
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.7, July 2019

151

Manuscript received July 5, 2019

Manuscript revised July 20, 2019

Graph-Logic Models of Hierarchical Fault-Tolerant

Multiprocessor Systems

Alexei M. Romankevich, Kostiantyn V. Morozov, Vitaliy A. Romankevich

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

Summary
The work discusses the further development of graph-logic

models (GL-models), which reflect the behavior of fault-

tolerant multiprocessor systems (FTMS) in the component

failover stream. The main attention is paid to the method of

combining GL-models of different FTMSs into a single model.

Constructing approach is proposed for graph-logic models of

hierarchical failover multiprocessor systems consisting of

several subsystems. Primarily, it concerns systems for

managing complex objects, where the principle of partitioning a

complex task of management into a set of simpler ones is often

used. The approach is to construct individual models for each

of the subsystems and combine them into a single model, also

possessing a hierarchical property. Each of these submodels can

be constructed by any convenient method. One of the

advantages of this approach is the relative model

transformation simplicity in case of individual subsystems

modification. Such FTMSs are called k-out-of-n systems.

Keywords:
fault-tolerant multiprocessor systems, graph-logic GL model

models, reliability calculation

1. Introduction

Fault-tolerant multiprocessor systems (FTMS) are widely

used in the modern technical world, in particular, as

control systems for various objects. The reliability of the

complex (object + control system) as a whole, as well as

its management systems in particular, is especially

important for the aviation, space, rail, defense, industrial,

energy and other industries, i.e. where the failure of the

system can lead to significant economic losses, threaten

the life or health of people, etc.

In the course of the development of FTMS, it is

necessary to calculate its reliability both for confirming

compliance with the set requirements, and in order to

find the most unreliable nodes to be further modified.

One of the methods for calculating the reliability of

FTMS [1] is based on carrying out statistical experiments

with so-called graph-logic models (GL models).

The GL-model is an undirected graph, each of whose

edges corresponds to the boolean edge function [2]. The

arguments of such functions are the values of the state

vector system components, i.e. a vector whose

components correspond to the state of the system's

processors and assume a value of 1 if the corresponding

processor is valid and 0 if it fails. If the edge function

takes the null value, the corresponding edge is excluded

from the graph. The connection of the graph corresponds

to the regularity of the system as a whole.

In [3, 4], methods for constructing GL models with

different properties were proposed. In particular, the

model described in [3] is convenient in that it loses the

minimum of edges when the number of failures is

allowed. The proposed methods allow the models

construction of so-called basic systems, i.e. those that

remain valid until the number of failures does not exceed

the specified value (k-out-of-n system) [3, 5]. The basic

GL models will be K (m, n), where n is the number of

system processors, and m is the maximum number of

failures. For other types of systems, which are called

non-base ones, modification methods of basic GL models

[6-9] are proposed. GL models are used to calculate the

parameters such as reliability and security of

multiprocessor systems.

Using the above methods of constructing GL-models,

one can construct a graph-logical model of any system,

however, in certain cases (usually for fairly complex

systems), such a model may turn out to be very

cumbersome. Therefore, it is logical to consider some

systems separately, taking into account those or other

properties, for example, architecture. In particular, for

hierarchical systems, i.e. those that consist of a plurality

of separate subsystem modules distributed over several

levels of the hierarchy, it is logical to assume that the

corresponding model should also be constructed in the

form of a hierarchy of several submodels that need to be

combined into a single model. This task is solved in this

work.

2. Building a Model for a Hierarchical

System

Large systems usually solve complex tasks that can be

broken into many individual subtasks. Each such subtask,

which in its turn is also quite complex, can be solved by

a separate group of processors - a subsystem. Complex

subsystems, in turn, can also consist of subsystems of a

lower level, etc.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.7, July 2019

152

Thus, the system is divided into several levels of the

organization (hierarchy): from the highest - the system as

a whole, to the lowest - individual processors. This

approach can greatly simplify both the construction of

systems and models, as well as their maintenance.

Consider a system that has several levels of the hierarchy,

where each of the subsystems can consist of subsystems

of the next hierarchy levels and can be stable to fail some

of them. Such a system in the general case is non-base

and, naturally, a non-hierarchical model can be

constructed for it by means of one of the known methods.

However, such a model will be very complicated, since

the number of processors in the system, and,

consequently, variables, is large enough.

On the other hand, the model of the described

hierarchical system can also be hierarchical and consist

of a corresponding number of submodels. As

components of the input vector for a submodel of a

higher level, the values obtained with the submodel of

the lower level of the hierarchy and corresponding to the

state of the subsystems associated with it are used. These

values are in fact the variables of the higher-level sub-

model sub-model edges. Statistical experiments are

initially performed with submodels of the lowest level of

the hierarchy and end with experiments with the

submodel of the highest level.

Indeed, knowing the states of the components of the

subsystem at each instant of time, one can construct the

state vector of this subsystem, and to determine its

behavior, a corresponding GL model can be constructed.

