genetic risk 

by implementing a chosen guideline to the pedigree being 

examined using PROforma. It results in accurate, fast data 

entry and produce a suitable management decisions 

compared with systems using other methods. CADMIUM 

[9] is a system based on proforma, it was developed to 

investigate whether it could optimize the decision making 

on breast cancer screening.  It was designed to classify the 

nature of the—whether it is benign or malignant—after 

automatically identifying micro-calcifications in breast 

tissue. The system resulted in raising the percentage of 

correct classifications of benign and malignant tumors and 
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decreasing wrong diagnoses (false positives and false 

negatives). In [10], the researchers utilized knowledge from 

domain experts to develop a computer-aided diagnosis tool 

to categorize Breast Imaging-Reporting and Data System 

(BI-RADS) automatically using a fuzzy logic algorithm. A 

set of images, which had been previously analyzed by a 

group of experts, was analyzed using the Fuzzy Omega 

algorithm. Comparing the results, the accuracy for nodules 

was 76.67%, while the accuracy for calcifications was 

83.34%. Another system with the purpose of mammogram 

classification was proposed in [11]; here, a computer-based 

diagnosis system for aiding radiologists in mammogram 

analysis was developed using wavelet co-occurrence 

features (WCFs) to extract features from four 

decomposition levels, and a genetic fuzzy system (GFS) 

was employed to maximize the classification accuracy. The 

GFS system performance was tested by mammograms 

extracted from the Mammographic Image Analysis Society 

(MIAS) database. The resulting system classification 

accuracy was 89.47% from only 16 features. A prototype of 

a CDSS was created for early diagnosis of breast cancer 

using case-based reasoning (CBR) to recommend diagnoses 

based on previous cases. Moreover, it aimed to incorporate 

fuzzy logic artificial intelligence technologies into the CBR 

system to reduce uncertainty in clinicians’ reasoning and 

imprecision in case indexes. To evaluate the system, 50 

historical records from St. Francis Mission Hospital for 

patients who had been diagnosed with breast cancer were 

used. The results showed that 48 out of 50 cases were 

diagnosed correctly using the system [12]. 

2.2 CDSSs for Treatment Selection Process 

In [13], a linked data–based DSS for cancer treatment 

selection was proposed to overcome the lack of medical 

background knowledge in Health Information Systems 

(HIS), which will support doctors in specifying cancer 

treatment decisions. The proposed system used a similarity 

calculation algorithm with a semantic approach to provide 

the doctor with the most similar treatment cases from the 

historical database by calculating the similarity of the 

disease history and medication history of current and 

previous patients. A retrospective validation study 

conducted in a tertiary care cancer center in India [14] 

aimed to test the output of the Navya Expert System against 

oncologists’ decisions in a tumor board decision. Navya 

Expert System is a CDSS that assists oncologist in 

providing a treatment decision for a specific patient by 

investigating medical guidelines and literature based on 

patient clinical data. Complex cases of women who had 

non-metastatic breast cancer with more than one treatment 

option were used to conduct the trial. The study concluded 

that the Navya Expert System, in combination with 

available clinical data, would provide expert treatment 

decisions; the Navya decisions were consistent with experts’ 

clinical practice, and thus, the Navya Expert System can 

enhance the usage of evidence-based expert treatment 

decisions globally. In the same field, to assist oncologists 

with the treatment selection, a web CDSS for breast cancer 

patients was created [15]. The main system objective was to 

improve the treatment process and the assessment of the 

effect of prognostic factors on patient survival. In this 

system, three modeling methodologies are used to make a 

prognostic assessment based on patient characteristics, such 

as age at diagnosis and tumor size; these are Cox regression 

modeling, the Nottingham prognostic index (NPI), and a 

partial logistic ANN with automatic relevance 

determination (PLANN-ARD) ). Each model provides an 

independent survival outcome for patients. All the 

prognostic models are combined with a stratification 

methodology based on regression trees to classify patients 

into a number of risk groups. The system will simply 

function after the patient’s characteristics are inserted; the 

risk scores and the risk groups are calculated using the three 

models and the stratification method. The system was 

trained using a dataset of 743 breast cancer cases [15].  

