
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

15

Hybrid Intelligent Android Malware Detection Using Evolving
Support Vector Machine Based on Genetic Algorithm and

Particle Swarm Optimization

Waleed Ali

Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University,
Rabigh, Kingdom of Saudi Arabia

Summary
The Android platform has become the most common mobile
platform of smart mobile devices that attracts many users,
developers and vendors. Accordingly, millions of Android
applications have been created to offer many functionalities and
services to users. However, the fast growth rate of such
applications has led to a huge increase in the development and
spread of Android malware applications by cyber attackers and
criminals. In order to overcome the difficulties faced by the
conventional signature-based methods, this paper suggests hybrid
intelligent Android malware detection approaches based on
evolving support vector machine with evolutionary algorithms in
order to enhance Android malware detection. In the proposed
hybrid intelligent evolving approaches, the optimization problem
in support vector machine is solved using a genetic algorithm (GA)
and a particle swarm optimization (PSO), referred to as Droid-
HESVMGA and Droid-HESVMPSO, in order to help in
increasing the accuracy of the Android malware detection. The
experimental results showed that the proposed Droid-HESVMGA
and Droid-HESVMPSO approaches achieved the best detection
results and substantially outperformed the most popular machine
learning classifiers and other existing hybrid malware detection
approaches.
Key words:
Android, Malware, Support vector machine, Genetic algorithm,
Particle swarm optimization.

1. Introduction

Recently, smartphones and mobile devices have become the
most commonly used devices for personal and business use.
Recent reports and studies have reported that the number of
mobile device users has been increasing rapidly and will
reach 6.1 billion by 2020 [1, 2].
Over the past few years, the Android platform has become
the most common mobile platform of smart mobile devices
as it is free and open-source. In addition, it can be
customized simply by users, developers and vendors.
Accordingly, millions of Android applications have been
developed to offer many functionalities and services to
users. Recent reports have indicated that over 2.5 million
Android apps are available on Google Play store, which is
considered the largest apps store [3].

The fast growth rate of Android applications has led to a
huge increase in the development and spread of Android
malware applications by cyber attackers and criminals.
Primarily, the malware applications can be developed by
Android apps developers and then distributed in third-party
Android markets since there are often no constrains for
Android apps developers. Even at the official Google Play
store, many new malware apps are periodically discovered
and not all Android malware Apps can be accurately
detected, especially in the early stages of publication in the
Google Android Market [4, 5].
Many commercial Android malware detection tools and
anti-virus programs have used traditional signature-based
methods, which are based on fixed identifiers called
signatures [6-8] to detect the Android malware apps.
However, the conventional signature-based approaches
cannot detect the recently developed malware apps,
especially zero-day Android malware apps [6-8]. Hence,
there is a need to develop more effective and adaptive
solutions for Android malware detection.
In order to overcome limitations of the conventional
Android malware detection approaches, numerous single
popular machine learning algorithms [6, 7, 9-16] have been
trained and then applied to detect the Android malware apps.
The support vector machine (SVM) algorithm has been
commonly used in literature for detecting malware apps, as
it has many advantages over the other machine learning
techniques. However, only the classical SVM has been
employed in Android malware detection, although the
classical SVM is still not good enough compared to the
advanced machine learning classifiers. Furthermore, it can
be quite long time-consuming in the learning phase, as it is
based on an analytical approach or complex mathematical
calculations [17, 18].
In addition to single classifiers, ensemble learning methods
[14, 19] and fusion approaches [8] for multiple machine
learning classifiers have also been exploited in order to
enhance the detection accuracy of Android malware apps.
The single classifiers and ensemble methods have achieved
better detection performance compared to traditional
signature-based methods. However, the question: “Which

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

16

are the most effective machine learning techniques to
maximize the performance of Android malware detection”
is still a popular research subject [8, 20-22].
Although many intelligent approaches based on machine
learning have become frequently utilized to detect Android
malware apps in recent years, not much work has focused
on the hybrid intelligent Android malware detection
approaches. Hybrid intelligent approaches can be utilized to
produce promising solutions with a higher detection
accuracy of the Android malware apps, since they benefit
from the advantages of the integrated algorithms and
overcome their individual drawbacks.
Over the past few years, evolutionary algorithms have been
effectively implemented in many recent applications and
fields, including optimization, feature selection, pattern
recognition, classification, and clustering. The genetic
algorithm (GA) and particle swarm optimization (PSO) are
the most well-known evolutionary algorithms used in
complicated optimization problems. The GA is the most
common evolutionary algorithm, based on imitation of
biological evolution in chromosomes. The PSO is a well-
known optimization and search algorithm inspired by the
social and cooperative behavior of birds flocking, which
belongs to a family of evolutionary algorithms.
In this paper, hybrid intelligent evolving approaches based
on support vector machine with evolutionary algorithms are
proposed to enhance Android malware detection. The
proposed methods integrate the attractive advantages of
evolutionary algorithms and the good performance of the
support vector machine in order to produce hybrid
intelligent evolving Android malware detection approaches
with outstanding performance. In these proposed hybrid
intelligent evolving approaches, genetic algorithm (GA)
and particle swarm optimization (PSO) are adopted to
effectively solve the optimization problem of support vector
machine, so-called Droid-HESVMGA and Droid-
HESVMPSO, in order to help in increasing the accuracy of
the Android malware detection.
The remainder of the paper is arranged as follows. Section
2 reviews some existing works on intelligent Android
malware detection based on static malware analysis.
Section 3 describes the basics of android malware
Applications including Android Architecture, Android
Malware, and Android Permissions. The genetic algorithm
and particle swarm optimization are described in Section 4.
Section 5 provides an explanation of the support vector
machine. Section 6 presents a methodology of the proposed
hybrid intelligent android malware detection based on
evolving SVM with GA and PSO. The experimental results
of the proposed hybrid evolving intelligent android
malware detection are analyzed and discussed in Section 7.
Finally, the conclusion of the proposed work is given in
Section 8.

