
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

91

Manuscript received August 5, 2019

Manuscript revised August 20, 2019

A Novel Intrusion Detection and Prevention Model for SQL

Injection Attacks

Malik Rizwan Ali1† Muhammad Sheraz Arshad Malik2†† Noureen Hameed3††† Faizan Tahir4††††

2Department of Information Technology, Government College University Faisalabad, Pakistan

1, 3, 4Department of Computer Sciences, Virtual University, Pakistan

Abstract
SQL Injection Attack (SQLIA) is a hot issue now a days in web

applications and databases. SQL Injection ignores the

authentication checks and affects the confidentiality of the

database. SQLIA helps the invader to get the unauthorized

access of the whole database and manipulate it. The existing

tools and techniques like SQLRand, CANID, AMNESIA and

SQL DOM mainly focus on providing access to the database

only to the authenticated users. These tools do not provide

complete prevention measures against the SQLIA. In this

research, a novel Intrusion Detection and Prevention System

(IDPMIA) is introduced. The proposed IDPMIA will detect the

malicious queries before execution. Whenever an attacker tries to

inject a suspicious query, it would immediately be recognized by

IDPMIA and preventive measures will be taken. The proposed

approach will be justified through case studies where multiple

SQL Injection attacks will be simulated and results will be

analyzed using the proposed model and existing state of the art

techniques from literature.

Key words:
Intrusion Detection & Prevention Model (IDPMIA), SQL, SQLIA

1. Introduction

Online finance marketing, shopping centres, trades share,

online purchasing, air ticketing, banking & hoteling

services etc. are increasing day by day and for their

security and data integrity purpose, new preventive

measures are adopted. As the e-commerce and internet

banking industries are becoming popular, the threats of

cybercrimes are also increasing and new SQL Injection

Attacks exploitations of systems are also revealed. Due to

some discrepancies in SQL query execution structure, an

attacker can attack easily in different ways (Dalai & Jena,

2017). An attacker can add malicious code with the

execution of a legitimate query, can drop, alter, update

data and retrieve important & secret data even can exploit

a website or can crash a system. (Yousaf & Sheraz, 2018)

Moreover, a system can be crashed or a website can be

exploited due to some serious type of SQL Injection

Attacks which are as follows:

2. Problems / Issues

Some basic vulnerable problems are categorized as below.
Sr # Problem Query

1
Tautology

Query
Select Name, Department, MobNo, Email From

Employee Where EmpID = 1 or 1=1

2
Union
Query

https://profiles.abc.edu.pk/staff/pharmacy.asp?Pr
oID=1 Union Salary, Residence From

StaffPharm;

3
Stacked or
Piggybacke

d Query

https://profiles.xyz.edu.pk/staff/pharmacy.asp?Pr
oID=1 Drop Table StaffPharm

4
Commente
d Queries

Select * From StaffPharm Where EmpID = ‘1’; -
- and Password = ‘123’;

2.1 Tautology Query

Tautology queries are easily used for SQL Injection

Attacks and they retrieve data in the shape of chain / loop

from a database server and site server too. These queries

are executed until the last tuple record would not be

retrieved. A query example of a tautology is given below.

Select Name, Department, MobNo, Email from Employee

Where EmpID = 1 or 1=1

Due to its nature 1=1 it becomes always true and executes

till the last EmpID record.

2.2 Union Query

Union query is used for data stealing. It combines the two

queries result due to Union operator. Union query

retrieves some confidential / personal data like as Salary

and Address which we hide from the user.

https://profiles.abc.edu.pk/staff/pharmacy.asp?EmpID=1

Union Salary, Residence from StaffPharm;

2.3 Stacked / Piggybacked Query

A stacked query or Piggybacked query is executed an

additional code with the execution of a legitimate query.

After the completion of a legal query, an attacker include

some extra code or an extra query at the end of that legal

query. Due to the validation of legal query, both queries

are executed. This query is most commonly used for drop

or alter able. For example:-

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

92

https://profiles.abc.edu.pk/staff/pharmacy.asp?EmpID=1

Drop Table StaffPharm

This situation is alarming, that is why, a user cannot delete

table. Tables are main parts of a database. Therefore, this

malicious query is too much vulnerable, for keeping /

managing database record save.