2.3 CDSSs for the Follow-up Process 

For the breast cancer relapse risk estimation, a predictive 

model based on a naive Bayes (NB) classifier was 

developed in [16]. Two different NB models were tested, 

one using uniform (equally likely) priors and the other using 

empirical priors. Clinical, pathological, and therapeutic data 

were taken as a system input from a sample of 84 breast 

cancer patients with 82 months of follow up. The model 

performance was evaluated based on accuracy, specificity, 

sensitivity, the Area under the curve (AUC), and the 

balanced accuracy rate (BAR). The NB model shows good 

performance in predicting the risk of breast cancer relapse 

when using uniform priors in terms of sensitivity, 

specificity, and BAR. 

In the clinical domain, approaches that model knowledge in 

an explicit way are preferred because they provide 

justification of the recommendation [17]. The problem in 

this work was the need for a CDSS for breast cancer 

diagnoses. As illustrated in the literature above, most of 

CDSS applications that have been developed in this area 

until now include family history and genetic risk assessment 

tools, and interpreting medical images in general healthcare 

practice; moreover, in specialized healthcare practice, most 

of the work was concentrated on treatment selection, with 

evident interest in developing systems for follow-up 

procedures. Systems related to breast cancer diagnosis 

focused on mammogram classification and interpretation of 

medical images. However, there is still a gap in the area of 

developing CDSSs to support complex healthcare pathways, 

managing CWFs, and decision making, especially in the 

breast cancer diagnosis area. This work will contribute to 

the previous research focusing on a key part of the breast 
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cancer care pathway, which is a breast cancer diagnosis 

process in general practice, making GPs work as the 

gatekeepers to specialist services, in which they provide 

patients with evaluation service in primary care. The 

proposed system will establish a prototype of a CDSS that 

can assist GPs and medical students in the breast cancer 

diagnosis process by developing an executable guideline 

technology to support complex healthcare processes, 

workflows of patient management, and clinical decision 

making. This system will aid decision makers—GPs in this 

case—throughout the diagnostic process, starting from 

screening plan, moving to the required tests 

recommendation (imaging and biopsy) based on the 

specific patient situation, and reaching the final diagnosis, 

which will either be referral to the breast surgeon or another 

suitable decision based on the patient case. 

3. Guideline Modeling Languages 

3.1 Arden Syntax 

Arden Syntax is a rule-based methodology that creates 

MLMs, which are self-contained, independent units, each 

containing the logic necessary for a single medical decision 

[18]. An individual MLM comprises the rule, logical 

condition to activate the rule, and action that should be done 

when the rule is being activated [19]. The syntax of an 

MLM is provided as a text stream stored in an ASCII file in 

statements called slots, each of which contains a name and 

body [20]. An XML version was also recently proposed, 

which reduces the need for custom-built compilers [21],[22]. 

Arden Syntax provides some basic data types, such as 

Boolean, number, string, time, and duration, which are 

essential to medicine. Arden Syntax has an MLM query 

language as an expression language. An implementation of 

the Arden Syntax prototype was developed in Prolog, and 

an EE implementation was carried out using C++ [23] and 

Java [24]. A tool called the MLM Builder was also provided 

[25]. 

3.2 PROforma 

The PROforma language composes the basic method and 

technology for developing and publishing executable 

clinical guidelines [26]. It integrates object-oriented 

modeling and logic programming, and it is based on R2L 

Language [27]. In PROforma, the guideline is represented 

as a group of data items and tasks, shown in a hierarchical 

way. The PROforma task model has four classes of tasks, 

which are Actions, Enquiries, Decisions, and Plans. Each of 

these four subclasses has a designated icon to be represented 

graphically using a diagram-based convention. Tasks in 

PROforma also have attributes, where their values 

determine how they are to be interpreted. PROforma has an 

expression language to define its conditions and arguments, 

which is a special type of attribute; PROforma expression 

language contains arithmetic, logical, and comparison 

operators, and it includes functions that assist the task 

execution states. For execution, the PROforma process 

description is loaded into the PROforma engine, which 

keeps a process dynamic state record. Currently, there are 

two implementations of the PROforma engine. One is the 

Arezzo implementation [28], which is commercially 

available from InferMed Ltd. The second is the Tallis 

implementation [29] from the Advanced Computation 

Laboratory of Cancer Research. The Arezzo and Tallis 

implementations are similar in their components, but the 

basic difference between them is that Arezzo was intended 

to be run on a Microsoft Windows platform, while Tallis 

was designed for delivering web-based services and has a 

Java-based implementation [26]. 