2. Related Work

In order to overcome the difficulties faced by the
conventional signature-based methods, machine learning
techniques have been employed to discriminate the new
malware from benign apps [8, 19, 20, 23]. In Android
malware detection, the static analysis-based machine
learning approach and the dynamic analysis-based machine
learning approach are two popular approaches used to
detect the malware apps.
In the static analysis-based approach, the machine learning
models are trained based on static features of Android apps,
which are extracted without installing or running these
Android apps, in order to detect the malware applications.
On the other hand, the dynamic-based approach requires
installing, running and then monitoring the dynamic
behavior of the Android application to collect the dynamics
features in order to train the machine learning models.
The static malware analysis-based malware detection
methods are easier, faster, and less resource-intensive [8,
20-22] compared with the dynamic analysis-based methods,
since they do not require the android applications to be
installed or run. Therefore, much emphasis in this study is
focused on intelligent malware detection methods based on
static malware analysis.
In recent years, several existing intelligent methods using
machine learning have been developed based on static
features of Android apps in order to detect Android malware
applications. Support vector machine (SVM) [10-12, 16],
naive Bayes [11, 13], k-NN [7, 9, 13], neural network [11],
decision tree [7, 12], random forest [7, 11, 12, 14, 16],
regularized logistic regression [6], neuro-fuzzy [24], hybrid
evolving neuro-fuzzy [20], deep belief networks [15, 23],
ensemble learning method [14, 19], fusion approach [8] and
other machine learning classifiers have been trained and
constructed using static features for detecting Android
malware applications. Some previous intelligent Android
malware detection methods based on the static malware
analysis are summarized in Table 1.
By examining the existing works in Table 1, it can be
observed that permissions, intents, and API calls were
extracted and then used to train some popular conventional
machine learning classifiers. In this study, instead of the
classical machine learning classifiers used in the literature,
alternative hybrid intelligent approaches based on evolving
support vector machine with a genetic algorithm and a
particle swarm optimization are suggested in order to
enhance the performance of Android malware detection.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

17

Table 1: Summary of the existing intelligent Android malware detection based on the static malware analysis
Approach Features Machine learning Feature selection Dataset source

DroidMat([9] Permissions, intents, and
API calls k-means and k-NN None Google Play and

Contagio Mobile

DREBIN [10] Permissions, API calls
and network addresses SVM None

Several markets,
Google Play and

Genome
Mining API calls and

permissions for Android
malware detection [13]

Permissions and API
calls

Naive Bayes and k-
NN

Correlation-based
feature selection and

information gain

Official, third party
Android markets and

Android malware
Genome project

Static detection of Android
malware by using permissions

and API calls [11]
Permissions and API

calls
Naive Bayes, SVM,
MLP, random forest,

and J48
Information

gain
Anzhi Market and
Contagio Mobile

Exploring Permission-induced
Risk in Android Applications

for Malicious Application
Detection [12]

Individual permission
and group of
collaborative
permissions.

SVM, decision
trees, and random

forest.

Forward selection
(SFS) and principal
component analysis

(PCA)

Google Play
, Mal Zhou and

VirusShare
A probabilistic discriminative
model for Android malware
detection with decompiled

source code [6]
API calls and permissions Regularized logistic

regression
Information gain and

Chi-square
Google Play and

Genome

K-ANFIS [24] Permission-based
features

kEFCM-based
Adaptive Neuro-
Fuzzy Inference

System

Information gain
ratio

Google Play and
Genome

High Accuracy Android
Malware Detection Using
Ensemble Learning [14]

Permissions and API call
features

Random forest as
an ensemble

learning method
None McAfee’s internal

repository

DroidDetector [15]
Static analysis-based
features and dynamic

analysis -based features
Deep belief
networks

Frequency analysis -
based feature

evaluation

Google Play, Contagio
Community and
Genome Project

EHNFC [20] Permission-based
features

Hybrid neuro-fuzzy
classifier with

evolving clustering
Information gain

ratio
Google Play and
Genome Project

Identification of malicious
Android app using manifest

and opcode features [16]

Static features from the
manifest and executable

files

SVM, random
forest, and rotation

forests

Entropy based
Category Coverage

Difference and
Weighted Mutual

Information

Google Play store and
Drebin dataset

DAPASA [7]
Utilizing sensitive

subgraphs to construct
five features depicting

invocation patterns.

Random forest,
decision tree, k-NN,

and PART
None

Google Play, Anzhi
Market, Android
Malware Genome

Project and
piggybacked families

Detecting Android malicious
apps and categorizing benign

apps with ensemble of
classifiers [19]

11 types of static features
from each app to
characterize the

behaviors of the app

Ensemble of
multiple classifiers

SVM was used to
sort the weight of

each feature
Markets in China called

Anzhi and Wild

DroidFusion [8] Permissions, API calls
and intents Fusion approach Information gain DREBIN and

Malgenome project

Compared to the existing studies, the hybrid evolving
support vector machine proposed for Android malware
detection is more accurate and effective than the usual
support vector machine and other classical machine
learning classifiers used in the literature.
As in most of the existing intelligent approaches, the most
important permission features were extracted and then used
to train the proposed hybrid evolving support vector
machine. Compared to intents and API call features, the
permission features are the most common and considered
the first line of defense in the Android system. Furthermore,
extracting the permission features and then applying them
on machine learning models are easier, and consume fewer
resources and require a shorter time [20, 24]. Thus, the
permission features are more suitable to be used in the
mobile environment to train the machine learning models.

3. Android Malware Applications

3.1 Android Architecture

The Android platform was introduced by Google on
September 23, 2008 based on a Linux kernel, and has
become a leading mobile operating system. Android
consists of four layers: the Linux kernel layer, a native
library layer, an application framework layer, and the
application layer [25, 26].
The most significant layer that represents the core of the
Android system is the Linux kernel layer. This layer is
responsible for managing the services and hardware's
functions. The native library layer deploys system libraries
and the Android Dalvik virtual machine, which provides a

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

18

variety of functionalities and runtime environment for
Android applications. The application framework layer is
responsible for the Android APIs required to interact with
the running apps and manage the essential functions.
Eventually, all Android functionalities and applications are
running and provided to the end-user by the application
layer.

3.2 Android Malware

Malware is a malicious software and refers to several forms
of hostile or intrusive applications, which are intentionally
developed to damage, disrupt, steal, or primarily inflict
some illegitimate and harmful actions on the computer or
network. There are several common several types of
Android malware, depending on their purpose, such as
worm, virus, trojan, adware, spyware, rootkit, backdoor,
keylogger, ransomware and remote administration tools
(RAT).
Basically, Android applications are Java codes compiled by
the Android SDK tools into an Android package (APK).
The APK file is a type of archive files with a .apk suffix,
which consists of the files and folders shown in Table 2 that
are used by Android to install the application [27, 28].

