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Summary 
The work discusses the further development of graph-logic 

models (GL-models), which reflect the behavior of fault-

tolerant multiprocessor systems (FTMS) in the component 

failover stream. The main attention is paid to the method of 

combining GL-models of different FTMSs into a single model. 

Constructing approach is proposed for graph-logic models of 

hierarchical failover multiprocessor systems consisting of 

several subsystems. Primarily, it concerns systems for 

managing complex objects, where the principle of partitioning a 

complex task of management into a set of simpler ones is often 

used. The approach is to construct individual models for each 

of the subsystems and combine them into a single model, also 

possessing a hierarchical property. Each of these submodels can 

be constructed by any convenient method. One of the 

advantages of this approach is the relative model 

transformation simplicity in case of individual subsystems 

modification. Such FTMSs are called k-out-of-n systems. 
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1. Introduction 

Fault-tolerant multiprocessor systems (FTMS) are widely 

used in the modern technical world, in particular, as 

control systems for various objects. The reliability of the 

complex (object + control system) as a whole, as well as 

its management systems in particular, is especially 

important for the aviation, space, rail, defense, industrial, 

energy and other industries, i.e. where the failure of the 

system can lead to significant economic losses, threaten 

the life or health of people, etc. 

In the course of the development of FTMS, it is 

necessary to calculate its reliability both for confirming 

compliance with the set requirements, and in order to 

find the most unreliable nodes to be further modified. 

One of the methods for calculating the reliability of 

FTMS [1] is based on carrying out statistical experiments 

with so-called graph-logic models (GL models). 

The GL-model is an undirected graph, each of whose 

edges corresponds to the boolean edge function [2]. The 

arguments of such functions are the values of the state 

vector system components, i.e. a vector whose 

components correspond to the state of the system's 

processors and assume a value of 1 if the corresponding 

processor is valid and 0 if it fails. If the edge function 

takes the null value, the corresponding edge is excluded 

from the graph. The connection of the graph corresponds 

to the regularity of the system as a whole. 

In [3, 4], methods for constructing GL models with 

different properties were proposed. In particular, the 

model described in [3] is convenient in that it loses the 

minimum of edges when the number of failures is 

allowed. The proposed methods allow the models 

construction of so-called basic systems, i.e. those that 

remain valid until the number of failures does not exceed 

the specified value (k-out-of-n system) [3, 5]. The basic 

GL models will be K (m, n), where n is the number of 

system processors, and m is the maximum number of 

failures. For other types of systems, which are called 

non-base ones, modification methods of basic GL models 

[6-9] are proposed. GL models are used to calculate the 

parameters such as reliability and security of 

multiprocessor systems. 

Using the above methods of constructing GL-models, 

one can construct a graph-logical model of any system, 

however, in certain cases (usually for fairly complex 

systems), such a model may turn out to be very 

cumbersome. Therefore, it is logical to consider some 

systems separately, taking into account those or other 

properties, for example, architecture. In particular, for 

hierarchical systems, i.e. those that consist of a plurality 

of separate subsystem modules distributed over several 

levels of the hierarchy, it is logical to assume that the 

corresponding model should also be constructed in the 

form of a hierarchy of several submodels that need to be 

combined into a single model. This task is solved in this 

work. 

2. Building a Model for a Hierarchical 

System 

Large systems usually solve complex tasks that can be 

broken into many individual subtasks. Each such subtask, 

which in its turn is also quite complex, can be solved by 

a separate group of processors - a subsystem. Complex 

subsystems, in turn, can also consist of subsystems of a 

lower level, etc. 
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Thus, the system is divided into several levels of the 

organization (hierarchy): from the highest - the system as 

a whole, to the lowest - individual processors. This 

approach can greatly simplify both the construction of 

systems and models, as well as their maintenance. 

Consider a system that has several levels of the hierarchy, 

where each of the subsystems can consist of subsystems 

of the next hierarchy levels and can be stable to fail some 

of them. Such a system in the general case is non-base 

and, naturally, a non-hierarchical model can be 

constructed for it by means of one of the known methods. 

However, such a model will be very complicated, since 

the number of processors in the system, and, 

consequently, variables, is large enough. 