3.3 GLIF 

GLIF [30],[31] was developed for modeling the guidelines 

as a flowchart of structured steps. GLIF contains different 

classes with the attributes to address the knowledge in the 

CPG and its complex relationships. The guideline step class 

has five types of subclasses or tasks that can be represented 

and linked with each other in a flowchart to designate their 

scheduling through the guideline implementation [32]. 

These five main process-modeling entities are the decision, 

action, synchronization, branch, and patient state steps. 

These concepts are used to make an algorithm of the 

guideline and provide a general view of the guideline 

decision-making process [33]. Guideline Expression 

Language, Object-oriented (GELLO) [34],[35], which was 

recently approved as by Health Level 7 (HL7) and 

American Nation Standard Institute  (ANSI) standard, is a 

vendor- and platform-independent, extensible, side-effect-

free, object-oriented executable expression language for 

GLIF [36]. GLIF uses a specific EE called the Guideline 

Execution Engine (GLEE) [37] for guideline enacting 

purposes. GLEE is currently implemented in Java [32]. 

3.4 Asbru 

Asbru is an intention-based and time-oriented skeletal-plan 

representation language that is used for the specification of 

clinical protocols. There are different concepts defined in a 

plan, which are as follows: (1) concepts for characterizing 

plan attributes, for example, conditions, intentions, and 

effects; (2) concepts for ordering plans; and (3) concepts for 

setting temporal dimensions of states and plans [2]. Asbru 

plans are written in XML, the schema specification is given 

in [38]. There are several tools that support the authoring 

and visualizing of Asbru guidelines. These include 

AsbruView [39]–[41], Delt/A [42], [43], CareVis [44], and 

the DeGeL framework [45]–[47]. Asbru’s original 

execution environment is called the Asbru Run Time 

Modules (AsbruRTM) [48]–[50], and it is written in Java. 
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To translate the XML-based Asbru plans to Java classes, the 

EE facilitates Castor, an open source data-binding 

framework for Java, which produces a model of Java 

objects out of Asbru’s XML schema. Another EE engine, 

called Spock, is included in the DeGeL framework [51], 

[52]. 

Arden Syntax has been supported because it represents the 

guidelines using interacting MLMs, although MLMs do not 

provide full support representing a guideline with a 

multistep that continuously unfolds [53]. Task network 

models (TNM) approach can overcome this issue. TNM 

languages basically provide specifically designed modeling 

primitives for the representation of complicated, multistep 

guidelines and the explanation of temporal and different 

relationships of component tasks. Distinct from rule-based 

systems, TNMs can represent sequences of tasks (i.e., 

control flow) or alternative pathways explicitly; they also 

have tools for plans visual representation and task 

organization within them [53]. The rest of the clinical 

guidelines modeling languages use TNMs for modeling the 

guidelines; their approaches are only slightly different when 

it comes to addressing specific modeling challenges. Peleg 

et al. [53] conducted a study for comparing the different 

CIG modeling approaches, including PROforma, GLIF, and 

Asbru. They concluded that all the approaches are similar 

in their basic aspects and had the same components, 

including the expression language, plan organization, data 

abstractions, medical concept model, and conceptual 

medical record model. In addition, there is no standard 

framework to permit judgment between them. 

4. The PROforma Methodology 

For representing and executing the guideline the PROforma 

language was chosen to extract and represent the content 

and structure of a clinical guideline to enable its 

interpretation by a computer. PROforma is an example of a 

task-based guideline modeling format that employs TNMs. 

It is an executable process modeling language that describes 

the protocols and care pathways of the guidelines and 

automates clinical processes. It is composed of knowledge 

representation language features, such as the methods using 

artificial intelligence, and formal specification language 

features, such as methods that use software engineering [54]. 

It also merges object-oriented modeling and logic 

programming [55].  

The structure of the PROforma language is based on a 

model called the domino model [56]. The nodes stand for 

concepts, and the arrows stand for inference processes. The 

domino model facilitates the automation of the care process 

using the plan enactment (right-hand side) and decision-

making parts (left-hand side), ( see Fig. 1). PROforma uses 

data structures to model the decision making and automated 

inference mechanisms to illustrate the enactment part. The 

model describes the process of decision making and task 

management accomplished through the execution of 

clinical procedure, as shown in Fig. 1; starting from the 

appearance of the clinical problem that needs to be 

diagnosed, this is represented by arrow 1. Then, with the 

assistance of general medical knowledge, the computer will 

provide an alternative solution to the diagnosis problem, 

indicated by arrow 2. Then, each alternative’s arguments is 

constructed, as shown by arrow 3. The system then 

recommends one of the diagnosis candidates, as shown by 

arrow 4. After commitment to the diagnosis results, another 

cycle will start, which is a treatment cycle; this is the same 

as the diagnosis cycle, and the system will provide the 

specific therapeutic procedure, arrow 5, and scheduling 

process for clinical tasks in terms of time and order, as 

represented by arrow 6. 