Table 2: Components of Android package (APK)
Component Description

AndroidManifest.xml
A meta-data XML file including

information related to application’s
descriptions, package information

and security permissions.

Classes.dex

A file that contains the source code
of an Android application written in

Java programming language
compiled into .dex format (Dalvik

Executable)
Resources.arsc A binary XML file that contains

precompiled application resources

Resources folder
(res/)

A folder that includes non-pre-
compiled resources that the

application needs in runtime, such as
pictures, layout, use of a database

and data stored in the database, etc.

Assets (assets/)
An optional folder that contains

application assets that can be
retrieved by AssetManager

Libraries (lib/)
An optional folder that contains

compiled code that is specific for
different processors, such as arm,

mips, x86, etc

META-INF
A folder that contains

MANIFEST.MF file, APK signature,
etc.

According to the McAfee threat report in September 2018
[29] there were over 25 million mobile malware
applications as shown in Fig. 1. According to this report,
over 2 million new mobile malware applications had been
detected during the second quarter of 2018 only, mostly
targeting Android, due to the vast distribution of Android
devices, as well as the relatively open system for the
distribution of apps.

Fig. 1 The total number of mobile malware applications, mostly
targeting Android [29]

Over the past few years, the fast growth rate of Android
applications has led to a huge increase in developing and
spreading Android malware applications by cyber attackers
and criminals. Although numerous malware apps are
frequently detected, other new Android malware Apps
cannot be accurately discovered in the early stages by third-
party Android markets, even by the official Market [4, 5].
Android malware apps can use different techniques in order
to hijack the mobile device and access personal data.
Primarily, repackaging, update attack and drive-by-
download techniques are used to trick users into
downloading the Android malware apps [27, 30]. In
repackaging, some popular applications from legitimate
sources are downloaded and disassembled by the malware
developer. The malware developer can enclose the malware
payload to these popular applications, and then resubmit
them to official or other Android markets. Over 80% of
Android malware is a repackaged application. In an update
attack, the malware developer attaches only an update
component to these popular applications, instead of
attaching the whole payload into the application code. The
update component can then download the entire malware
payload in the app’s runtime. The drive-by-download is a
conventional social-engineering method implemented in
the mobile devices field, through which the malware
developer deceives the mobile user into installing
interesting apps, which will perform other expected actions.

3.3 Android Permissions

In the Android platform, the security issue is mainly based
on permissions-based mechanism, which is utilized to
protect Android users from undesirable activities of some
Android apps, such as accessing sensitive user data, system
resources, and other app's data. The Android platform has
more than 130 official permissions [30, 31, 32]. Some
permissions are commonly requested by the malware and
benign apps while other permissions are rarely requested.
At the installation time, some permissions are immediately
granted by Android without user confirmation, while the

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

19

user’s approval is required with other permissions,
according to the category of the permission requested, either
normal or potentially dangerous permission.
The low-risk permissions are classified under normal
permission category, which are not particularly harmful and
do not present any risk to the user's privacy or the device's
operation such as INTERNET,
ACCESS_NETWORK_STATE, and
MODIFY_AUDIO_SETTINGS [20, 30]. On the other hand,
the higher risk permissions could potentially affect the
user's privacy, hardware, software or system. These high-
risk permissions are categorized under the dangerous
permission category. The malware apps are highly
interested in requesting the dangerous permissions to gain
the required privileges in order to access sensitive
information. For example, READ_CONTACTS,
WRITE_CONTACTS, CALL_PHONE, and SEND_SMS
are four dangerous permissions, requiring the explicit
approval of the user at the installation time [20, 30].
The permission request can be approved or rejected by the
user without stopping the application, which will run with
limited capabilities. In Android 6.0 or higher, the dangerous
permissions must be granted by user at runtime, in the case
where the user is not notified of any app permissions at the
installation time. Even if the dangerous permissions are
granted by the user at the installation time, the user can
enable and disable permissions one-by-one in system
settings at runtime [33].

4. Support Vector Machine

The support vector machine (SVM) was introduced by
Vapnik [34] and has become one of the most popular
machine learning techniques. SVM has many advantages
over others. The generalization ability of SVM can be
maximized, since SVM is trained to maximize the margin.
In addition, there is a global optimum solution in SVM
training. Furthermore, SVM is robust to outliers, because
the margin parameter C controls the misclassification error.
Therefore, SVM has been successfully applied in many
complex classification applications.
Consider a set of training data vectors 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛},
𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑, and a set of corresponding labels 𝑌𝑌 = {𝑦𝑦1, … ,𝑦𝑦𝑛𝑛},
𝑦𝑦𝑖𝑖 ∈ {1,−1} . SVM aims to maximize the margin between
the separating hyperplane and the closest instance in each
class in order to obtain the ideal hyperplane between the two
different classes. The hyperplane can be expressed as in Eq.
(1).

(𝑤𝑤. 𝑥𝑥) + 𝑏𝑏 = 0,𝑤𝑤 ∈ 𝑅𝑅𝑑𝑑 , 𝑏𝑏 ∈ 𝑅𝑅 (1)

where the vector w defines the boundary, x is the input
vector of dimension d, and b is a scalar threshold.

The optimal hyperplane can be obtained as a solution to the
following optimization problem.

minimize
1
2
‖𝑤𝑤‖2 (2)

subject to 𝑦𝑦𝑖𝑖�(𝑤𝑤. 𝑥𝑥𝑖𝑖) + 𝑏𝑏� ≥ 1 ,∀𝑖𝑖 (3)

In real-world applications, the data are usually influenced
by outliers, which are affected by noise. The decision
boundaries can be softened by introducing a slack positive
variable ξ for each training pattern. Eq. (4) is called the
primal optimization of SVM.

minimize
1
2
‖𝑤𝑤‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝐿𝐿

𝑖𝑖=1

 (4)

subject to 𝑦𝑦𝑖𝑖�(𝑤𝑤. 𝑥𝑥𝑖𝑖) + 𝑏𝑏� ≥ 1 − 𝜉𝜉𝑖𝑖 ,∀𝑖𝑖 (5)

where C is a positive regularization constant, which controls
the degree of penalization of ξ . Therefore, C controls
allowable errors in the trained solution: high C permits few
errors while low C allows a higher proportion of errors in
the solution.
To solve the convex optimization problem, Lagrangian
multipliers 𝛼𝛼𝑖𝑖 are used to produce the to the dual
optimization problem, as shown in Eq. (6), which must be
solved in order to find a separating maximum margin
hyperplane for a given set of data points.

