
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

39

Manuscript received August 5, 2019

Manuscript revised August 20, 2019

Specification and Verification Techniques of Object Oriented

Programs using Invariants

Beenish Zafar1†, Zara Hassan1†, Mobashirah Nasir2††, Sidrah Naheed2††, Beenish Abid3†††,

Umbreen Fatima3††† and Rimsha Awan3†††

University of Lahore, Lahore, Punjab, Pakistan

Summary
 The consistency and correctness of object oriented programs

greatly rely on the extent to which object invariants hold. But

while dealing with object invariants there are many related issues

that need to be addressed to ensure a completely reliable object

oriented software. These issues include ownership transfer, sub-

classing, dynamic binding and modular reasoning. A lot of work

has been done in the last decade on improving the consistency of

object oriented softwares using object invariants and class

invariants. A detailed analysis of all the modern approaches and

their contribution in improving the specification and verification

techniques has been given in this paper.

Keywords
Object oriented programming, Verification, Specification, Object

invariants, Class invariants.

1. Introduction

The correctness of an object oriented program depends

upon the states that the program will reach during its

execution. Mostly it is assumed that only some of the states

are reached, depending upon whether or not certain

properties are being fulfilled by some data structures.

These properties and qualities of the program are known as

invariants.

Invariants can be thought of as predicates which give

information about the states of program that remain

consistent during its whole execution. They define the

range of values allowed to be taken by an instance variable

and express how two or more variables can be related in

terms of their values. It is infact the programmer’s way to

tell the program how to behave and when to report that the

program is behaving abnormally or it has become corrupt.

Object oriented programs allow the user to make an

extensible and flexible use of the program by relating the

fields of objects with each other. Object oriented

programming has achieved great popularity due to its

quality of providing programmers with reusable

components. But to fully benefit from this quality, it is

essential to be sure about the consistency and correctness

of a software component before reusing it or passing it to

other programmers. Other programmers or buyers of the

software components do not know anything about the

component’s underlying programming and they greatly

depend upon its efficiency and consistency.

There are a lot of tools out there which help the

programmers in making sure that the invariants hold and

are maintained. But to use these tools, the programmer

needs to specify the invariants explicitly. Maintaining the

invariants or making sure that certain conditions are met or

the program reaches certain states is a difficult task. To

make this task easier, there are many mechanical tools used

by the programmers like type checker that checks that the

variables declared meet the defined range of values

specified by the user. Usually the type checker is built into

the compiler. The compiler also checks many other details

like the correct use of assignment or checking the program

for incorrect forms of references. All these detail

management tools are designed to make sure that the

conditions specified by the user are maintained and hold.

Thus, the ultimate management of invariants is supposed to

be managed by a mechanical tool but it needs the user to

specify these invariants and the conditions under which the

invariants should hold.

2. Background

The original idea of invariants in certain states being

satisfied by objects originated from Hoare’s paper

published in 1972 related to correctness of data

representation [1]. In 1995, Leino presented a verification

technique in his PhD thesis which was based on the

weakest pre-condition of calculus given by Dijkstra [2].

His technique worked towards representation of reliable

and modular programs while dealing with program

exceptions, orientation, modularity and procedures. In

working towards reliable and stringent quality programs,

[3] proposed a new technique for specification known as

Method and Message Sequence Specification. They used

this technique for relating the instance methods while

working with a group of classes. Reference [4] discussed

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

40

implementation independence and data abstraction. They

presented a technique to proving method and class

invariants as well as typing properties. In [5] the authors

have derived their proof system from Meyer’s system [6]

which was based on class invariants. Unlike Meyer’s

system, [5] provided a sound technique and also discussed

inheritance, dynamic binding and strong typing. In [7] the

authors have presented a system for dynamic detection of

possible invariants in a program. Daikon’s invariant

detector is based on a machine learning algorithm that

works on arbitrary set of data. In [8] the authors presented

a technique for dealing with multithreaded object oriented

programs. They dealt with the issues caused due to

interference between concurrent threads by guaranteeing

that confined objects can be accessed by one thread at a

time.

In the next section we have discussed the challenges most

commonly faced and discussed by the researchers in

verification of object oriented programs using invariants.

In section IV and V we have discussed and analyzed some

of the most important works done in dealing with these

challenges in the last decade. In section VI we will briefly

discuss some commonly available automatic verifiers for

object oriented programs and section VII concludes our

paper.

3. Challenges Related to Using Invariants for

Verifying Object Oriented Programs

The papers discussed below have addressed different

issues faced by the programmers in using invariants for

specification and verification of object oriented programs.

3.1 Static Fields

The paper by K.R. Leino and Muller discusses the issues

when dealing with static fields [9]. They have given a

methodology which allows the invariants to specify and

deal with static fields.

3.2 Ownership Transfer and Sub-classing

Reference [10] discusses the issues faced in ownership

relations and transference. They have introduced a sound

and modular verification technique for object oriented

programs which also handles the issues related to data

abstraction.

3.3 Dynamic Contexts

In [11] the authors deal with object invariants in dynamic

contexts. Their methodology not only allows the object

invariant to depend on the object’s fields but also on the

fields of objects that have a transitive relation with the

object or any object that can be reached by following a

specific sequence of fields.

3.4 Layered Object Structures

Reference [12] has addressed the issue of object structures

that are layered. These layered structures often face the

problem of exposure and the chances of violation of high

layered invariants by the low layered methods. In [12] they

have presented a modular and sound technique for dealing

with this issue.

3.5 Modular and Static Verification

In [13] the authors have introduced a friendship system

dealing with modular and static verification of object

oriented programs. It allows the invariants to depend on

states beyond the boundaries of ownership.