 

 

Fig. 1  Domino model, the basis model of the PROforma language[56]. 

PROforma is distinguished from other schemes by its 

abstract nature, Thus, rather than describing all the 

guideline concepts, which contain a range of various 

concepts—such as diagnostics, imaging, clinical 

examination, gathering of data via laboratory tests, and 

treatment decisions—the semantics of PROforma deals 

with components, representing groups of objects [26]. The 

classes of objects are coordinated in an inheritance 

hierarchy that forms a PROforma component set (see Fig. 

2). Data items contain values provided by an enquiry that is 

accessible to the tasks. A task can be an Enquiry, Action, 

Plan, or Decision. The candidates are objects representing 

decision options. Arguments are objects represent 

arguments for or against a specific decision option 

(candidate). Warning conditions are conditions to be 

checked when a value is assigned to a data item, while 

parameters are used to assign data to a specific task instance. 

Finally, sources represent information that is needed by an 

enquiry task. 
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Fig. 2  PROforma component set [26]. 

CIG language must at least have the following two tools: an 

authoring tool and EE [57]. For acquiring the guideline 

knowledge, PROforma is composed of a two-step process, 

which makes up the PROforma composition method. first 

step is representing a task network graphically, second step 

is populating task templates. representing a task network 

graphically, by describing the high level of the guideline 

with the usage of a graphical design package. The graphical 

network results in providing the view of the basic clinical 

tasks, including temporal and logical interrelationships, in 

an understood form. The guideline is represented as a set of 

data items and tasks. The tasks are organized for a plan in a 

hierarchical way. The PROforma task ontology has four 

classes [7] (see Fig. 3). Actions represent procedures that 

have to be done in the external clinical environment, like 

the task of administering an injection. Enquiries represent 

information required from the user or external system to 

make a decision or complete a procedure. Decisions 

represent the choice that has to be made, either about what 

to believe or what to do, such as a diagnosis or therapy 

decision. Finally, plans are groups of tasks that are collected 

together to accomplish a clinical objective. The PROforma 

process description is represented as directed graphs, where 

nodes stand for tasks and arcs stand for scheduling 

constraints [58]. 

 

 

Fig. 3  PROforma task ontology[7]. 

Step 2 is populating task templates, which involves defining 

the specifics of the clinical tasks included in the guideline. 

Properties for the tasks are separated into the generic task 

properties, which are common for all tasks, and specific 

properties for each class of tasks [7]. Generic task properties 

that all classes may have values for are as follows: 

i. Preconditions which are the logical conditions that 

should be true for the task to start;  

ii. Goals, or the logical condition explaining the 

situation the task has to achieve; when the goal is 

achieved, the task will terminate;  

iii. Descriptions, representing an explanation of the 

task;  

iv. Cycles, which define under what constraints and 

conditions the task will be repeated.  

 

With the previous generic properties, the decision, plan, 

enquiry, and action each has specific properties.  

The decision properties are: 

i. candidates—represent the decision options. Each 

candidate has multiple arguments; 

ii. argument—is a logical condition with an 

incorporated weighting, and the support value for 

each candidate can be specified by calculating the 

weightings of the true arguments; 

iii. A recommendation rule may also be associated 

with each candidate; this determines whether it is 

advisable to choose the candidate.  

 

Plan properties are divided into the following:  

i. Components which are the tasks included in the 

plan; 

ii. Scheduling Constraints, which determine the task 

execution order;  

iii. Abort Conditions, which are the logical conditions 

under which a plan will fail if they are found to be 

true;  

iv. Termination Conditions, where the logical 

conditions under the plan will be terminated if they 

are true. 

 

Enquiry Properties include: 

i. Sources—representing the names of the required 

data items; the sources may be associated with an 

SQL query that will yield the requested values or a 

query that defines an external database. 