maximize �𝛼𝛼𝑖𝑖 −
1
2

𝑛𝑛

𝑖𝑖=1

��𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗(𝑥𝑥𝑖𝑖 . 𝑥𝑥𝑗𝑗) (6)

subject to 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 for all 𝑖𝑖 = 1, … ,𝑛𝑛 (7)

and �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑛𝑛

𝑖𝑖=1

 (8)

In most cases, the data points are not linearly separable.
Thus, the SVM will transform the data to a higher-
dimensional space and then classify them using the same
principle as the linear case. A kernel function 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) is
used to perform this transformation and the dot product in a
single step. Thus, the final dual optimization problem using
kernel function can be expressed using Eq. (9) to find a
separating maximum margin hyperplane for non-separable
data points.

maximize �𝛼𝛼𝑖𝑖 −
1
2

𝑛𝑛

𝑖𝑖=1

��𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) (9)

subject to 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 for all 𝑖𝑖 = 1, … ,𝑛𝑛 (10)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

20

and �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑛𝑛

𝑖𝑖=1

 (11)

The dual optimization problem of SVM is usually solved by
classical optimization methods such as Sequential Minimal
Optimization (SMO) [35], Kernel Adatron (KA) [36, 37]
and Quadratic Program (QP)[38]. However, these classical
optimization methods are based on an analytical approach
or complex mathematical calculations. Furthermore, and
their performances are modest compared to those of the
evolutionary algorithms used in this paper.

5. Evolutionary Algorithms

In the past few years, evolutionary algorithms have become
a very popular research topic, which have been effectively
employed in many applications and fields such as
optimization, feature selection, pattern recognition,
classification, and clustering. Evolutionary algorithms are a
set of modern metaheuristic optimization algorithms based
on the evolution of populations, which are primarily
developed to solve complicated optimization problems.
The most well-known evolutionary algorithms used in
optimization problems are the genetic algorithm (GA) [39]
and particle swarm optimization (PSO) [40].

5.1 Genetic Algorithm

The genetic algorithm [39] is the most common
evolutionary algorithm based on the simulation of the
biological evolution process in chromosomes. In other
words, the genetic algorithm mimics the survival of the
fittest among chromosomes of consecutive generations in
order to solve a certain optimization problem. The genetic
algorithm (GA) is commonly utilized to solve the
optimization problems with a large search space [41, 42].
In GA, all possible candidate solutions construct the search
space or population of a specific optimization problem. A
basic GA mainly implements the following four major
steps:

i. Encoding of chromosomes: Each candidate
solution represents chromosome in a population,
which is encoded with several genes. Each gene is
a small part of a candidate solution, which can
represent one parameter to be optimized.

ii. Initialization of the population: An initial
population of chromosomes is randomly generated,
which consists of the initial solutions of a specific
optimization problem.

iii. Fitness evaluation: The GA computes the fitness
value of each individual chromosome, which
indicates the goodness of the solution provided by
the individual chromosome. The chromosomes in
the population are then evaluated using the fitness

function. The fittest chromosomes will be given
more opportunities to reproduce and evolve.

iv. Reproduction: As in biological evolution, a GA
can recombine the fittest chromosomes to create
new better chromosomes and solutions. The
reproduction process is conducted through three
genetic operators: selection, crossover, and
mutation.
• Selection: The better chromosomes are

selected based on the fitness values to become
parents to produce new chromosomes
(offspring).

• Crossover: In the crossover operator, GA
randomly chooses a crossover point, where
two parent chromosomes break, and then
exchanges the chromosome parts after that
point in order to create new offspring.

• Mutation: The mutation operator changes the
gene value in some randomly chosen location
of the chromosome.

Some selected chromosomes are iteratively evolved to
produce a new generation of new better solutions. The
reproduction and fitness evaluation are repeated until the
termination criterion is satisfied.

5.2 Particle Swarm Optimization

The particle swarm optimization algorithm (PSO) is a
common population-based optimization algorithm tied to
evolutionary computation, which was introduced by
Kennedy and Eberhart [40]. PSO is a simpler and faster
evolutionary algorithm and has fewer parameters compared
to GA. Therefore, PSO has been widely applied in many
problems and areas such as optimization, feature selection,
pattern recognition, classification and clustering [42-46].
Unlike the chromosome’s evolution in GA, PSO is inspired
by the social behavior of birds flocking in interacting and
cooperating to find food. Like evolutionary algorithms, a
PSO population (called a swarm) consists of candidate
solutions or individuals (called particles) which are
randomly initialized. Each particle then moves in the search
space with a velocity 𝑣𝑣 in order to find the optimal solution.
The particles learn over time based on their own experience
and the experience of the other particles in the swarm.
Le 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1 ,𝑥𝑥𝑖𝑖2 , 𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖) be the current position of
particle i, and 𝑣𝑣𝑖𝑖 = (𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖2, 𝑣𝑣𝑖𝑖3 , … , 𝑣𝑣𝑖𝑖𝑖𝑖)be the velocity of
particle i, where D is the dimensionality of the search space.
To find the best solution in PSO, each particle changes its
velocity, as shown in Eq. (12) and Eq. (13), according to
pbest and gbest, which represent the best previous position
of a particle (personal best position) and the best position
obtained by the whole population (global best position),
respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

21

𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑑𝑑𝑡𝑡+1 (12)

𝑣𝑣𝑖𝑖𝑑𝑑𝑡𝑡+1 = 𝑤𝑤 ∗ 𝑣𝑣𝑖𝑖𝑑𝑑𝑡𝑡 + 𝑐𝑐1 ∗ 𝑟𝑟1 ∗ (𝑝𝑝𝑖𝑖𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡)
+ 𝑐𝑐2 ∗ 𝑟𝑟2(𝑝𝑝𝑔𝑔𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡) (13)

where d=1,2,3 …D, t represents the tth iteration, 𝑝𝑝𝑖𝑖𝑑𝑑 and
𝑝𝑝𝑔𝑔𝑑𝑑 denote the pbest and gbest, 𝑤𝑤 is inertia weight, 𝑐𝑐1 and
𝑐𝑐2 are acceleration parameters which are commonly set to
2.0, and 𝑟𝑟1 and 𝑟𝑟2 are random values in the range [0, 1].