3.6 Modular Reasoning in the Presence of

Collaborating Objects

Reference [14] has introduced a novel technique to deal

with invariants in case of collaborating objects. Their

semantic collaboration technique has combined the

ownership technique and default techniques which has

resulted in a methodology flexible enough to deal with the

complications associated with dependencies between

objects.

3.7 Specification Overhead

Verification techniques and methodologies that are

currently used for object oriented programs mostly require

great effort in terms of specification which can then

become a source of error as well. The authors in [15] have

introduced a methodology with the aim of reducing

specification overhead. Their technique is based on a

control analysis that automatically analyzes and prevents

errors between positions that can violate the invariants and

positions that require these invariants to hold. Furthermore,

their technique defines the invariants in a more flexible

way by distinguishing among invalid and valid invariants

inside a single object.

3.8 Concurrent Programs

While dealing with sequential programs, the validity or

invalidity of invariants is seen and discussed only when a

method is starting or finishing its execution which means

that the invariants are allowed to be broken or be

invalidated during the execution of method body. But

while dealing with concurrent programs, the programmer

has to work with interleaving between threads which

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

41

makes any state of execution a visible state. In [16] the

authors have dealt with this issue by allowing a thread to

break or invalidate an invariant at few particular points of

program while making sure that this broken class invariant

must not be observable to any other thread at that point.

3.9 Furtive Access and Reference Leak

Class invariants can often be a cause of two key object

oriented verification problems which are furtive access

caused by callbacks and reference leaks caused due to

aliasing. Reference [17] has solved these issues modularly

by using the O rule which defines the basic object oriented

semantics and the inhibition rule which hides the

information for the removal of reference leaks that can be

harmful for the program.

4. Verification of Programs Using Invariants

This section includes a detailed description and discussion

of some major techniques introduced for specification and

verification of object oriented programs using object and

class invariants.

4.1 Verification of Static Class Invariants in a

Modular way

K.R. Leino and P.Muller have addressed the issue of static

fields in [9]. In addition to object fields, object oriented

programs might also contain static fields, which have data

that is shared and used by various objects. To ensure the

consistency of static fields, they have introduced static

class invariants. Static class invariants are introduced and

enforced at class level and they are responsible for the

consistency of data structures that are dynamic and located

inside static fields.

Modern object oriented programs store the state of each

object in instance fields and the state of each class in static

field. Static fields and invariants are of great importance

especially in Java libraries. The three most important uses

of static fields which demand the introduction of static

class invariants have been identified. Firstly, the most

common use of static fields is that they are used to store

shared data. System.out in Java is a commonly known

static field which is used to output stream of characters.

Secondly, the roots of object oriented data structures are

stored in the static fields. Thirdly, static fields an also be

used to declare or reflect some property that belongs to all

the instances of a class. For instance, the thread class in

Java assigns special and unique identifiers to all the

instances of its classes and to keep a track of these

identifiers and the instances that are active, it has special

static fields.

Their basic methodology is inspired from the Boogie

methodology given for object invariants in [18]. But they

have modified and innovated it to work with static

invariants. Their methodology addresses the abstraction

problem which is faced when there are various classes that

are using the same class. This methodology is designed to

work and deal with partial order of classes by having a

mechanism of bookkeeping for all class invariants. Also,

they have allowed partial ordering on classes which in turn,

allows the overriding methods to depend upon the static

invariant of a subclass even in the situations when the

methods in the superclass cannot name the corresponding

subclass. This partial ordering also defines the way of

initializing classes so that the unexpected errors caused due

to incorrect initializing can be avoided. Their methodology

has also introduced a form of syntactic restriction which

will then allow the static invariants to be quantified over

the objects.

Their methodology is based on the realization that the

invariants cannot be expected to hold at every point due to

the fact that invariants are known to relate the values of

many different fields. Therefore they allow the invariants

to be violated at certain points. Also, clients cannot be

totally free of the responsibility of ensuring that the

invariants are not violated when a class method is invoked.

To address these issues they have introduced a special

statement expose C {s}. The C in this statement is the class

whose invariant will be allowed to be violated as long as

the sub-statement s is being executed. They have used the

term mutable for the class C during this time. The modular

reasoning of a program requires knowing about the

mutability of a class.

Their methodology allows the invariants to be violated

temporarily but they have allowed the calls to be made

during the time when an invariant is being violated. This

permission may also allow the calls to re-enter the class.

Therefore they have explicitly presented when a class

invariant will be violated and when will it not. This will

allow the preconditions to be clear and explicit about the

invariants which will be assumed to maintain and hold. But

this explicit presentation reveals the problem of abstraction.

The abstraction problem is solved by introducing the

phenomena of ordered classes and also by allowing the

transitive relationship between classes. This validity of

ordering also influences the initialization of classes.

They have presented a sound and modular methodology

which covers all the issues related to static fields that are

faced in programs while working with invariants. The

methodology clearly specifies a verification technique for

invariants which also specifies properties of rooted object

structures of static fields and of all the valid objects

belonging to a class.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

42

4.2 Verification of Object Oriented Programs using

Invariants

In [10] the authors state a methodology for dealing with

object invariants by enriching a program’s space to show

when each object invariant is maintained. The

methodology mainly focuses on the issues related to sub-

classing, ownership transfer, owned components and

expresses many interesting ways for specification and

verification of object oriented programs. The methodology

defined in this paper also solves the issues of determining

when and which state can be modified by a method.

An invariant is used to ensure that the relations that the

programmer wants to hold are maintained during the

execution of a program. Ultimately, the object invariants

are maintained and kept by a mechanical tool, but before

using that tool, the user has to specify the conditions under

which the invariant must hold.