 

Action Properties include: 

i. action procedures—texts describing operations to 

be finished by a human or database update 

described through an SQL statement.  
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5. Tallis Software 

A number of software tools have been developed to create, 

represent, and execute PROforma guidelines. One of them 

is Tallis, which will be used in this study. This is a software 

suite containing a group of components written in Java. It 

has two basic applications, which are as follows: the 

composer, a tool for graphically authoring knowledge for 

the editing, creation, and graphical representation of CIGs, 

and the tester, which tests and enacts the guideline. The 

composer and tester access and connect to other 

components of Tallis through their Application 

programming interfaces (API)s. Other components include 

an engine, which executes guidelines and can be 

manipulated by other applications. The Tallis tester calls on 

the engine to execute the guideline [26].  

6. Model Development 

To model the workflow of the cancer diagnosis procedures, 

we used the guidelines followed by the oncologists at King 

Abdulaziz University hospital, which is the breast cancer 

screening and diagnosis CPG of NCCN [59]. The 

PROforma modeling language was used to encapsulate the 

clinical care protocols into CIGs, Because of the lack of 

conventional graphical representation in PROforma [19], 

and for the models to be clear for domain experts to 

understand. The UML activity diagrams were used to make 

the initial design, which was translated into PROforma 

during system implementation. Before translating them to 

PROforma, for the CDSS model to be appropriate for the 

use of GPs, the UML models were revised and refined in an 

iterative process with assistance from Dr. Mohammed 

Nassif, a surgical oncologist and assistant professor in the 

Department of Surgery, King Abdulaziz University. 

6.1 Knowledge Modeling 

The models representing clinical knowledge after being 

revised by Dr. Nassif are presented in UML activity 

diagrams [60], [61]. The first model represents the first 

phase in the breast cancer screening and diagnosing 

guideline, which is the clinical encounter; this includes the 

assessment of breast cancer risk and clinical breast 

examination (CBE); Fig. 4. This model Start from the 

collect patient data activity, comprising age and other risk 

factor data, after that, the CBE activity is placed for the 

physical evaluation. Then, a decision contains two options 

to decide whether a patient has symptoms. Different 

activities follow each option. If it is a symptomatic case, the 

pathway will proceed to the next model. If it is an 

asymptomatic case, then the next activity will be based on 

the data entered earlier. If a patient has any of the risk 

factors or her age is 40 years or older, she will be 

categorized under the increased risk category and 

recommended to attend an annual clinical visit, receive an 

annual screening mammogram, and be aware of her breast 

characteristics; in cases where patients have genetic 

positivity for the disease, physicians should immediately 

send patients to the breast surgeon. Asymptomatic cases 

with no risk factors will be categorized under average risks. 

 

 

Fig. 4  Activity diagram for the clinical encounter procedures workflow. 

If the patient has symptoms, the pathway will proceed to the 

next model to let the user determine which symptoms to 

choose from the group of symptoms, namely, palpable mass 

or asymmetric thickening/nodularity, nipple discharge, skin 

changes, breast pain, or axillary mass (Fig. 5). Each 

presenting symptom follows a different pathway, with 

recommended procedures (see Fig. 6–9) except for the 

nipple discharge symptoms option, which only has one 

action—sending the patient to a breast surgeon. 

 

 

Fig. 5  Activity diagram for symptomatic patient procedures workflow. 
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Based on the selected symptoms type option from the 

previous model, the workflow will proceed to the model 

present in Fig. 6 If the option that has been selected is 

palpable mass or asymmetric thickening/nodularity, the 

next action will be based on the patient age, which was 

entered previously. If the patient age is less than 30 years, 

the recommended action is bilateral breast and axilla 

ultrasound. If the patient is older than 30, the recommended 

action is mammogram and bilateral breast and axilla 

ultrasound. The breast imaging result should be entered by 

the user. The results are split into five categories, as follows: 

BI-RADS1 (negative), BI-RADS2 (benign), BI-RADS3 

(probably benign), BI-RADS4, and BI-RADS5, 

(suspicious) and (highly suggestive of malignancy) 

respectively. If the result is BI-RADS1, the resulting action 

will be symptomatic management, and subsequently, 

follow-up screening. If the result is BI-RADS2, lesion size 

is required from the user; if the lesion size is more than 3 

cm, the next action will be to send the patient to the breast 

surgeon. If the lesion size is less than 3 cm, the lesion type 

is required from the user. If the type is infection 

(mastitis/abscess), the following action will be treating with 

antibiotics + drainage, followed by sending the patient to 

the breast surgeon. If the type is simple cyst, the 

recommended action will be considering drainage for 

symptom relief, followed by follow-up screening. If the 

type is neither infection nor simple cyst, the recommended 

action is patient reassurance and subsequent by follow-up 

screening. If the result is BI-RADS3, the lesion size is 

required from the user; if the lesion size is more than 3 cm, 

the followed action will be the same as that for a lesion 

greater than 3 cm in BI-RADS2, but if the lesion size is less 

than 3 cm, the recommended action will be follow up with 

a diagnostic mammogram and/or ultrasound for 6 months 

and subsequent follow-up screening. If the result is BI-

RADS4/5, the following action will be core needle biopsy, 

followed by sending the patient to the breast surgeon. 