6. Methodology

This section will describe the methodology of the proposed
hybrid intelligent Android malware detection approaches
using evolving support vector machine (SVM) based on
genetic algorithm (GA) and particle swarm optimization
(PSO). In the proposed approaches, GA and PSO are
adopted to solve the dual optimization problem in SVM, so-
called Droid-HESVMGA and Droid-HESVMPSO, in order
to help in increasing the accuracy of the Android malware
detection. Fig. 2 shows the methodology of the hybrid
evolving support vector machine approach suggested for
Android malware detection.

6.1 Collection of Malware and Benign Apps

Numerous researchers have collected and analyzed many
malware and benign apps from several sources such as
Google Play store [47], Genome [48], Contagiodump [49],
VirusTotal [50], MalShare[51], VirusShare[52] , and
theZoo [53].

In this study, we used the same dataset as that used in [20],
which consists of 500 malware and benign apps, in order to
evaluate the performance of the proposed methods. In the
dataset used in this study, 250 benign apps and 250 malware
apps were collected from official Google Play store [54] and
Genome [55], respectively, which are the most common
sources of benign and malware apps. These apps have
many permission features that can be used as input features
to train and test the proposed hybrid intelligent Android
malware detection.

6.2 Feature Extraction

The extraction and selection of the important features of
Android apps play an extremely important role in
recognizing malware from benign apps. In this step, some
popular permission features of apps are extracted from these
Android apps since the permissions features are the most
significant features that can be utilized in Android malware
detection.
In the development phase of an Android app, the developers
of Android apps must declare all the permissions required
to access system resources using <uses-permission> tags in
the AndroidManifest.xml [31] as shown in Fig. 3.
As can be seen from Fig. 3, AndroidManifest.xml is an
XML file that includes the permission features of Android
applications. In this study, Apktool was used to decompress
the Android application package (APK file) and then extract
the AndroidManifest.xml in order to obtain the permission
features. Only 50 frequently requested permissions were
collected from Android applications to be used as input
features to train and test the proposed hybrid Droid-
HESVMGA and Droid-HESVMPSO.

Fig. 2 A methodology of the proposed hybrid intelligent android malware detection using evolving SVM based on GA and PSO

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

22

Fig. 3 The permissions declared to access system resources in
AndroidManifest.xml of Android apps

6.3 Dataset Preparation

In this phase, the permission features of Android apps are
converted into numerical form to be effectively used to train
and construct the proposed hybrid Droid-HESVMGA and
Droid-HESVMPSO. Initially, a base vector is prepared,
which includes a set of the frequently requested permissions
that can be effectively utilized in Android malware
detection. For each Android app, a binary vector of
permission features is then created as an instance of the base
vector.
Each Android app represents a single training pattern,
which is encoded with a binary vector of permission
features and a class label indicates whether the Android app
is benign or malware. A permission feature is assigned to
binary value based on whether the permission feature is
requested or not by the Android apps. The permission
feature is represented by 1 in the binary vector if it is
requested by the app. Otherwise, the permission feature is
set to 0 in the binary vector. Furthermore, the last value in
the binary vector represents the class of the Android app,
either a malware or a benign app.

6.4 Feature Selection

In the mobile environment, feature selection is a vital step
used to remove redundant and irrelevant permission
features that can produce noisy data, causing a negative
impact on the performance of intelligent classifiers.
Therefore, a feature selection method should be used to
identify the most significant permissions that can be
effective in distinguishing malware from benign apps.
Generally, there are two primary feature selection
approaches used in data mining: the filter approach and the
wrapper approach. The methods under the filter feature
selection approach are easier and faster compared to the
methods of the wrapper approach, since they analyze and
evaluate the features without training of the classifiers.
Hence, the feature selection methods under the filter
approach are more suitable to be used in the mobile
environment.

In this study, one of the most common filter-based methods,
known as information gain ratio, is applied to select highly
significant permission features of Android apps.
Eq. (14) computes the information gain, Gain(S, A) of a
feature A, relative to a collection of examples S.
𝐺𝐺𝐺𝐺𝑖𝑖𝑛𝑛(𝑆𝑆,𝐴𝐴) = 𝐸𝐸𝑛𝑛𝐸𝐸𝑟𝑟𝐸𝐸𝑝𝑝𝑦𝑦(𝑆𝑆)

− �
|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝑣𝑣∈𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝐴𝐴)

𝐸𝐸𝑛𝑛𝐸𝐸𝑟𝑟𝐸𝐸𝑝𝑝𝑦𝑦(𝑆𝑆𝑣𝑣) (14)

where Value(A) is the set of all possible values for a feature
A, and 𝑆𝑆𝑣𝑣 is the subset of S for which feature A has value
v. Entropy(S) is defined as Eq. (15):

𝐸𝐸𝑛𝑛𝐸𝐸𝑟𝑟𝐸𝐸𝑝𝑝𝑦𝑦(𝑆𝑆) = −�𝑃𝑃𝑟𝑟(
/𝐶𝐶/

𝑗𝑗=1

𝑐𝑐𝑗𝑗) 𝑙𝑙𝐸𝐸𝑙𝑙2 𝑃𝑃𝑟𝑟(𝑐𝑐𝑗𝑗) (15)

where 𝑃𝑃𝑟𝑟(𝑐𝑐𝑗𝑗) denotes the probability of class in S. It is
the number of examples of class 𝑐𝑐𝑗𝑗 in S divided by the total
number of examples in S.
The information gain ratio is an enhancement of the
information gain that decreases its bias toward high-branch
attributes. The information gain ratio is employed in feature
selection to achieve better performance. In the information
gain ratio, Eq. (16) is used in order to evaluate the features:

𝐺𝐺𝐺𝐺𝑖𝑖𝑛𝑛 𝑟𝑟𝐺𝐺𝐸𝐸𝑖𝑖𝐸𝐸(𝑆𝑆,𝐴𝐴) =
𝐺𝐺𝐺𝐺𝑖𝑖𝑛𝑛(𝑆𝑆,𝐴𝐴)