On the other hand, the model of the described 

hierarchical system can also be hierarchical and consist 

of a corresponding number of submodels. As 

components of the input vector for a submodel of a 

higher level, the values obtained with the submodel of 

the lower level of the hierarchy and corresponding to the 

state of the subsystems associated with it are used. These 

values are in fact the variables of the higher-level sub-

model sub-model edges. Statistical experiments are 

initially performed with submodels of the lowest level of 

the hierarchy and end with experiments with the 

submodel of the highest level. 

Indeed, knowing the states of the components of the 

subsystem at each instant of time, one can construct the 

state vector of this subsystem, and to determine its 

behavior, a corresponding GL model can be constructed. 

Values obtained using such models that actually describe 

the state of the subsystems can in turn be used to form a 

state of the higher-level subsystem state. Taking into 

account the nature of the interrelationships between 

subsystems of the lower levels, including the 

reconfiguration possibility and ensuring the subsystem 

failures stability, it is possible to construct a higher 

subsystem model, etc. By constructing models of all 

subsystems of all levels, we will eventually get a model 

describing the system state as a whole. We note that the 

models of each of the subsystems can be non-base and, 

generally speaking, for each of them, one can choose its 

most convenient way of construction. 

As we see, the resulting model is represented as a 

hierarchy of several more simple submodels, which in 

this case corresponds to the architecture of the system. 

We note that generally speaking such an agreement is 

optional. As we have already noted for a hierarchical 

system, a non-hierarchical model can also be constructed. 

In turn, for a non-hierarchical system it is possible to 

construct both hierarchical and non-hierarchical models. 

In addition, the structure, i.e. The number and size of 

hierarchy levels in the system and model may vary. 

Thus, the proposed approach follows the principle of 

partitioning a complex task into a set of simpler ones that 

has several advantages. In addition to simplifying the 

process of building a model of the system as a whole, the 

process of its modification may also be simplified in the 

event of a subsequent refinement of the system. So, in 

the case of changing its individual nodes, it is sufficient 

to modify only the corresponding submodels. 

For clarity, consider examples of constructing models of 

hierarchical systems by the proposed method. 

Example 1 

Let there be a hierarchical system consisting of five 

subsystems and which is stable to the failure of two of 

them (Fig. 1). The first subsystem contains 11 processors 

and is resistant to failure of 4 of them, the second 

subsystem contains 9 processors and is resistant to failure 

3 of them, the third - contains 12 processors and is 

resistant to failure of 5 of them, the fourth - contains 7 

processors and is resistant to failure 2 of and fifth - 

contains 15 processors and is resistant to failure of 4 of 

them. 

Note that the subsystems are chosen as basic only for 

simplicity. At the same time, if any of the subsystems are 

non-base, to construct adequate models, one could use 

one of the modification methods [7-9] to include them in 

the general model. 

 

 

Fig. 1  Structure of the system 

We will construct a model of such a system. First we will 

construct models of subsystems. The first subsystem will 

correspond to the model K (4, 11). The method of 

forming GL-models is presented in [3]. Here and 

thereafter, we present the model's graph edge functions, 

freeing the reader from the need for a detailed 

acquaintance with [3]. The model K (4, 11) has 8 edges 

with functions 

 

K0(2, 5) 

K1(4,11

) 
K2(3,9) 

K3(5,12

) 

K4(2, 7) 
K5(4, 

15) 
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The graph of this model will have the form shown in Fig. 

2 

 

Fig. 2  Model K (4, 11) 

The reader can verify the system model behavior in the 

flow of failures. For example, if the state of the 

subsystem appears 
<x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11> = 
<0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1>, containing four zeros 

(which means that there is a failure of the processors 

x1, x4, x6 and  x10 ), only one function is reset . 

Then only one edge is excluded from the graph, and its 

connection is not lost, which corresponds to the normal 

state of the system. At the same time, with 

theappearanceofthevector<x1, x2, x3, x4, x5, x6, x7, x8, 

x9, x10, x11>=<1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1>, containing 

five zeros, the zero value will already have two functions 

 and , and two edges will be excluded from the 

graph. The graph will lose connectivity, which 

corresponds to the failure of the system. 