The methodology takes advantage of the hierarchy of

abstractions. It tracks all the relations of ownership and

also allows the mechanism of ownership transference. To

express when an invariant holds, this methodology does

not use a Boolean function such that used in Muller’s work

[19] rather it uses a variable whose value indicates whether

the invariant holds or not. The methodology also allows

reasoning at each subclass level.

The paper has also addressed the issue of object invariants

and hiding or exposure of the information. The

methodology expresses explicitly whether an invariant

holds or not and also exposes the information in program

specification.

It is commonly believed that an invariant is a form of

introducing a post-condition on each constructor and a

precondition as well as post-condition on each public

method. The main view behind this idea is that whenever

an object is public, the invariant must hold. This idea itself

is correct but is often combined with this faulty view point

that the callers of Y’s methods need not be concerned with

the responsibility of establishing the preconditions

implicitly that are associated with the invariant and also

that the invariant of class Y can hold at the entry point of

its public method if only the methods of Y are allowed to

make any modifications to the object invariant and for each

method of Y, the invariant is established as a postcondition.

This view point allows the violation of the invariant by a

method as long as the call is being made but the invariant

must be re-established before the control returns to the

caller. But this view point is valid only if all the methods

are assumed to be atomic, which creates a problem.

In short, both the ideas of hiding object invariants

completely or exposing the representation details of object

invariants completely are not prudent. The main goal is to

inform the client whether or not the object invariant holds

without exposing the details of implementation. The

methodology in [10] has achieved these goals by using

abstract pre-conditions and post-conditions explicitly.

This methodology has also introduced two innovations in

the technique of writing routine specifications. A routine

specification is a specification detail of the callers. It

explains the behavior of the caller when it calls the

methods and also details the behavior of implementation

when it returns the call. The first innovation solves the

issue of specifying what a routine may change or modify in

a program state. The second innovation allows a dynamic

method to modify an object’s state.

4.3 Objects in Dynamic Contexts

Reference [11] discusses the consistency of data with

respect to object invariants but in dynamic contexts. By

dynamic contexts, the writer means that the object

invariant can not only depend on the fields of the object

but also on the fields of all the objects which are

transitively related to the object or on the fields of those

objects which are reachable if there are any given order of

fields. This methodology is modular and sound and

describes a large number of properties including those of

cyclic structures. It is not necessary to declare the object

invariants in the class which owns that object, rather it can

be declared in any class whose fields they depend upon or

the nearby classes of those classes.

Object invariants have a central and very important part in

specifying and verifying the object oriented programs.

They are used to ensure the consistency of the programs

and to make sure that certain conditions are met and they

hold during the program execution. But when working with

dynamic contexts, it becomes difficult to devise a

systematic technique for modular reasoning of invariants.

The technique should be such that a class or subclasses can

be verified independently of the other classes or sections of

the program. But a main problem can occur in the scenario

when the object invariant is allowed to be violated during a

particular update section of the program temporarily. If

any method call is made during this part of the program,

the code will be expected to enter the public interface of

the object and inside the public interface, the object

invariant is expected to hold.

To address these issues and devise a technique for modular

reasoning, many different techniques and restrictions have

been considered. One of these is the alias confinement

methodology which applies restrictions on the references

that a object is allowed to make. A sound alias technique is

based on the concept of ownership. The concept of

ownership states that the owner object owns its constituent

objects. The methodology in [11] uses the concept of

ownership but instead arranges its constituent objects into

a hierarchy of objects. The objects in each context have a

common owner and the owner is based on two things: an

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

43

object’s reference and name of a class. The methodology

also allows the phenomena of ownership transfer to occur.

The ownership of an object can be changed when an object

chooses to switch contexts during program execution.

The methodology in [11] allows the object invariant to

depend upon only three kinds of fields. First the invariant

of object A in class Y can be dependent on the fields of

object A which can be in any super class of class Y.

Secondly, the invariant can be dependent on any object

that has a transitive relationship with [A, S] where S is any

super class of class Y. The concept of quantification is

allowed, which means that the object invariant is allowed

to depend on unlimited number of owned objects. The

invariant can even rely on the fields of those owned objects

which are unreachable from A. Thirdly; an object invariant

can depend on any specified object’s field which can be

reached by a sequence of de-referencing steps. But for this

third condition, visible requirements must be fulfilled.

The methodology in [11] has used two previous

methodologies as its basis. The first one is of Barnet et al

[10]. In this methodology, the answer to the question of

whether or not the invariant holds lies explicitly in the state

of program. The model of ownership is enforced by using a

collection of constraints applied to two object fields. The

enforcement of ownership model also includes a boolean

field which indicates if the object is owned or not. Like the

methodology given in [11], this methodology also allows

the invariant to depend on the fields of super class or of

those classes that are transitively owned. But the

methodology puts a static limit on the total number of

objects that the owner may own. Another issue in this

methodology is that it only keeps record of the objects

which are committed and no record of the owner objects

associated with the committed objects. The methodology

in [11] has solved all these issues.

The other methodology on which the work in [11] is based

is presented in Muller’s thesis [19]. This methodology has

arranged all the objects in special contexts which are

named as universes. Object invariant are specified with

specially designed abstract fields which can have Boolean

values only. A universe is supposed to be in an

encapsulated state so that the objects belonging to the

universe can only be modified and updated when a method

within the universe has the control. A universe has many

different owners. The invariant of an object is not

restricted to depend on the fields only related to its owner

or dependent fields rather it can rely on the fields of all

objects that are present in the universe. But such invariants

need to follow the visibility requirement, according to

which, an invariant should be visible in all such methods

that can violate the object invariant.