𝑆𝑆𝑝𝑝𝑙𝑙𝑖𝑖𝐸𝐸 𝑖𝑖𝑛𝑛𝑖𝑖𝐸𝐸𝑟𝑟𝑖𝑖𝐺𝐺𝐸𝐸𝑖𝑖𝐸𝐸𝑛𝑛(𝑆𝑆,𝐴𝐴)
 (16)

where Split information (S, A) is computed using Eq. (17):

Split information(𝑆𝑆, A) = −�
|𝑆𝑆𝑖𝑖|
|𝑆𝑆|

𝑘𝑘

𝑖𝑖=1

𝑙𝑙𝐸𝐸𝑙𝑙2
|𝑆𝑆𝑖𝑖|
|𝑆𝑆| (17)

where 𝑆𝑆1 through 𝑆𝑆𝑘𝑘 are the k subsets of examples resulting
from partitioning S by the k-values feature A.
In the proposed hybrid Droid-HESVMGA and Droid-
HESVMPSO, only the best 25 permission features that have
a high impact on Android malware detection are selected
using the information gain ratio (IGR), in order to
contribute toward enhancing the performance of the
evolving support vector machine classifiers suggested to
detect the Android malware apps.

6.5 Training of Droid-HESVMGA and Droid-
HESVMPSO

In this phase, the proposed Droid-HESVMGA and Droid-
HESVMPSO are trained using the prepared training dataset
with the Android permission features selected by
information gain ratio. The significant permission features
are used as input features of Droid-HESVMGA and Droid-
HESVMPSO, which are trained in order to classify the
Android apps into two classes, either the malware or benign
apps.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

23

Unlike the conventional SVM, the GA and PSO are used in
the proposed Droid-HESVMGA and Droid-HESVMPSO to
solve the dual optimization problem in support vector
machine in order to increase accuracy of the Android
malware detection.
In the proposed Droid-HESVMGA and Droid-
HESVMPSO, each candidate solution or individual is
represented by a vector and denoted as a chromosome in
population GA or a particle in the PSO swarm. The GA
chromosome and position of each PSO particle is
represented by a vector of real values, in which each value
represents the value of the Lagrange multiplier for a training
example as shown in Fig. 4. Fig. 4 illustrates an example
of encoding the Lagrange multipliers vector in a GA
chromosome and PSO particle in the proposed Droid-
HESVMGA and Droid-HESVMPSO.

𝒚𝒚 𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 𝑦𝑦𝑛𝑛−1 𝑦𝑦𝑛𝑛

𝜶𝜶 𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 ………………. 𝛼𝛼𝑛𝑛−1 𝛼𝛼𝑛𝑛

Fig. 4 Encoding of Lagrange multipliers vector in GA chromosome and
PSO particle

In the evolutionary algorithms, once the candidate solutions
are encoded, the fitness function is used to evaluate the
candidate solutions or individuals. In order to find a
separating maximum margin hyperplane of SVM for a
given set of data points, Eq. (9) is used as the fitness
function in the proposed Droid-HESVMGA and Droid-
HESVMPSO to evaluate the GA chromosomes and PSO
positions.
In the proposed Droid-HESVMGA, an initial population of
chromosomes is randomly generated, which represent the
values of Lagrange multipliers for training patterns. The
chromosomes’ performances are then computed and
evaluated by the fitness function shown in Eq. (9). The GA
will stop the search and return the optimal vector of
Lagrange multipliers if the good fitness or maximum
generations number is reached. Otherwise, the GA
implements selection, crossover, and mutation to produce a
new generation of chromosomes in order to find the optimal
vector of Lagrange multipliers that can maximize the
performance of SVM. The fittest chromosomes are the most
appropriate candidate for mating to produce a new
generation. Crossover and mutation are then employed to
produce child chromosomes, used as alternative
chromosomes to their parent chromosomes in the GA
population. The parent chromosomes are then chosen to
exchange the chromosome genes using the crossover
process to offer a child chromosome with genetic materials.
In GA mutation, a gene in the child chromosome can be
changed to a random value between 0 and C in the proposed
Droid-HESVMGA.

In the proposed Droid-HESVMPSO, an initial swarm of
particles is randomly generated; each particle represents the
value of the Lagrange multiplier for a certain training
example. Each particle’s fitness is then computed using Eq.
(9) and evaluated accordingly. The PSO fitness function
aims at finding a separating maximum margin hyperplane
for given training examples. If the current particle fitness is
better than the best fitness of that particle (pbest), then the
new pbest will be updated to the current particle fitness. The
global best fitness(gbest) is then updated to the particle with
the best fitness value of all the particles. If the stopping
criteria (sufficiently good fitness or maximum iterations)
are met, the PSO will terminate the search and return the
optimal values of the Lagrange multipliers. Otherwise, the
pbest and gbest are utilized to update the velocity and
position for every particle using Eq. (12) and Eq. (13). This
process is repeated until the stop conditions are met.
After solving the optimization problem and obtaining the
Lagrange multipliers by using the GA and PSO, the
proposed Droid-HESVMGA and Droid-HESVMPSO can
be used in Android malware detection. The proposed Droid-
HESVMGA and Droid-HESVMPSO use the decision Eq.
(18) to classify each input vector x into positive or negative
class. In Android malware detection, the positive class
refers to the malware apps, while the negative class
represents the benign apps.

𝑦𝑦(𝑥𝑥) = 𝑠𝑠𝑙𝑙𝑛𝑛 ��𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

+ 𝑏𝑏� (18)

In the proposed Droid-HESVMGA and Droid-
HESVMPSO, the radial basis function (RBF) defined as Eq.
(19) was used as the kernel function 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) , since it
achieved a better performance in many applications
compared to other kernel functions. The parameter 𝛾𝛾
represents the width of the RBF.

𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑝𝑝(− 𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥‖2), 𝛾𝛾 > 0 (19)

7. Analysis and Discussion of Results

7.1 Dataset Collection and Preparation

In this study, the dataset with 500 Android apps used by
[20] was adopted in our experiments in order to train and
evaluate the proposed hybrid intelligent android malware
detection based on the evolving support vector machine:
Droid-HESVMGA and Droid-HESVMPSO. In this dataset,
250 malware apps were collected from official Google Play
[54] while 250 malware apps were collected from Genome
[55], which is commonly used in the literature to collect
malware apps.
In order to prepare the training dataset, the permission
features of these Android apps were extracted and

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

24

converted to binary forms based on whether the permission
feature is requested or not by the Android apps.
Accordingly, the best 25 permissions features were selected
by using information gain ratio in order to help in improving
the performance of the proposed hybrid intelligent Android
malware detection method based on evolving support
vector machine.
7.2 Evaluation Measures
In order to evaluate the proposed methods, Droid-
HESVMGA and Droid-HESVMPSO were trained and
evaluated using 5-fold cross-validation.
In our experiments, we used five popular metrics, which are
commonly used in the literature for detecting malware apps,
to evaluate the performance of the proposed Droid-
HESVMGA and Droid-HESVMPSO. Correct classification
rate, true positive rate, false positive rate, false negative rate
and area under ROC curve were calculated in order to judge
the effectiveness of the proposed Droid-HESVMGA and
Droid-HESVMPSO. The correct classification rate (CCR)
is the rate of malware and benign apps that are correctly
classified with respect to all Android apps. True positive
rate (TPR) is the rate of malware apps classified as malware
out of total malware apps. False positive rate (FPR) is the
rate of benign apps classified as malware out of total benign
apps. False negative rate (FNR) is the rate of malware apps
classified as benign out of total malware apps. The area
under ROC curve (AUC) is a measure used to evaluate the
trade-off between TPR and FPR.
Table 3 shows the measures used to evaluate the
performance of proposed evolving support vector machine

classifiers in Android malware detection. In Table 3, true
positive (TP) is the number of correctly classified malware
apps, false negative (FN) is the number of incorrectly
classified malware apps, true negative (TN) is the number
of correctly classified benign apps, and false positive (FP)
is the number of incorrectly classified benign apps.

7.3 Comparison Against Popular Machine Learning
Classifiers

In this study, the proposed Droid-HESVMGA and Droid-
HESVMPSO were trained and compared with two common
implementations of SVM, known as LibSVM [56] and
mySVM [57], which use the classical optimization
techniques to solve the quadratic programming problem.
In all SVMs, RBF was used as the kernel function while the
best parameters C (margin softness) and γ (RBF width)
were obtained by using a grid search algorithm in order to
achieve the best performance for Android malware
detection. In addition, the proposed Droid-HESVMGA and
Droid-HESVMPSO were compared with other four
machine learning classifiers commonly used in the
literature to detect the Android malware applications: back-
propagation neural network (BPNN), naïve Bayes classifier
(NB), random forest (RF), and k-Nearest neighbour (kNN).
In the proposed Droid-HESVMGA and Droid-
HESVMPSO, it was found by a trial-and-error basis that the
parameters settings of the GA and PSO shown in Tables 4
and 5 produced good results.

Table 3: The performance measures used to evaluate the proposed methods
Measure name Formula (%) Description

Correct classification rate
(CCR) 𝐶𝐶𝐶𝐶𝑅𝑅 =

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇

× 100
The rate of malware and benign apps

correctly classified with respect to all the
apps.

True positive rate (TPR) 𝑇𝑇𝑃𝑃𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇
× 100 Rate of malware apps classified as

malware out of total malware apps.

False positive rate (FPR) 𝐹𝐹𝑃𝑃𝑅𝑅 =
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇
× 100 Rate of benign apps classified as malware

out of total benign apps.

False negative rate (FNR) 𝐹𝐹𝑇𝑇𝑅𝑅 =
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑃𝑃
× 100 Rate of malware apps classified as benign

out of total malware apps.

Area under ROC curve (AUC) 𝐴𝐴𝐴𝐴𝐶𝐶 =
1 + 𝑇𝑇𝑃𝑃𝑅𝑅 − 𝐹𝐹𝑃𝑃𝑅𝑅

2
× 100 This measures the trade-off between TPR

and FP

Table 4: Parameters settings of GA used in the proposed Droid-
HESVMGA

Parameter Value
Population size 20

Maximum generation 1000
Crossover probability 0.9

Mutation type Switching mutation
Selection scheme Tournament (0.75)

Table 5: Parameters settings of PSO used in the proposed Droid-
HESVMPSO

Parameter Value
Number of particles 20
Maximum iterations

(generations) 1000
C1 2
C2 2

Stop condition maximum number of
iterations

Table 6 shows the performance in terms of CCR, TPR, FPR,
FNR, and AUC for the proposed Droid-HESVMGA and
Droid-HESVMPSO against other machine learning

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

25

classifiers used in Android malware detection. It is clear
from Table 6 that the proposed Droid-HESVMGA and
Droid-HESVMPSO outperformed BPNN, NB, RF, kNN,
mySVM, and LibSVM in most of the performance
measures.

Table 6: Comparison of the proposed Droid-HESVMGA and Droid-
HESVMPSO against popular machine learning classifiers used in

Android malware detection
 CCR TPR FPR FNR AUC

BPNN 87.80 91.20 15.60 8.80 95.40
NB 74.80 99.20 49.60 0.80 70.60
RF 88.80 89.60 12.00 10.40 97.30

kNN 86.80 77.60 4.00 22.40 95.70
mySVM 82.00 85.60 21.60 14.40 96.10
LibSVM 88.20 91.60 15.20 8.40 96.20
Proposed

Droid-HESVMGA 95.60 98.00 6.80 2.00 96.90
Proposed

Droid-HESVMPSO 94.80 98.00 8.40 2.00 96.00

As can be observed from Table 6, the proposed Droid-
HESVMGA and Droid-HESVMPSO achieved much better
CCR than other machine learning classifiers used in
Android malware detection. In particular, the proposed
Droid-HESVMGA produced the highest CCR (95.60%),
followed by Droid-HESVMPSO (94.80%), among the other
machine learning classifiers. This indicates that the
proposed Droid-HESVMGA and Droid-HESVMPSO were
able to correctly detect both malware and benign apps with
respect to all the Android apps.
In terms of other measures, the results shown in Table 6
demonstrate that the proposed Droid-HESVMGA and
Droid-HESVMPSO also achieved better performance in
both TPR and FPR compared to other machine learning
classifiers used in Android malware detection. Actually,
there is a trade-off between TRR and FPR. Therefore, a
balanced performance between TPR and FPR should be
provided in a good malware detection system.
 Although the highest TPR was accomplished by NB, NB
also produced the poorest FPR among other machine
learning classifiers used in this study. This was due to NB
produced unbalanced detection between malware and
benign apps. This negatively affected the overall accuracy
and AUC of NB used in Android malware detection. On the
other hand, the proposed Droid-HESVMGA and Droid-
HESVMPSO produced balanced detection performance
between the positive and negative classes in both TRR and
FPR. This indicates that the proposed Droid-HESVMGA
and Droid-HESVMPSO were able to precisely detect both
malware and benign apps. Consequently, the proposed
Droid-HESVMGA and Droid-HESVMPSO achieved better
performance in terms of the overall accuracy (CCR), TPR ,
FPR and AUC compared to the other machine learning
classifiers.
In addition, Table 6 presents the performance in terms of
FNR for the proposed Droid-HESVMGA and Droid-
HESVMPSO compared to other machine learning
classifiers. FNR is also an important measure in Android