2.4 Commented Queries

The Commented query is also used in SQLIA. With the

comment sign “—” an attacker take benefit of comment

signs, for example, the following query without password

be executed, if the EmpID =1.

Select * From StaffPharm Where EmpID = ‘1’; -- and

Password = ‘123’;

Without the knowledge of password an attacker can access

the EmpID = 1 account, which is illegal and challenging

for data integrity and security.

It is dire need to save data from hacker’s attacks and

prevent these attacks before execution. Different types of

tools and techniques are introduced for data safety from

attackers, like as, Concolic Execution Paths, (Yousaf &

Sheraz, 2018), DetAnom, (Hussain & Sallam, 2015)

DIDAFIT (Lee & Wong, 2013), Except of ‘Select’ and

‘delete’ command use Where, Having, Like or Order By

clause (Dalai & Jena, 2017) and Signature base Profile

creation (Yousaf & Sheraz, 2018), focused on client side

through client’s web browser (Shahriar 2013), firewall

layer approaches focused on examining the HTTP request,

depends on using neural network (Moosa, 2010), hybrid

system using Bayesian classifier & pattern matching

(Makiou, 2015), focused on web application layer &

general classification (Kumar, 2015), (Alwan, 2017),

defensive coding approaches, vulnerability testing

discovers & fixes possible injection hotspots, automatic

generation of test inputs & cases (Shin, 2009), Ruse,

2010), Server side vulnerabilities by designing a black box

testing method (Bisht, 2010) web page scanning to

discover the vulnerabilities with a defined database error

table (Roy, 2011), programming tracing techniques

(Wang, 2012), Negative taint model used evasion methods

by maintaining a vulnerability lookup table for all possible

attacks (Alazab, 2016), Parsing tree validation (Buehrer,

2005), Matching certain Word in the query AC Pattern

(Prabakar, 2013), SQL query as a graph of tokens an SVM

classifier for recognized possible malicious inputs (Kar,

2016), Lightweight Directory Access Protocol LDAP

(Zhang, 2011), dynamically analyzed the developer

intended query result size for any input & compared it

against the result of the actual query (Jang, 2014),

database server internal query trees (Kim, 2014),

technique Apriori for checking the queries (Jawanja,

2018), SQLI Detection tools (Elia, 2010), code conversion

algorithm (Balasundaram, 2012). All these are useful in

different ways. No one is perfect or as ideal solution for

all kinds of attacks. Due to this client’s satisfaction is still

not lingering. But in this research, we are introducing a

new technique in which all stored legal paths i.e. queries

will store statically and according to each query a negation

prediction base query will also be saved. When a user

input a query the query will be matched with the simple

stored query and data would be retrieved, in other way

according to the base on that input query the negation

prediction query will also be executed and data would be

retrieved. Both query executed results, data retrieval

would be compared. If both are equal then query is a valid

query and would be executed, otherwise its difference

would be measured and on behalf of difference it would

be decided that how much query is vulnerable. An

Intrusion Detection & Prevention Model for SQL

Injection Attacks (IDPMIA) is introduced, which can

measure the input queries before their execution. This

system can also be implemented dynamically on behalf of

all stored legal paths and their negation prediction bases.

There are many techniques and tools for detection of SQL

Injection Attacks but no one is having complete reliable

security for organizations. For example, SQLRand can

detect tautology queries attack, but partially detect the

commented queries and mismatch queries attack but it

cannot able to catch the attack of stored procedure and

alternative methods. Security Policy Descriptor Language

(SPDL) can partially detect tautology queries, type

mismatch, stacked query, Union Query, Stored Procedure

& Inference attacks, but not able to catch alternative

methods attacks. SIIMDS is not able to detect the attacks

of tautology queries, Union Queries, and Alternative

methods. SQLIPA is not able to detect the attack of

alternative methods. AMNESIA is a better technology

which can detect tautology query, comment line queries

attacks etc., but not able to catch stored procedure attacks.

The adopted model (IDPMIA) is a very good technology

for prevention & detection from hacker’s attack of Union

Queries, Stacked Queries, Commented queries and

Tautology queries etc.

3. Literature Review

(Morsi & Ahmed, 2019) have described in their research

paper regarding SQLIA. Attacks can be done in the form

of user input, cookie fields containing attach strings,

server variables & second order injections. Hacker’s main

focus is to target the five important critical layers in the

end to end web application architecture.