The Muller’s methodology in [19] has a limitation where

either all invariants hold or none of them hold at all. There

is no option to analyze or discuss the scenarios where

object invariants of each subclass may hold. Reference

[11] has removed this limitation by using the work of

Barnett et al [10]. Another issue with this methodology is

that the nested universe does not allow call-backs to the

enclosing universe as there is no information about the

consistency of invariants in enclosing universe. The

methodology in [11] solves this issue of call-backs by

declaring explicitly when an object’s invariant holds. Also,

Muller’s methodology does not allow ownership transfer,

but [11] has overcome this limitation as well.

The idea of ownership based invariants has been

introduced in [11] which allow a modular way of

specifying properties of an object’s structure. The

quantification over owned objects phenomena has made it

easy to deal with complex structures. The introduction of

visibility based invariants has made it easier to maintain

invariants locally. It has simplified the solution of proofs

and theorems and also makes the use of structures without

an explicit owner easier. Although aliasing is not

prohibited in this methodology, it requires that it is always

the owner objects which initialize the objects modifications.

4.4 Invariants for Layered Structures

There are different methodologies supporting the use of

object invariants for objects having primitive values as

their field values. But these methodologies do not deal

with complex structures. While dealing with layered

structures, a modular and sound technique is required

which will solve and address the issues of representation

exposure and the issue of the high layer invariants getting

violated by low layer methods. The methodology in [12]

gives a sound modular verification technique to deal with

layered structures based on ownership model.

In last two decade, lots of work has been done on the

object invariants for simple objects. Most of these research

basis have been formed on the simple assumption that the

methods of a class A can only effect the invariants

belonging to the objects of class A or the invariants of

receiving objects. This is a very limited point of view as

this is only applicable to the invariants which depend on a

single object. Therefore, the classic methodology faces

restrictions due to two main reasons. One is that invariants

may be dependent on several object structures. Second is

that a method belonging to class A can modify several

object structures that are reachable from its parameters.

The object invariants can depend on any object’s field that

is present in an underlying layer. That can happen in three

situations. Firstly, it can happen if the invariants of an

upper layer are related to locations of upper layer but relate

to states lying in lower layers. The second situation occurs

if there is an upper layer that imposes a restriction on the

states of objects belonging to lower layers. Third situation

often occurs in case of aggregate objects. The upper layer

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

44

might create a relation among different objects’ states

belonging to the lower layer.

The approach used in the methodology introduced by [12]

uses a hierarchical structure of contexts. The

representation exposure problem, which causes the

soundness problem can be solved by managing the

references that are made into a context. To address the

modularity problem caused due to the layering structure,

the hierarchical structure of contexts help in defining

invariants semantics. These semantics help the methods

belonging to lower layers to be freed of the restriction to

preserve the high layers invariants. Therefore the lower

layers methods are free from the obligation of keeping the

invariants of high layers intact. This forms the basis of

layered designs.

They have based their methodology on two techniques.

One is the ownership model, which states that when must

an invariant hold, what fields should it have and also

provides the proofs for soundness. The other technique is

the visibility technique. This technique is used for those

object structures which cannot be properly described using

the ownership model.

The classical methodology for dealing with object

invariants does not provide a sound and modular way of

dealing with layered structures unless the objects in lower

layers are immutable. The restrictive nature of the classical

technique is due to state semantics visibility. To solve this

issue, either the semantics or the proof methodology or

both should be changed such that a modular and sound

way of dealing with layered structures can be obtained.

The ownership technique described in [12] is capable of all

the trivial things as classic ownership technique but with

that it can also manage layered structures with

encapsulation. These objects can be accessed by a single

owner. Example of such structures is record related data or

recursive structures like trees. But encapsulated ownership

impose some very serious restrictions, even with the use of

references related to transitive read-only. Apart from the

restrictions and limitations that are caused by the

ownership model, the ownership technique presented in

[12] has these limitations: Firstly the invariants related to

cyclic structures or objects that are mutually recursive can

be dealt with only when the objects that have mutual

dependency are encapsulated and the owner controls these

structures. In this scenario the invariant should be declared

in the owner class. In some cases, the objects belonging to

class A are mutually dependent but do not have any natural

owner. If the corresponding invariant is specified in A, it is

no longer ownership admissible. Another limitation is that

methods of a class can only make assignments to the fields

belonging to ’this’ object. Third limitation is related to the

iterators. The invariants related to iterators are not

ownership admissible as they can depend only on the data

over which the iterators iterate. All these three limitations

originate from the basic principle that an object’s invariant

can only depend on those fields or locations whose

modifications can be controlled by it.

The visibility technique changes the restrictions related to

the fields and locations on which an invariant can rely

upon. It eases the limitations and conditions imposed on

admissible invariants. Although the visibility technique

allows the invariants to be broken, but to compensate that,

they impose an additional obligation of proof. The

visibility technique requires the broken invariants to be re-

established and preserved. Therefore, if, in every method

which might violate the invariant, the invariant is visible,

then the obligations related to the perseverance of

invariants can be modular.

The introduced semantics can be implemented both to

verification technique as well as ownership model.

Invariants of both kinds as well as classic invariants can all

exist in the same environment. In cases when objects

representation cannot be totally encapsulated, invariants

that are visibility-based are used. In rest of the cases, both

classical or ownership based invariants will be used.

4.5 Friendship System for Managing Invariants over

Shared State

For providing a modular and static way of verifying

invariants over shared state, a friendship system is

introduced [13]. It is extended on the basis of a previous

methodology which uses the ownership hierarchy, to allow

the dependence over states across the boundaries.

Friendship system is based on a special protocol system

which includes a granting class. The granting class gives

permission to other classes so that they can express their

object invariant in the fields belonging to the granting class.

The friendship protocol ensures that the fields belonging to

the granter class are updated safely and the invariant

belonging to the friend class is not violated.