Fig. 7 shows the actions following the skin changes 

symptom selection. The first action will be determined 

based on the age of the patient; bilateral breast and axilla 

 

 

Fig. 6  Activity diagram for palpable mass or asymmetric 

thickening/nodularity symptoms procedures workflow. 

ultrasound will be recommended for a patient under 30 

years old. Patients older than 30 years should proceed with 

a diagnostic mammogram and bilateral breast and axilla 

ultrasound. If the breast imaging result is BI-RADS1–3, the 

recommended action will be treatment with antibiotics and 

follow up for 2 weeks concurrently. After completing the 

two actions, if the skin changes are resolved, the next action 

should be follow-up screening; if it persists, the following 

action should be sending the patient to the breast surgeon. 

If the BI-RADS result is 4 or 5, the recommended action is 

core needle biopsy, followed by sending the patient to the 

breast surgeon. 

 

 

Fig. 7  Activity diagram for the skin change symptoms procedures 

workflow. 

As shown in Fig. 8, the breast pain symptoms option will 

require the user to enter the result of complete history and 

CBE to determine the cause of pain; this will be breast mass 

or asymmetric thickening/nodularity, nipple discharge, skin 

changes, or no physical findings. If the result is breast mass 

or asymmetric thickening/nodularity, the flow will follow 

the palpable mass or asymmetric thickening/nodularity 

symptoms steps model (see Fig. 6). If the result is nipple 

discharge, the next action will be sending the patient to the 

breast surgeon. If the result is skin changes, the flow will 

follow the skin changes symptoms steps model (see Fig. 7). 

If there is no physical finding, the user should determine the 

pain characteristics—whether the pain is focal or non-focal, 

cyclic, diffuse pain with a size larger than a quadrant. If it 

is focal pain, the flow will follow the same steps for a 

palpable mass or asymmetric thickening/nodularity 

symptoms (see Fig. 6), except for patients with BI-RADS2 

and masses less than 3 cm with neither infection nor simple 

cyst lesion. In this situation, the recommended action is 

symptomatic management of pain and reassurance. If the 

pain is non-focal, cyclic, and diffuse, with a size larger than 

a quadrant, the next action is to reassure the patient and 

provide treatment if needed. 
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Fig. 8  Activity diagram for breast pain symptoms procedures workflow. 

The last model is the axillary mass symptoms steps (see Fig. 

9); this requires the user to specify the location of the mass, 

namely, whether it is bilateral or unilateral. If it is bilateral, 

the followed action should be local and systemic evaluation 

and images. If the results show that the patient has systemic 

disease, the resultant action will be sending the patient to 

the medical oncologist. However, if the results show that 

the patient does not have systemic disease, the procedures 

will be those of the unilateral axillary mass steps, which first 

recommend bilateral breast and axilla ultrasound for 

patients less than 30 years old and a bilateral breast and 

axilla ultrasound with a bilateral breast and axilla diagnostic 

mammogram for patients aged 30 years old or older. The 

next actions will be based on the imaging results. If it is 

negative or benign axilla -BI-RADS1–3-, the recommended 

action is close follow up for 3 months; if it is suspected -BI-

RADS4–5- , the recommended action will be sending the 

patient to the breast surgeon. 

 

Fig. 9: Activity diagram for axillary mass symptoms procedures 
workflow. 

6.2 Models Transformation Using the PROforma 

Composition Method 

In this subsection, the UML activity diagrams illustrated in 

the previous section will be translated into a PROforma 

methodology. 