So many past technologies were introduced, but the data

integrity & safety problems are remaining unsolved. So

the author introduced a new approach, combination of two

ancient approaches, consist of static & dynamic algorithm.

In this approach, researchers define a combination of AC

https://profiles.abc.edu.pk/staff/pharmacy.asp?EmpID=1%20Drop%20Table%20StaffPharm%20
https://profiles.abc.edu.pk/staff/pharmacy.asp?EmpID=1%20Drop%20Table%20StaffPharm%20

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

93

pattern for static phase Parser Tree validation technique as

dynamic algorithm.

Gurina and Eliseev (2019) stated that infection signs not

only include from incoming traffic online, but also, they

can exist in a local computer or local network and can

travel when data packets are transferring, which are

harmful. Mostly signature base anomaly detection patterns

are popular, but not a single universal technique or over

all complete solution is defined.

Author defined a technique based on the measurement of

size of the data, which is exchanging through connection,

networking or internet, second is, what is the data

exchange time. The data stream response time is also be

considered. It is also populate that it does not depend on

the order of request, but it depends the information

contained in the request. But what would be happened, if a

user is having 4G or extra efficient speed stream and

second user is too low bandwidth. The record of 100 rows

retrieved, but not as required tuples.

Yousaf & Malik (2018) described a technique with the

combination of 3 modules, adopted for anomaly detection

in SQL and for different security purposes and protection

of data from unauthorized users. Due to SQL injection

detection technique, queries would be transparent from

interloper and code would not be malevolent. Disgusting /

intercepted queries cannot be executed and situation of

DoS creates in database. But this technique is not useful

in real time environmental databases.

An anomaly detection and Reconstruction Schemas

(AD&RS) is also emphasized, in which researcher

perform work with some Modules i.e. Anomaly detection

Module, Query reconstruction module, Query delegation

Module etc. Author makes signature base profiles on

behalf of all possible outcome ways, in respect of all valid

possible queries, their path in term of Profile generation /

signature base profile be stored in databases. When a user

execute query, that query would be converted on specific

signature base type / shape, and then query is analyzed /

compared with stored queries. If it is a valid query or

authorized path, which would be allowed, then can

execute. Otherwise after comparing its difference from

authorized query revealed and after the deletion of its

additional part, its remaining exact path, which would be a

valid query, can be executed and result would be

displayed on user’s system. This technique emphasized in

the shape of tree, query table, code and a final comparison

query table. In which for the reconstruction of query the

comparison table is a better way for denying a service

query or delegate / valid a query for retrieval of data. If a

query does not compare then its difference from a near

path, considered as additional path, which makes this

query anomalous. For comparison linear algorithm is used.

Therefore, its additional path / difference from original /

valid path would be deleted and the remaining query

which remains valid would be executed.

Dalai & Jena (2017) proposed a technique / process,

consisting on 6 different points to store the query as

strings. Moreover, to avoid the injections attack due to

Where clause, they suggested to use the Non-Where

clauses, with the help of Order By, Having and Like. They

worked for the protection of online injection attacks on

Web Applications. They extracted the SQL input queries

of users in a different pattern. Researchers emphasize

online application problems and also take an insight view

of an attack procedure, which attacker normally adopt

pattern step by step. i.e take the OS information, SQL

Version information, Metadata referred tables from Master

DB and Column information etc. After achieving a useful

knowledge / information of Database, Attacker easily can

inject the additional code with the use of a legal query.

George & March (2016) explained that attacks can rise

due to SQL injection; there are some security risks present.

An attacker can access database and can perform

unauthorized functions. Due to this it is necessary to check

the validity of query execution. A server between the main

server and user must be present which will check the

query that it is legitimate or not. With the help of java

template, researchers described it can reconstruct with an

intermediary server. An intermediary server may increase

the efficiency of server and reduce the denial of service

ratio. Researchers described the Where clause query with

‘Or’ and ‘And’ functions, and also mentioned the

tautologies, Union, statements, logically incorrect and

piggybacked queries.

Sadotra (2015) mentioned how SQL Injection Attacks

affects web applications and how the attacker can take

advantages of database weaknesses. Moreover, researchers

discussed the web applications, web tools, weak point,

SQL Injection Attacks and web queries. Introduced a

more reliable technique based on calculations of

HASHING & ENCRYPTION. With the help of this

technique user name and password can login more secured.