Many protocols and methodologies have been presented

which provide different techniques for dealing with

invariants. These methodologies define that when an

invariant should hold and how to recognize those points in

execution where the invariants are violated. These

methodologies require the partitioning of heaps to make

sure that the invariant of an object depends upon the fields

of only those objects which it can control directly. Systems

like those which are based on ownership models are

inflexible and have imposed restrictions so that the

invariants must not go further beyond the ownership

boundaries.

The friendship system introduced in [13] allows a granting

class to give permission to a friend class. The friend class

can take privileges by which its invariant can depend on

the fields of the granting class. Friendship system requires

the participation of both classes taking part in the

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

45

friendship protocol. The friend class may want to put some

restrictions on the granting class’s field updates. The

granting class should be ready and willing to have these

conditions put on itself by the friend class before giving

the permission to the friend class. On the other hand, all

the instances of the friend class must inform the instance of

the granting class on which it depends upon. The Boogie

methodology [18] gives a very concise explanation of the

invariants belonging to ownership based system. But the

methodology in [13] goes beyond this.

Formal programming methodologies always have to make

a compromise between the restrictions that are required by

the formal analysis and the flexibility that is displayed by

the real programs. Methodology in [13] has provided a

technique that will impose very minimal requirements

upon the classes that are participating. In their work, they

have maintained the basic ground of Boogie methodology,

that is, keep the private details of implementation hidden

but provide explicit information about the invariant’s state.

4.6 Flexible Invariants for Collaborating Objects

Class invariants are widely used for verification of object

oriented programs due to their stability and representation

of a formal definition of an instance of a class. Stability in

object oriented programs will help in hiding the

unnecessary information which will then also simplify the

client’s concern related to the object’s consistency. This is

because it is the duty of object’s invariants to check

whether a method modifies that object. Thus, an invariant

methodology is responsible to achieve a level of stability

irrespective of the level of dependencies among different

objects.

Reference [14] discusses a novel methodology belonging

to the Boogie family. Their methodology thus sees the

objects as open or closed. Class invariants are required to

be in a valid state only for objects that are declared as

closed. They have named their methodology as semantic

collaboration as it describes a semantic solution of the

inter-object dependencies between collaborating objects.

The goal of achieving modularity is achieved by reducing

the need of global validity. The semantic collaboration

technique uses two kinds of local checking: (i) all objects

that can be concerned with the object o must be stored in

the ghost field observers declared in o and (ii) any updates

or modifications done to the attributes declared inside the

object o must maintain the valid status of o and its

observers. The first check (i) is said to be a condition of

admissibility that must be satisfied by every class invariant.

The second check condition (ii) is vacuous for all those

observers declared as open. So, according to the authors, it

can be satisfied by opening all the observers when they

need to be notified of an update that might be destructive.

They have stored the objects which might be able to

influence the invariant of object o in another ghost field

subjects. To introduce more flexibility in their

methodology they have allowed the subjects to not notify

the observers if the update is satisfying its guard, which

leads to one more condition of admissibility which states

that an invariant must maintain its status of validity after

modifications to subjects if they are complying with the

update guards. Update guards are responsible for the

distribution of the burden to reason about the updates

being made to the object’s attributes between its observers

and its subjects.

During verification of object oriented programs, it is

crucial to decide about the points during the program

execution where class invariants should be valid. To deal

with this issue some techniques put restrictions on certain

points of program where invariants must hold. Some other

methodologies adopt a weakened technique for interpreting

the invariants holding vacuously during execution at

intermediary points and completely at crucial steps. Visible

state methodologies require the invariants to be in a valid

state only at times when the object is in visible state i-e no

execution or operation is being performed on the object.

Semantic collaboration technique requires very less

amount of annotation and also provides flexibility required

to deal with complex dependencies between objects. This

technique has been implemented in AutoProof which is a

program verifier. The methodology’s evaluation has

successfully demonstrated its ability to deal with a large

number of idiomatic patterns related to collaborating

objects.

4.7 Less Specification Overhead and Flexible

Invariants

To provide object oriented programs with additional

flexibility, several verification techniques require an

additional amount of specification from the programmer.

This not only increases the amount of needed effort but

also adds to the list of possible causes of errors. The

methodology presented in [15] reduces this required

amount of specification overhead by introducing an

automatic analysis of the flow control between points

requiring the invariants to be valid and points that are

violating them.

Invariants are mostly accepted when pre and post

conditions are valid. Preconditions are required to be valid

at time when a method call is made whereas post

conditions must be valid when a method completes its

execution. Different techniques define different criteria and

scope of an invariant but for that they require additional

effort in terms of specifications. These specifications give

an explicit definition of invariant, their validity, invalidity

and the methods allowed to invalidate an object’s invariant.

The authors in [15] have presented a solution for this

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

46

specification overhead by introducing a technique based on

static analysis of the program code.

The analysis consists of six steps. In the first step all the

references of each class invariant are analyzed. In step 2 a

search is conducted to look for all those positions during

the program code where the references are being modified.

These points might be responsible for invalidating the class

invariant. In step 3, all those points in the program code

which require the invariant to be valid are searched. A

position in code is known as Depending Code Position if it

needs the invariant to hold and such a method is known as

Depending Method. In step 4 backwards analysis of each

code position found is conducted and a call graph known

as verification graph is built. In step 5 this graph generated

in step 4 is used to analyze and observe that when are the

invariants invalidated and when do they need to be

revalidated. This is how [15] defines the scope of an

invariant. Step 6 then uses all this information for proof

obligations that ensure the valid status of the invariant at

points that require it to be valid.

By demonstrating the detailed analysis for the verification

process of different examples the authors have successfully

compared the required specification effort of their

methodology with the specification overhead caused by

other methodologies. Their methodology has made the use

of access modifiers to control and describe the invariant’s

scope. The automatic analysis of control flow has helped to

reduce the specification overhead. It has also introduced

flexibility while dealing with invariant’s scope by

distinguishing between valid and invalid invariants inside

one object.