Values obtained using such models that actually describe

the state of the subsystems can in turn be used to form a

state of the higher-level subsystem state. Taking into

account the nature of the interrelationships between

subsystems of the lower levels, including the

reconfiguration possibility and ensuring the subsystem

failures stability, it is possible to construct a higher

subsystem model, etc. By constructing models of all

subsystems of all levels, we will eventually get a model

describing the system state as a whole. We note that the

models of each of the subsystems can be non-base and,

generally speaking, for each of them, one can choose its

most convenient way of construction.

As we see, the resulting model is represented as a

hierarchy of several more simple submodels, which in

this case corresponds to the architecture of the system.

We note that generally speaking such an agreement is

optional. As we have already noted for a hierarchical

system, a non-hierarchical model can also be constructed.

In turn, for a non-hierarchical system it is possible to

construct both hierarchical and non-hierarchical models.

In addition, the structure, i.e. The number and size of

hierarchy levels in the system and model may vary.

Thus, the proposed approach follows the principle of

partitioning a complex task into a set of simpler ones that

has several advantages. In addition to simplifying the

process of building a model of the system as a whole, the

process of its modification may also be simplified in the

event of a subsequent refinement of the system. So, in

the case of changing its individual nodes, it is sufficient

to modify only the corresponding submodels.

For clarity, consider examples of constructing models of

hierarchical systems by the proposed method.

Example 1

Let there be a hierarchical system consisting of five

subsystems and which is stable to the failure of two of

them (Fig. 1). The first subsystem contains 11 processors

and is resistant to failure of 4 of them, the second

subsystem contains 9 processors and is resistant to failure

3 of them, the third - contains 12 processors and is

resistant to failure of 5 of them, the fourth - contains 7

processors and is resistant to failure 2 of and fifth -

contains 15 processors and is resistant to failure of 4 of

them.

Note that the subsystems are chosen as basic only for

simplicity. At the same time, if any of the subsystems are

non-base, to construct adequate models, one could use

one of the modification methods [7-9] to include them in

the general model.

Fig. 1 Structure of the system

We will construct a model of such a system. First we will

construct models of subsystems. The first subsystem will

correspond to the model K (4, 11). The method of

forming GL-models is presented in [3]. Here and

thereafter, we present the model's graph edge functions,

freeing the reader from the need for a detailed

acquaintance with [3]. The model K (4, 11) has 8 edges

with functions

K0(2, 5)

K1(4,11

)
K2(3,9)

K3(5,12

)

K4(2, 7)
K5(4,

15)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.7, July 2019

153

The graph of this model will have the form shown in Fig.

2

Fig. 2 Model K (4, 11)

The reader can verify the system model behavior in the

flow of failures. For example, if the state of the

subsystem appears
<x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11> =
<0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1>, containing four zeros

(which means that there is a failure of the processors

x1, x4, x6 and x10), only one function is reset .

Then only one edge is excluded from the graph, and its

connection is not lost, which corresponds to the normal

state of the system. At the same time, with

theappearanceofthevector<x1, x2, x3, x4, x5, x6, x7, x8,

x9, x10, x11>=<1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1>, containing

five zeros, the zero value will already have two functions

 and , and two edges will be excluded from the

graph. The graph will lose connectivity, which

corresponds to the failure of the system.

The second subsystem will correspond to the model K (3,

9) with the edge functions:

The third subsystem will correspond to the model K (5,

12) with the edge functions:

  3
1 21 22 23 24 25 24 25 26f x x x x x x x x     

  3
2 21 22 21 22 23 24 25 26f x x x x x x x x     

The fourth subsystem will correspond to the model K (2,

7) with the edge functions:

M1

1
1f

 1
2f

1
3f

1
4f

 1
5f

1
6f

1
7f

1
8f

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.7, July 2019

154

The fifth subsystem will correspond to the model K (4,

15) with the edge functions:

In accordance with the states of the subsystems

calculated using the above-described models, a state

vector of the model М0 <y1, y2, y3, y4, y5>, where yj

corresponds to the connectivity of the graph of the

corresponding submodel: 1 if the graph is connected and

0 otherwise. The behavior of the system as a whole in the

fail flow will reflect the model K (2, 5) with the edge

functions:

1 1 2f y y 

2 1 2 3f y y y 

3 1 2 3 4 5f y y y y y 

4 4 5f y y 

Thus, the system model has two levels of hierarchy and

consists of six submodels (Fig. 3).

Fig. 3 Model of the hierarchical system

The reader has already paid attention to the fact that the

number of subsystems in the example does not coincide

with the number of submodels. It does not matter to

calculate the reliability parameters of the FTMS.

Example 2

Note that the number of hierarchy levels does not have to

coincide for all subsystems. Assume that the developer

has decided to change the system from Example 1,

replacing the subsystem 5 with an entire complex

consisting of six subsystems and stable to failure of two

of them (Figure 4). These subsystems consist of 8, 4, 8, 5,

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.7, July 2019

155

7 and 9 processors, and are resistant to failure,

respectively, 3, 1, 2, 1,3 and 4 ofthem.