Each username and password would be stored with some

calculated hash values of username, calculated of hash

password value and calculated Hash Ex-Or value. But it

is useful for the authentication of user and based on

calculations.

Abu Othman (2014) discussed Structure Query Language

Injection Attacks (SQLIA) regarding the Web

Applications. Mostly highlighted problems are tautologies,

Union query, inference, commented, logical incorrect

queries, stored procedure, piggy – backed queries, blind

injection, timing attacks and alternate encoding etc. These

are very basic SQL injection attacks, used by hackers.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

94

4. Methodology Intrusion Detection &

Prevention Model for SQL Injection Attacks

(IDPMIA)

Our proposed IDPMIA will diagnose a query and check

its parameters, before it’s execution, that it is a valid query

or not? It will check the input query to find errors

(consider as typing error), some additional code or some

malicious data. If some extra data or minor typing error is

identified in the query, it will be sent for reconstruction to

convert it into a valid query. If it is having some malicious

code, then query will catch before it’s execution, in query

comparison part, abruptly query will truncate and an alarm

or message would be sent to DBA. However, the most

significant part is the negation prediction comparison. Just

like, in signature base profile system, we store all the legal

paths of an application and whenever a query is received

from user side, that input is compared with all legal stored

paths, in proposed model, we will store valid queries and

negation prediction of that queries and whenever a new

query request received from user, that query will be

verified with the existing stored queries. If query is valid,

the query will be considered a legitimate query otherwise

it will be sent for reconstruction as preventive measure.

However, if query is not reconstructable then a warning

message will be generated for DBA.

This technique consist of SQL Server and dotnet

framework and will use for detection of anomalies / illegal

queries of user’s before their execution, in a database.

First of all, it diagnoses a query and its parameters that it

is a valid / executable query, then can run it. If it is having

an additional code or reveals that it is a typing error then

query can send for reconstruction and after reconstruction,

if it becomes a valid query then execute it.

But its most powerful part is the negation prediction

comparison. It means, as in signature base profile system,

we will store all the legal paths of an application and when

a query / input received from user side, that input be

compared with the stored paths. If it compared as a valid

signature then it can be executed otherwise would be

terminated / truncated the query. For the severity of data,

and the vulnerable / exploitation of SQL Injection Attacks,

it is necessary that whereas all legal paths of an

application be stored, the negation predication of queries

are also be stored. When user input a query, first of all it

will compare with a stored legal path, if they are equal

then two process / query would be proceeded. a) retrieval

of data in regard of query. b) retrieval of data by the

negation prediction of that query. Both results would be

compared. If the comparison result will same then query

will count a legal query. Otherwise its difference of

comparison will be evaluated. If that query would be

reconstruct able, then rebuild the query and executed. But

if it would be found vulnerable, then abruptly system will

terminate the query and also will send an alarming

message to the DBA / Developer. This technique is

helpful, because with the negation prediction comparison

an additional data retrieval apparently reveals and the

malfunctioning queries base on tautologies, commented

and union query diagnoses.

This technique will be implemented for a dynamic

environment. All statically generated path and authorized

query and their negation prediction would be saved on an

additional server. When a user will submit query for

execution on a web server. First it will analyze in an

IDPMIA, weather it is a legitimate query or not. Which

would be based on all static terms generated legal path,

negation predictions, queries, restrictions manual and then

finally it will decide for the execution of a query.

An IDPMIA is shown in Figure 1.1

Example: 1

The negation prediction comparison can also emphasize

with the help of following tables.

Student_Table

StID Name Class

1 Irfan ICS
2 Imran BCS
3 Sultan MCS

Select Name From Student_Table

Which selected attribute result is highlighted with green

colour.

StID Name Class

1 Irfan ICS
2 Imran BCS
3 Sultan MCS

And its negation prediction can be defined as:

Except StID, Class from Student_Table.

Which excepted / exempted attributes are mention in

query or highlighted with red colour.