4.8 Verification of Class Invariants in Concurrent

Programs

Typically sequential object oriented programs define the

validity of invariants by using visible state semantics which

states that the class invariants have to be valid only when a

method is starting or finishing its execution thus allowing

them to break during the execution of that method. But in

concurrent or multithreaded programs, this restriction does

not apply for obvious reasons. The thread interleaving

allow any state or point of a program to be a visible state.

This scenario is also known as a high-level data race.

The methodology presented in [16] has approached this

problem by giving the permission to explicitly invalidate

or break the class invariant at particular locations of the

program while making sure that the broken invariant is not

visible at those points to other threads. They have based

their methodology on the separation logic but their

methodology deviates from the standard rules of that logic

allowing the invariant to be expressible over location of

shared memory irrespective of the permissions related to

these locations. The methodology in [16] clearly makes a

distinction between state and resource formulas. State

formulas are used to describe the properties related to the

shared state whereas resource formulas are used to

describe the permissions available to a thread to access a

particular location. They have implemented the restrictions

from ownership based type systems [20] to ensure a

modular technique.

Reference [16] has defined class invariant as a condition

on the are of shared memory. Each invariant carries and

maintains special tokens to indicate if it can be inspected

or not. A thread can break the class invariant if it has a

complete token. If it has a split token, it can just use the

invariant. The task of breaking is achieved by using the

statement ’unpack’. When, after execution, a thread

reestablishes or revalidates the invariant, the token for that

particular invariant is again available for use by other

threads which can now inspect or break that invariant. This

is accomplished by using the pack statement.

To achieve modularity in the methodology, no new

permissions are given to a thread when it breaks a class

invariant. That means that the thread must obtain all the

permissions required to change any field belonging to that

particular class invariant before proceeding to break the

invariant. This restriction shows the close association

between the properties of invariant and the locking strategy.

The major contribution of [16] is the presentation of a

modular and sound methodology for verifying class

invariants in concurrent or multithreaded programs. This

methodology is permissive and also allows flexibility as a

thread can break the invariant but does not require holding

all the permissions related to that invariant for breaking it.

It also reveals the association present between the

properties of class invariant and locking policy.

4.9 Solving The Two Key Open OO Verification

Problems

In [17] the authors have discussed the two key open object

oriented verification issues which are furtive access caused

due to call backs and reference leak caused due to aliasing.

They have presented a modular solution of these two

problems by using the O-rule which gives a fundamental

definition of object oriented semantics and the inhibition

rule which hides the information for removal of harmful

reference leaks.

The first issue, furtive access, can occur when a qualified

call makes a routine callback into the object and the object

at that time is temporarily in a state not satisfying the

object invariant. This problem is encountered with the

following O

Rule\

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

47

In this rule, r is a routine whereas f represents its formal

arguments and body is the implementation of this routine.

Preconditions of the routine are denoted by Pre and

postconditions by Post. Call x.r (a) is an instruction that

makes a call for routine r on target x with argument a. INV

is the invariant of the object and x.INV denotes the

invariant that is applicable to the current routine r. A rule

such as given above permisses to draw the conclusion

which is given below the line if the hypothesis which is

given above the line is satisfied.

The second issue known as reference leak is faced when

the object invariant of A involves object B’s properties but

there is another object C which changes B, thus

invalidating the invariant of A. The solution for this

problem lies in the inhibition rule which is a simple

modification to the rule of information hiding. The class of

object B is forced to export those operations which can

affect the inhibition property only to the class of object A.

This will make sure that harmful reference leaks cannot

come from anywhere except the class of object A.

Moreover, these leaks can be eliminated by prohibiting the

export of any operation, method or update that has a result

or an argument of B’s type.

5. Analysis

The paper by K.R.Leino and P.Muller has introduced a

novelty and variation in the contexts of object invariants

developed over static fields [9]. A very important rule that

has been imposed on static invariants is that the methods

are allowed to modify or effect the static fields belonging

to any class. But the class should not be in a mutable state

in the pre-state of that method. Their methodology allows

the class to get exposed and it is not necessary to expose

all those classes that depend upon it. This can be achieved

by clearly discriminating between two kinds of classes.

One is a valid class and second is transitively valid, which

means that the class itself and all the classes that

transitively depend upon it are valid. Ownership plays a

great role in structuring an object systematically.

Ownership has been discussed and applied to many

different methodologies like reasoning about programs that

are multi-threaded [21], [8], verification of frame

properties in a modular way [22] and proving the

independence of representation [23]. Leino and Muller

have proposed a solution for the class invariants that are

static but the quantification which has been introduced

over the owned objects is very weak and is unable to

express fully the properties which are gained by the

methods. The methodology in [9] also explains the

quantification over those objects which are packed. But

handling them in general way has turned out to be difficult.

The methodology presented in [10] explicitly states if its

invariant is valid or not by presenting it in the state of the

program. The ownership model has been enforced by using

two special fields which put constraints on object’s fields.

This methodology allows the invariants to be dependent

upon the fields that have been declared in super-class and

even those fields which have been declared in the fields of

objects that are transitively owned. However, this

methodology puts a static limit over the number of objects

that an owner object can have. The reason behind this fact

is that an object can be considered as an owned object only

in the case when it has a reference by a rep field. Another

limitation of this methodology is that it records only those

objects which have been committed. There is no record

about the objects to which they have been committed.