Fig. 4 Structure of the modified system

As already mentioned above, one of the advantages of a

hierarchical approach to building models is the absence

of the need to rebuild the entire model in the event of a

change in a particular subsystem. Thus, it's enough to

construct a new model of the fifth subsystem and replace

it with the fifth submodel in the model from the previous

example.

By constructing, as in the previous example, models of

subsystems of the lower level, and then combining their

model with М5, we will obtain a new GL model (Figure

5), which reflects the behavior of the modified system in

the fail flow. The system model has three levels of

hierarchy and consists of twelve submodels.

Fig. 5 Modified system model

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.7, July 2019

156

3. Conclusions

The paper considers the further development of a

universal approach to calculating the reliability of FTMS,

based on the implementation of statistical experiments

with GL models, which reflect the system's response to

the occurrence of various multiplicities failures.

Large systems usually have a hierarchical structure,

which simplifies their construction, modification and

maintenance. Graph-logic models of such systems make

sense also to make hierarchical ones. At the same time,

for each subsystem, a separate, usually small, model is

being built. The submodels of the lowest level are

constructed on the basis of the corresponding fragments

of the system state vector, and for the submodels of the

upper levels, the input vectors are formed on the basis of

the results obtained with the help of sub-modules of the

lower level, while if the submodel graph remains

connected, the corresponding component of the vector is

set to 1, and if it loses connectivity, then 0. Thus, the

statistical experiment is carried out in several stages,

starting with submodels of the lower levels to the

submodel of the highest level.

This approach does not limit the choice of how to

construct graph-logic models: each of the submodels can

be constructed in the most convenient way, while mixing

different types of GL-models is allowed. In the case of

non-base subsystems, the corresponding submodels can

be modified by any known method.

In addition, one of the advantages of this approach is the

absence of a need to rebuild the entire model, in the case

of modification of some subsystem. In this case, the

model changes will also be localized by the

corresponding submodel, which can greatly simplify the

process of constructing the modified system model.

References
[1] Romankevich, A., Maidaniuk, I., Feseniuk, A.,

Romankevich, V. Complexity Estimation of GL-models

for Calculation FTMS Reliability // Advances in Computer

Science for Engineering and Education II. ICCSEEA 2019.

Advances in Intelligent Systems and Computing, vol 938.

Springer, Cham – Vol. 938, P. 369-377

[2] Romankevich, A., Feseniuk, A., Maidaniuk, I.,

Romankevich, V. Fault-tolerant multiprocessor systems

reliability estimation using statistical experiments with

GL-models // Advances in Intelligent Systems and

Computing.– 2019.– Vol. 754, P. 186-193

[3] Romankevich V., Potapova K., Hedayatollah Bakhtari The

some properties of model’s of k-out-of-n system’s

behavior in the stream of faults // Proceedings of IEEE

East-West Design & Test Symposium.- Armenia, Yerevan,

September 2007.- p.763.

[4] Romankevych A., Romankevych V., Kononova A., Rabah

Al Shboul GL-models of K(2,N) FTMpS // Proceeding of

East-West Design & Test Workshop (EWDTW’05).–

Kharkov National University of Radioelectronics.–

Kharkov, 2005.– pp. 88-91

[5] Kuo W., Zuo M.J. Optimal Reliability Modeling:

Principles and Applications. 1st ed. Hoboken, John Wiley

& Sons, 2003, 544 p.

[6] Романкевич А.М., Романкевич В.А., Морозов К.В. Об

одной GL-модели системы со скользящим резервом //

Радіоелектронні і комп‘ютерні системи.–№5, 2013.–

С.333-336

[7] Романкевич А.М., Иванов В.В., Романкевич В.А.

Анализ отказоустойчивых многомодульных систем со

сложным распределением отказов на основе

циклических GL-моделей // Электронное

моделирование.–№5, т.26, 2004.– С.67-81

[8] Романкевич В.А., Морозов К.В., Фесенюк А.П. Об

одном методе модификации рёберных функций GL-

моделей // Радіоелектронні і комп‘ютерні системи.–

№6, 2014.– С.95-99

[9] Romankevych Oleksiy, Grol Volodymyr, Romankevych

Vitaliy, Potapova Kateryna The Models reflecting

reaction of the fault-tolerant multiprocessor systems to

faults appearance // Abstracts of Scientific Information for

society – from Today to the Future (CODATA-21).–

Ukraine, Kyiv.– October 5-8.– 2008.– p.76

https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=6602114176&zone=
https://www.scopus.com/authid/detail.uri?authorId=57202220955&eid=2-s2.0-85047465084
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57202219402&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57193263058&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=6602114176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57202219402&zone=
https://www.scopus.com/authid/detail.uri?authorId=57202220955&eid=2-s2.0-85047465084
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57193263058&zone=
https://www.scopus.com/sourceid/5100152904?origin=recordpage
https://www.scopus.com/sourceid/5100152904?origin=recordpage