StID Name Class

1 Irfan ICS
2 Imran BCS
3 Sultan MCS

Now it can be compared easily that selected attribute in

1st query is green and exception attributes are highlighted

with red colour. In 1st query selected attribute “name” and

in 2nd query remaining attribute is “name” column, which

are same. Therefore, this query can be executable. So as

the additional command, of Stacked / Piggybacked queries

for updation or drop a table found, it can easily catch

when compared with stored negation predictions.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

95

SQL Server Query for Selected Columns

USE [{DB_name}]

GO

/****** Object: StoredProcedure

[dbo].[sp_GetSelectedColumnsOfTable] Script Date:

8/27/2019 1:11:23 PM ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

--

===

====

-- Author: <MALIK RIZWAN ALI>

-- Create date: <27-08-19,>

-- Description: <SELECTED COLUMNS OF

TABLES,>

--

===

====

Create PROCEDURE

[dbo].[sp_GetSelectedColumnsOfTable]

 -- Add the parameters for the stored procedure

here

@Cols AS NVARCHAR(MAX)='Name,City',

@TblName AS NVARCHAR(MAX)='tblEmployee'

AS

BEGIN

 DECLARE @SqlCmd VARCHAR(MAX)=

'SELECT '+@Cols+'

 FROM '+@TblName;

 EXEC(@SqlCmd);

END

SQL Server Query for Un Selected Columns

USE [{DB_name}]

GO

/****** Object: StoredProcedure

[dbo].[sp_GetUnSelectedColumnsOfTable] Script Date:

8/27/2019 1:12:05 PM ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

--

===

====

-- Author: <MALIK RIZWAN ALI>

-- Create date: <27-08-19,>

-- Description: <UN-SELECTED COLUMNS OF

TABLE,,>

--

===

====

Create PROCEDURE

[dbo].[sp_GetUnSelectedColumnsOfTable]

 -- Add the parameters for the stored procedure

here

@Cols AS NVARCHAR(MAX)='Name,City',

@TblName AS NVARCHAR(MAX)='tblEmployee'

AS

BEGIN

DECLARE @CSV VARCHAR(MAX)

 SELECT

 COLUMN_NAME as ccolumns

 into #txl

FROM

 INFORMATION_SCHEMA.COLUMNS

WHERE

 TABLE_NAME = @TblName

SELECT * into #splitColumns FROM

fnSplitString(@Cols , ',')

Select * into #finalColumns from #txl where ccolumns not

in (select splitdata from #splitColumns)

SELECT @CSV = COALESCE(@CSV + ', ', '') +

ccolumns from #finalColumns

--SELECT @CSV AS Result

 DECLARE @SqlCmd VARCHAR(MAX)=

'SELECT '+@CSV+'

 FROM '+@TblName;

EXEC(@SqlCmd);

Drop Table #txl

Drop Table #finalColumns

Drop table #splitColumns

END

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

96

IDPS Features:

a. Dynamically and Statically can save queries.

b. All saved queries have their negation base

queries.

c. Simple query and its negation base query both

will run at once.

d. Both result of data retrieval will compare.

e. If it is equal then query is a valid query

f. If minor change or typing error then query will

reconstruct.

g. Redesigned queries / Delete additional Input

from query.

h. After reconstruction the query will execute

again

i. If found major difference then query is

malfunction & vulnerable.

j. Abruptly indicate a message to DBA.

k. Query will truncate abruptly.

Conclusion & Future Work:

This technique is better for the prevention of execution

Tautology Queries, Commented queries, Union Queries

& Packed Queries. This technique gave an extremely

accurate view in the case of Tautology queries. This

technique easily handle the union queries result and no

additional data can be retrieved. This technique is an

efficient to detect the harmful and vulnerable injection

attacks. Stored negation prediction queries comparison

with the stored legitimate queries, when reveals

difference, the input query must be having additional

input and can harmful.

The next goal of this work is that how an efficient

algorithm be developed that could measure the both side

result within a part of nanoseconds. Both side data be

measured / compared via its length in shape of tuples or

in shape of attributes, or both or can be measured in

shape of size or it’s weight. Simple saved query results

and negation prediction saved query results can be

measured by default.

This work does not encompass the combination of

signature base profiles systems. More efforts needed to

make it efficient in banking systems or online websites

for replication and fragmentation.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.8, August 2019

97

References
[1] A. Liu, Y. Yuan, D. Wijesekera & A.Stavrou (2009),

SQLProb, A Proxy based architecture towards preventing

SQL Injection Attacks. (ACM).