6.2.1 Graphical Representation of the Task Network 

First, a network of objects developed in PROforma, called 

a tasks network was created, which represents the actions, 

decisions, plans and enquiries required for implementing 

the guideline. Fig. 10 gives a screenshot of the PROforma 

protocol editor presenting the top-level plan for the breast 

cancer screening and diagnosing guideline task network, 

also called a process description. As can be seen in Fig. 10, 

the task network of the top-level plan of the breast cancer 

screening and diagnosing guideline consists of one decision, 

three actions, five enquiries, and four plans. The decision is 

asymptomatic patient recommendation. The actions are 

complete CBE, send patient to the breast surgeon, 

reassurance, and treatment. The enquiries are collect patient 

data, symptom presence, symptoms type, complete history 

and CBE results, and pain characteristics. Finally, the four 

plans are increased risk recommendations, axillary mass 

symptoms procedures, skin changes symptoms procedures, 

and palpable mass or asymmetric thickening/nodularity 

symptoms. PROforma plans decompose into other tasks. In 

the main plan, there are four other plans with tasks that 

compose them. Each contains a task network representing 

the workflow for that plan. 

attribute templates for entering the attribute values. 

Templates lead the application designer in creating the task 

specification for the application.
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Fig. 10  View of breast cancer screening and diagnosing procedures as a task network (as displayed in the Tallis authoring tool). This shows the main 

plan, which represents the workflow of the breast cancer screening and diagnosing guideline in both the network (right side) and tree view(left side). 

6.2.2 Populating Task Templates 

The task networks presented in the previous subsection are 

just a “design sketch” of the process description, and they 

are not sufficient for developing the complete application. 

Detailed knowledge must be provided to enact each 

component task. For each task, there is a set Each task has 

two templates to allow values to be entered in addition to 

the sketch templates presented in the previous subsection. 

The left side represents the generic attributes fields, which 

are common for all types of tasks, while the right side 

represents the specific attributes for each task type; Figures 

11 shows the general and specific  

 

 

Fig. 11  Details of the breast cancer screening and diagnosing plan are added using a specialized editor: specific attributes (right), generic attributes (left). 
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attributes for the breast cancer screening and diagnosing top 

level plan. 

The rest of the PROforma tasks was populated with the 

generic and specific attributes for the breast cancer 

screening and diagnosing guideline. 

7. Testing and Evaluation 

To test the model, the process description created using the 

Tallis composer is tested using the Tallis tester, which 

provides a test environment to check the correct execution 

of the application. After investigating the execution paths of 

the algorithm, different variables are identified. Using the 

identified variables, patient data are extracted from 30 real 

patient cases that were previously diagnosed and used as 

test cases. These data have been collected using observation 

and structured interviews with the surgical oncologist, Dr. 

Nassif, in his clinics, and 10 simulated cases have added to 

satisfy the branch testing criteria. 

7.1 Enacting process description in Tallis Tester 

A verification tool provided by Tallis was used to search for 

syntactic and semantic errors in the process description. 

After verifying the process description, zero errors were 

found, and the process description was executed using the 

Tallis tester. Fig. 12 displays the main screen of the Tallis 

tester enacting the breast cancer screening and diagnosing 

guideline. 

As can be seen in Fig. 12, the Tallis tester’s main screen 

contains five panels. The requested data panel displays the 

sources when the enquiry state is in progress, actions are 

displayed in the confirmable actions/keystones panel, and 

the procedure panel displays the procedure of the action in 

progress. Moreover, decisions are displayed in the 

confirmable decisions panel, and finally, decision 

candidates are displayed in the candidates panel. 

 

 

Fig. 12  Main screen of the Tallis tester while enacting the breast cancer screening and diagnosing guideline
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7.2 Performance Evaluation 

After finishing testing the 40 test cases, the simulated case 

recommendations results were reviewed by the specialist, 

who approved their correctness. The real case 

recommendation results were compared to the specialist’s 

diagnosis. The mapping in Table 1 was used for comparing 

the specialist’s final recommendation to the CDSS for 

evaluation; as can be seen, each final action recommended 

was mapped to a class, either likely cancer or unlikely 

cancer; this mapping was done with the assistance of the 

specialist.  

Table 1: Mapping Each Final Recommendation to Its Classification  
Final recommendation Class 

Send patient to breast surgeon 
Likely 
cancer 

Annual clinical visit with 
annual screening mammogram and breast awareness 

Unlikely 
cancer 

Follow-up screening 
Treat with antibiotics and drainage followed by sending 

patient to breast surgeon 
Send patient with BI-RADS2 and lesion more than 3 cm 

to breast surgeon 
Send patient to medical oncologist 

 