The paper by K.R.Leino and P.Muller [11] is based on two

methodologies. One is that of Barnett et al [10] and the

other one is Muller’s Thesis [19]. The methodology has

extended the work of both these techniques, explaining the

invariants related to more complex kind of structures and

also of those data structures that are cyclic. The

methodology in [11] also remedies the violation problem

of invariants which can cause the invariants to be

temporarily violated during a field’s update but re-

establishing it afterwards. The methodology has used

dynamic technique to encode the ownership using ghost

fields, statements and invariants. This trait makes it enable

to handle those program patterns which cannot be handled

statically inside the universal type system. But this

dynamic quality adds an overhead in the price due to

additional conditions and restrictions related to the

invariant admissibility. Due to these reasons, proving the

soundness of the methodology has also become

complicated and complex.

The paper by Muller, Heffter and Leavens has discussed

invariants of more complex and complicated structures.

Their methodology has made tremendous advancement in

reasoning modularly about the heaps structure and other

aliasing techniques. The ownership model enforced in the

paper has provided encapsulation technique for dealing

with objects which helps in modular verification of objects.

The methodology states that the ownership based

invariants are proven modular with the help of strong

encapsulation and visibility based invariants are proven

modular if made sure that all those invariants which might

be violated by an update of a fields are available and

visible inside that method which is responsible for the

update. The concept of immutability while making

references ensures that some particular references that are

only read only cannot modify or update an object. But an

object that has been referenced by a read only reference is,

infact, mutable and can be updated through further

references. Therefore it cannot be assumed that

immutability of references will have the same advantages

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

48

related to verification as the objects that are immutable.

Thus, objects that have a read only reference might not be

always valid. So object invariants should not be dependent

on them.

The paper by M. Barnett and D.A. Naumann [13] has

introduced a very modern technique for dealing with the

object invariant. It has introduced the concept of a granting

class and a friend class. The granting class allows the

friend class to express its object invariants in the granting

class. Although the protocol allows a sound technique for

updating the fields of granting class without violating the

friend class, the protocol could be expressed more in terms

of abstraction. That would allow a granting class to change

or update without disturbing its friend class.

The work presented by Polikarpova in [14] is the basis of

invariant methodology for the automatic

verifier ’Autoproof’ [24]. It completely supports invariants,

ghost codes and framing.

The methodology in [15] has contributed by reducing the

specification overhead caused by other methodologies.

They have achieved this by making use of an automatic

analysis of dependencies based on access modifiers.

Flexibility is also introduced by making a distinction

between valid invariants and invalid invariants inside a

single object. But this reduced specification comes with a

tradeoff in terms of computational overhead. Motsly

invariants that are public have a very large number of paths

that are needed to be considered when validating that

invariant. Same is the case with an invariant that has a

many references. Thus this methodology requires high

implementation efforts but it does not effect the

completeness of the methodology.

Reference [16] has discussed the verification issues of

multithreaded programs where it is difficult to maintain

visible state semantics as the interleaving between threads

can make any state a visible state. But their methodology

presents a solution where a thread is allowed to break an

invariant and no other thread is allowed to observe the

invariant at that point. The restrictions presented in

Muller’s system of ownership have provided the

methodology in [16] with a base for enabling modular

verification.

Bertand Meyer in [17] has discussed and presented a very

concise explanation of the two most widely discussed

problems faced during the verification of object oriented

programs. This paper is a proposal and although the author

has addressed the known main issues and solved a few

examples related to the Observer pattern and linked lists

but has not provided any soundness proof or

implementation. Also the problems and issues which can

arise due to recursion have not been discussed.

6. Automatic Verifiers

An automatic program verifier is a state of the art complex

system having a graphical user interface, compiler

technology, automatic decision making ability, program

semantics, property inference and the ability to generate

verification conditions. In [18] the authors have presented

and described a state of the art automatic verifier for

verifying object oriented programs written in Spec# in .Net

framework. They have described Boogie as a pipeline

verifier that takes as input a source program and transforms

it into a verification condition and then generates an error

report at the end. Boogie provides design time feedback to

the programmer and bridges the gap between programmer

and program verifier while encapsulating the theorem

detail and architecture.

Another automatic verifier Dafny, which is a SMT based

automatic verifier and an object based language [25] for

proving functional correctness of programs has been

discussed and explained in [26]. Reference [27] has

presented a verifying compiler specifically for dealing with

multi-threaded object oriented programs. Their compiler

automatically verifies the correctness of the program

before compiling it. The compiler takes the source

program as input and translates it into an intermediate state

generating verification conditions. These conditions are in

the form of formulas that can be solved by an SMT solver

to prove the program’s correctness.

In [28] the authors have described a verification

environment Eve which seamlessly integrates and

combines a static verifier and an automated tester. Eve can

increase the usability of individual testing and verification

tools by providing an environment that provides

automation, modularity, minimum user interaction and

extensibility.

Verifiers that provide an intermediate level of automation

between a fully automatic verifier and a verifier that needs

user interaction are known as Auto-active verifiers. One

such verifier has been presented in [24]. It is named as

AutoProof which is a type of auto-active verifier that deals

with complex sequential object oriented programs.

AutoProof supports advanced features and presents a

powerful methodology for dealing with object oriented

programs and class invariants.

7. Conclusion

Object invariants play a central role in verifying the

correctness of n object oriented program. Object oriented

programs have gained a lot of popularity due to the

advantages of reusability and component based

programming. But these advantages require a high deal of

confirmation about the consistency of the program which

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

49

in turn, requires the correct use of an object invariant.

Objects can be of many different types and the above

mentioned papers have all covered different issues

regarding modular and static verification of objects,

providing data abstraction to the objects, dealing with

objects in dynamic contexts and handling the invariants of

objects that have complex and complicated structures.

In this paper, we have covered some very important and

revolutionary methodologies in the field of object

invariants. Many mechanical tools have been introduced to

make sure that the object invariants hold but these

methodologies need the user to define those rules and

conditions which would be imposed and checked by the

tool.