[2] Asish Kumar Dalai & Sanjay Kumar Jena, 2017,

Neutralizing SQL Intection Attack Using Server-Side

Code Modification in Web Applications, Hindawi,

Security and Communication Networks.

[3] Asmaa Sallam, Elisa Beritino, Fellow; IEEE, Syed Rafiul

Hussain, David Landers, R. Michael Lefler, & Donald

Steiner, 2015, DBSAFE- An Anomaly Detection System

to Protect Databases From Exfiltration Attempts.

[4] Diallo Abdoulaye Kindly & Al-Sakib Khan Pathan,

(2011), A Survey on SQL Injection.

[5] D.Scott & R. Sharp, (2003), Specifying and enforcing

application level Web Security Policies. (IEEE).

[6] F. Maggi, M. Mateucci & S. Zanero (2010), Detecting

Intrusion through system call sequence and argument

analysis (IEEE).

[7] Gurina Anastasia & Eliseev Valdimir, 2019, Anomaly-

Based Method for Detecting Multiple Classes of Network

Attacks, (MDPI)

[8] Jensen, CS, Prasad, M.R & Moller A (2013), Automated

Testing with targeted event sequence generation. (ACM).

[9] Mona Faruk, (2019), A Two-Phase Pattern Matchin-Parse

Tree Validation Approach for Efficient SQL Injection

Attacks Detection. (ISSN).

[10] Muhammad Sohaib Yousaf, M. Sheraz Arshad Malik,

Muhammad Asif, Farhat Naz, Ijaz Ali Shoukat, May,

2018, SQL Anomaly Detection and Reconstruction of

Queries Eliminate the Denial of Service, International

Journal of Computer Science and Network Security, Vol.

18.

[11] Noor Ashitah Abu Othman, Fakariah Hani Mohd Ali &

Mashyum Binti Mohd Noh, (2014), Secured Web

Application using Combination of Query Tokenization

and Adaptive Method in Preventing SQL Injection Attacks.

(IEEE)

[12] Ntagwbira Lambert & Kang Song Lin, (2010) User of

Query Tokenization to Detect an SQL Injection Attacks.

[13] Parveen Sadotra, (2015), Hashing Technique – SQL

Injection Attack Detection & Prevention. (ISSN).

[14] Parveen Sadotra (CEH), Dr. Anup Girdhar, (2013),

Penetration Testing – Cyber Security Assessment (IJTM).

[15]
[16] Shu, X., Yao, D., & Ramakrishnan, N., 2015. Unearthing

stealthy program attacks buried in extremely long

execution paths. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications

Security.

[17] S.Lee, Low, & P.Wong, (2002) Learning fingerprints for a

dtabase intrusion detection System.

[18] Som, S. Sinha, S. & Kataria, R (2016), Study on SQL

Injection Attacks – Mode detection and Prevention

(Impact Factor)

[19] S.R. Hussain, A.M. Sallam & E. Beritino, (2015),

Detanom, Detecting Anomalous Database Transactions by

Insiders. (ACM).

[20] S.R. Hussain, A.M Sallam & Bertino, (2016), DetAnom,

Detecting Anomalous Database Transactions by Insiders.

(ACM).

[21] T.K George & Poulose Jacob, PhD, Cochin University of

Science & Technology, March 2016, A Proposed

Architecture for Query Anomaly Detection and Prevention

against SQL Injection Attacks, International Journal of

Computer Application Vol. 137.

[22] V. Prokhorenko, K.R. Choo, & H. Ashman, (2016), Intent

Based Extensible Real Time PHP Supervision Framework.

(IEEE).

[23] W. Li, B. Panda & Q. Yaseen, (2012), Mitigating insider

threat on database integrity. (ISS).

[24] Xu, K., Yao, D. D., Ryder, B. G., & Tian, K., 2015.

Probabilistic program modelling for high-precision

anomaly classification. In Computer Security Foundations

Symposium (CSF), IEEE

Sheraz has obtained his PhD in

Information Technology and currently

working as Assistant Professor in

Department of Information Technology at

GCUF, Pakistan. His areas of interests are

HCI, Big Data, IoT and Information

Visualization.

Rizwan is MS Computer Science Student

at Virtual University Pakistan. He is also

working in Government of Pakistan. His

areas of interests are Databases, Online

Information Retrieval Systems and

Pervasive Computing technologies.