The accuracy, sensitivity, and specificity of the CDSS were 

calculated for cases classified as likely cancer and unlikely 

cancer. There were 8 recommendations produced by the 

CDSS as likely cancer and 22 as unlikely cancer 

recommendations. Twenty-seven cases correctly matched 

the specialist’s recommendations, resulting in 90% 

accuracy. The sensitivity result was 86% and specificity 

was 91%, and the system was better in identifying the 

unlikely cancer, or in other words, the negative cases. Table 

2 presents the results in a confusion matrix. The three 

unmatched recommendations were two cases diagnosed 

incorrectly as likely cancer cases and one case diagnosed 

incorrectly as an unlikely cancer case. In these cases, the 

system correctly followed the guideline instructions, but 

due to some exceptional reasons related to special patient 

cases, in the real-world processes, the specialist did not 

prefer to follow the guideline recommendations. Instead, he 

chose to provide different recommendations based on the 

patient’s situation. 

Table 2: Confusion Matrix for Cancer Diagnosis 
 Specialist diagnosis 

Unlikely cancer Likely cancer 

2 6 
Likely 
cancer 

C
D

S
S

 
d

ia
g
n
o

si
s 

21 1 
Unlikely 
cancer 

Accuracy: 
90% 

Specificity: 
91% 

Sensitivity: 
86% 

 

 

The disease prevalence in the real test cases was 23%, 

where only 7 patients out of 30 real cases were diagnosed 

with having a higher suspicion of breast cancer. 

Consequently, they were referred to a breast surgeon. The 

Positive Predictive Value (PPV), or precision, of the system 

was 75%, indicating that the system had a relatively stable 

performance in confirming likely cancer cases (positive 

cases). The Negative Predictive Value (NPV) was 95%, 

indicating the powerful performance of the system in 

confirming the unlikely cancer cases (negative cases). 

The False Positive Rate (FPR) or fallout was 9%, 

representing the proportion of the negative cases that were 

falsely diagnosed as positive breast cancer cases. The False 

Negative Rate (FNR) or miss rate was 14%, representing 

the proportion of positive breast cancer cases that were 

incorrectly diagnosed as negative cases. Table 3 shows the 

percentages described above. 

Table 3: Other Measurements Derived from the Confusion Matrix 
Measurement Prevalence Precision NPV FPR FNR 

Percentage 23% 75% 95% 9% 14% 

8. Conclusion 

Cancer is a serious problem around the world. Deaths due 

to cancer have been increasing rapidly, and breast cancer is 

one of the most common cancers affecting women. 

Detection of cancer as early as possible is the first point 

toward patient survival in many cancers. Cancer cases are 

often detected via primary health care, so giving GPs the 

ability to more easily identify those who need a rapid 

referral can play an important role in delivering this earlier 

diagnosis. However, GPs are not always adequately 

prepared to meet the earlier cancer detection demands 

which will sometimes lead to misdiagnosis. Thus, we 

identified a need for CDSSs to help practitioners in primary 

care address the problem of cancer detection. We also found 

that the available studies in this area concentrated on the 

cancer classification problem, and there was a lack of 

CDSSs developed to support GPs in the complex healthcare 

pathways and decision making, especially for breast cancer 

diagnosis. 

To represent and execute the guideline in this study, the 

PROforma language—which can be defined as an 

executable process modeling language to describe 

guidelines, care pathways, and protocols and automate 

clinical processes—was employed to represent the 

guideline using TNMs. PROforma was used to extract and 

represent the structure and content of the breast cancer 

screening and diagnosis CPG from the NCCN, interpreting 

it via a computer using the Tallis software suite. Moreover, 

because of the lack of conventional graphical representation 

in PROforma and to ensure that the models would be clear 

for a domain expert to understand, UML activity diagrams 

were used to make the initial design. The developed model 

was executed in the Tallis tester using 30 real test cases; 

then, 10 simulated test cases were added to satisfy the 

branch testing criteria. After testing the 40 test cases, the 

simulated case recommendations results were reviewed by 

the specialist, who approved their correctness. The real case 
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recommendations results were compared with the diagnoses 

made by the specialist, showing that the CDSS accurately 

diagnosed most of the cases, with 27 cases out of 30 

concordant with the specialist’s recommendations, 

representing 90% accuracy. The incorrect diagnosing 

occurred because of the specialist’s preferences in dealing 

with exceptional cases. In addition, the sensitivity was 86% 

and specificity was 91%, indicating the better performance 

of the system in identifying the negative cases than 

diagnosing positive ones. The PROforma guideline–based 

CDSS was better in its performance than the CDSS models 

for cancer diagnosis in [10], [11]. 
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