The second subsystem will correspond to the model K (3, 

9) with the edge functions: 

 
 

The third subsystem will correspond to the model K (5, 

12) with the edge functions: 

  3
1 21 22 23 24 25 24 25 26f x x x x x x x x       

  3
2 21 22 21 22 23 24 25 26f x x x x x x x x       

 

 
 

The fourth subsystem will correspond to the model K (2, 

7) with the edge functions: 

M1 

1
1f

 1
2f

 

1
3f

 

1
4f

 1
5f

 

1
6f

 

1
7f

 

1
8f
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The fifth subsystem will correspond to the model K (4, 

15) with the edge functions: 

 

 

 
 

In accordance with the states of the subsystems 

calculated using the above-described models, a state 

vector of the model М0 <y1, y2, y3, y4, y5>, where yj 

corresponds to the connectivity of the graph of the 

corresponding submodel: 1 if the graph is connected and 

0 otherwise. The behavior of the system as a whole in the 

fail flow will reflect the model K (2, 5) with the edge 

functions: 

1 1 2f y y   

2 1 2 3f y y y   

3 1 2 3 4 5f y y y y y   

4 4 5f y y   

 

Thus, the system model has two levels of hierarchy and 

consists of six submodels (Fig. 3).  

 

 

Fig. 3  Model of the hierarchical system 

The reader has already paid attention to the fact that the 

number of subsystems in the example does not coincide 

with the number of submodels. It does not matter to 

calculate the reliability parameters of the FTMS. 

Example 2 

Note that the number of hierarchy levels does not have to 

coincide for all subsystems. Assume that the developer 

has decided to change the system from Example 1, 

replacing the subsystem 5 with an entire complex 

consisting of six subsystems and stable to failure of two 

of them (Figure 4). These subsystems consist of 8, 4, 8, 5, 
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7 and 9 processors, and are resistant to failure, 

respectively, 3, 1, 2, 1,3 and 4 ofthem. 

 

 

Fig. 4  Structure of the modified system 

As already mentioned above, one of the advantages of a 

hierarchical approach to building models is the absence 

of the need to rebuild the entire model in the event of a 

change in a particular subsystem. Thus, it's enough to 

construct a new model of the fifth subsystem and replace 

it with the fifth submodel in the model from the previous 

example. 

By constructing, as in the previous example, models of 

subsystems of the lower level, and then combining their 

model with М5, we will obtain a new GL model (Figure 

5), which reflects the behavior of the modified system in 

the fail flow. The system model has three levels of 

hierarchy and consists of twelve submodels.  

 

 

Fig. 5  Modified system model 
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3. Conclusions 

The paper considers the further development of a 

universal approach to calculating the reliability of FTMS, 

based on the implementation of statistical experiments 

with GL models, which reflect the system's response to 

the occurrence of various multiplicities failures. 

Large systems usually have a hierarchical structure, 

which simplifies their construction, modification and 

maintenance. Graph-logic models of such systems make 

sense also to make hierarchical ones. At the same time, 

for each subsystem, a separate, usually small, model is 

being built. The submodels of the lowest level are 

constructed on the basis of the corresponding fragments 

of the system state vector, and for the submodels of the 

upper levels, the input vectors are formed on the basis of 

the results obtained with the help of sub-modules of the 

lower level, while if the submodel graph remains 

connected, the corresponding component of the vector is 

set to 1, and if it loses connectivity, then 0. Thus, the 

statistical experiment is carried out in several stages, 

starting with submodels of the lower levels to the 

submodel of the highest level. 

This approach does not limit the choice of how to 

construct graph-logic models: each of the submodels can 

be constructed in the most convenient way, while mixing 

different types of GL-models is allowed. In the case of 

non-base subsystems, the corresponding submodels can 

be modified by any known method. 

In addition, one of the advantages of this approach is the 

absence of a need to rebuild the entire model, in the case 

of modification of some subsystem. In this case, the 

model changes will also be localized by the 

corresponding submodel, which can greatly simplify the 

process of constructing the modified system model. 
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