References
[1] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured

programming. Academic Press Ltd., 1972.

[2] K. R. M. Leino, “Towards reliable modular programs,”

1995.

[3] S. H. Kirani and W. Tsai, “Specification and verification of

objectoriented programs,” Ph.D. dissertation, University of

Minnesota, 1994.

[4] A. Poetzsch-Heffter, “Specification and verification of

object-oriented programs,” Ph.D. dissertation, Habilitation

thesis, Technical University of Munich, 1997.

[5] K. Huizing, R. Kuiper et al., “Verification of object oriented

programs using class invariants,” in International

Conference on Fundamental Approaches to Software

Engineering. Springer, 2000, pp. 208–221.

[6] B. Meyer, Object-oriented software construction. Prentice

hall New York, 1988, vol. 2.

[7] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C.

Pacheco, M. S. Tschantz, and C. Xiao, “The daikon system

for dynamic detection of likely invariants,” Science of

Computer Programming, vol. 69, no. 1-3, pp. 35–45, 2007.

[8] B. Jacobs, K. R. M. Leino, and W. Schulte, “Verification of

multithreaded object-oriented programs with invariants,”

Specification and Verification of Component-Based

Systems (SAVCBS), pp. 2–9, 2004.

[9] K. R. M. Leino and P. Muller, “Modular verification of

static class¨ invariants,” in FM 2005: Formal Methods.

Springer, 2005, pp. 26–42.

[10] M. Barnett, R. DeLine, M. Fahndrich, K. R. M. Leino, and

W. Schulte,¨ “Verification of object-oriented programs with

invariants.” Journal of Object Technology, vol. 3, no. 6, pp.

27–56, 2004.

[11] K. R. M. Leino and P. Muller, “Object invariants in

dynamic contexts,”¨ in ECOOP 2004–Object-Oriented

Programming. Springer, 2004, pp. 491–515.

[12] P. Muller, A. Poetzsch-Heffter, and G. T. Leavens,

“Modular invariants¨ for layered object structures,” Science

of Computer Programming, vol. 62, no. 3, pp. 253–286,

2006.

[13] M. Barnett and D. A. Naumann, “Friends need a bit more:

Maintaining invariants over shared state,” in Mathematics of

program construction. Springer, 2004, pp. 54–84.

[14] N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer,

“Flexible invariants through semantic collaboration,” in

International Symposium on Formal Methods. Springer,

2014, pp. 514–530.

[15] S. Huster, P. Heckeler, H. Eichelberger, J. Ruf, S. Burg, T.

Kropf, and W. Rosenstiel, “More flexible object invariants

with less specification overhead,” in International

Conference on Software Engineering and Formal Methods.

Springer, 2014, pp. 302–316.

[16] M. Zaharieva-Stojanovski and M. Huisman, “Verifying

class invariants in concurrent programs,” in International

Conference on Fundamental Approaches to Software

Engineering. Springer, 2014, pp. 230–245.

[17] B. Meyer, “Class invariants: Concepts, problems,

solutions,” CoRR, vol. abs/1608.07637, 2016.

[18] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R.

M. Leino, “Boogie: A modular reusable verifier for object-

oriented programs,” in Formal methods for Components and

Objects. Springer, 2006, pp. 364–387.

[19] P. Muller, ̈Modular specification and verification of object-

oriented programs. Springer-Verlag, 2002.

[20] M. Dietl, “Universes: Lightweight ownership for jml,” in

Journal of Object Technology 4, 2005, pp. 5–32.

[21] C. Boyapati, R. Lee, and M. Rinard, “Ownership types for

safe programming: Preventing data races and deadlocks,” in

ACM SIGPLAN Notices, vol. 37, no. 11. ACM, 2002, pp.

211–230.

[22] P. Muller, A. Poetzsch-Heffter, and G. T. Leavens,

“Modular specifica-¨ tion of frame properties in jml,”

Concurrency and computation: Practice and experience, vol.

15, no. 2, pp. 117–154, 2003.

[23] A. Banerjee and D. A. Naumann, “Representation

independence, confinement and access control [extended

abstract],” in ACM SIGPLAN Notices, vol. 37, no. 1. ACM,

2002, pp. 166–177.

[24] J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova,

“Autoproof: Auto-active functional verification of object-

oriented programs,” in International Conference on Tools

and Algorithms for the Construction and Analysis of

Systems. Springer, 2015, pp. 566–580.

[25] K. R. M. Leino, “Specification and verification of object-

oriented software,” Engineering Methods and Tools for

Software Safety and Security, vol. 22, pp. 231–266, 2009.

[26] ——, “Dafny: An automatic program verifier for functional

correctness,” in International Conference on Logic for

Programming Artificial Intelligence and Reasoning.

Springer, 2010, pp. 348–370.

[27] K. R. M. Leino and W. Schulte, “A verifying compiler for a

multithreaded object-oriented,” Software System Reliability

and Security, vol. 9, p. 351, 2007.

[28] J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer,

“Usable verification of object-oriented programs by

combining static and dynamic techniques,” in International

Conference on Software Engineering and Formal Methods.

Springer, 2011, pp. 382–398.

[29] R. Middelkoop, C. Huizing, R. Kuiper, and E. J. Luit,

“Specification and verification of invariants by exploiting

layers in oo designs,” Fundamenta Informaticae, vol. 85, no.

1-4, pp. 377–398, 2008.

[30] G. T. Leavens, K. R. M. Leino, and P. Muller,

“Specification and¨ verification challenges for sequential

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

50

object-oriented programs,” Formal Aspects of Computing,

vol. 19, no. 2, pp. 159–189, 2007.

[31] P. Muller, A. Poetzsch-Heffter, and F. Hagen, “Universes:

A type system¨ for alias and dependency control,” 2001.