malware detection, since it calculates the rate of malware
apps classified as benign out of total malware apps. It can
be seen in Table 6 that the proposed Droid-HESVMGA and
Droid-HESVMPSO achieved lower FNR compared to most
of the other machine learning classifiers used in Android
malware detection. Only 2% of malware apps were
incorrectly classified as benign apps by the proposed Droid-
HESVMGA and Droid-HESVMPSO.

7.4 Comparison Against Other Hybrid Android
Malware Detection Works

In this section, the proposed Droid-HESVMGA and Droid-
HESVMPSO were compared with other existing hybrid
malware detection approaches, which combined several
algorithms into classifiers to enhance the performance of
malware detection. The proposed Droid-HESVMGA and
Droid-HESVMPSO were compared to other previous
works: evolving hybrid neuro-fuzzy classifier (EHNFC)
[20], dynamic evolving fuzzy inference system (DENFIS)
[20, 58] and adaptive fuzzy inference system with triangular
membership function (TRIMF–ANFIS) [20]. For a fair
comparison, the proposed Droid-HESVMGA and Droid-
HESVMPSO were trained and then evaluated using the
same dataset used in these previous works.
The results in Table 7 clearly depict the overall
classification accuracy (CCR), TPR, FPR, FNR and AUC
for the proposed Droid-HESVMGA and Droid-
HESVMPSO compared to those of EHNFC, DENFIS, and
TRIMF–ANFIS.

Table 7: Comparison of the proposed Droid-HESVMGA and Droid-
HESVMPSO against other hybrid Android malware detection works

 CCR TPR FPR FNR AUC
EHNFC 90.00 88.24 5.00 5.00 95.00
DENFIS 82.20 87.50 19.05 12.50 92.20

TRIMF–ANFIS 88.00 78.95 11.11 21.05 93.00
Proposed

Droid-HESVMGA 95.60 98.00 6.80 2.00 96.90
Proposed

Droid-HESVMPSO 94.80 98.00 8.40 2.00 96.00

In terms of CCR, the results in Table 7 show that the
proposed Droid-HESVMGA accomplished the highest
accuracy (95.60%), followed by the proposed Droid-
HESVMPSO (94.80%), EHNFC (90.00%), TRIMF–
ANFIS (88.00%), and EHNFC (82.20%).
In terms of TPR, FPR, and FNR, the proposed Droid-
HESVMGA and Droid-HESVMPSO achieved much better
TPR than EHNFC, DENFIS, and TRIMF–ANFIS.
Furthermore, the lowest FNR (only 2.00%) was
accomplished by the proposed Droid-HESVMGA and
Droid-HESVMPSO. Meanwhile, the proposed Droid-
HESVMGA and Droid-HESVMPSO produced lower FPR
compared to the FPRs obtained by DENFIS and TRIMF–
ANFIS. This was primarily due to the capability of the
proposed Droid-HESVMGA and Droid-HESVMPSO to
successfully detect both malware and benign apps. On the

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

26

other hand, EHNFC performed unbalanced performance
between malware and benign apps, since it produced lower
TPR and the best FPR among other malware detection
approaches.
The best TPR and FPR of the proposed Droid-HESVMGA
and Droid-HESVMPSO produced the best AUC (96.00%)
among the AUCs achieved by other malware detection
approaches. This was because the AUC metric is used to
measure the trade-off between TPR and FPR, as shown in
Table 3. The results in Table 7 demonstrate that the
proposed Droid-HESVMGA had the highest AUC
(96.90%), followed by Droid-HESVMPSO (96.00%),
EHNFC (95.00%), TRIMF–ANFIS (93.00%), and then
DENFIS (92.20%).

8. Conclusion and Future Work

This paper has presented a methodology for proposed
hybrid intelligent Android malware detection approaches
using evolving support vector machine based on
evolutionary algorithms. In the proposed hybrid intelligent
Android malware detection approaches, GA and PSO were
exploited in SVM to solve the dual optimization problem,
referred to as Droid-HESVMGA and Droid-HESVMPSO,
in order to enhance the detection accuracy of Android
malware apps. The proposed Droid-HESVMGA and Droid-
HESVMPSO produced promising solutions with higher
detection accuracy of the Android malware apps, since they
had the potential gains derived from exploiting both GA and
PSO optimization methods in SVM classifier. The
experimental results demonstrated that the proposed Droid-
HESVMGA and Droid-HESVMPSO accomplished much
better CCRs than popular machine learning classifiers and
other existing hybrid malware detection approaches used in
Android malware detection. Furthermore, the best TPR,
FPR, FNR and AUC measures were accomplished by the
proposed Droid-HESVMGA, followed by the proposed
Droid-HESVMPSO.
In this study, the proposed Droid-HESVMGA and Droid-
HESVMPSO were trained using only the permission
features of Android malware applications. The proposed
Droid-HESVMGA and Droid-HESVMPSO can be
improved further by utilizing the intents and API call
features of Android malware applications in the training
phase.

Acknowledgment

This project was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah, under
grant No. (D-212-830-1440). The authors, therefore,
gratefully acknowledge the DSR technical and financial
support.

References
[1] A. Boxall, In 2020 6.1 Billion People Will Use A Smartphone

Digital Trends, 2019. On the WWW, URL
https://www.digitaltrends.com/mobile/smartphone-users-
number-6-1-billion-by-2020

[2] N. Milosevic, A. Dehghantanha, and K. K. R. Choo,
“Machine learning aided Android malware classification,”
Computers and Electrical Engineering, vol. 61, pp. 266–274,
2017.

[3] AppBrain, Number of Android applications on the Google
Play store | AppBrain, 2019. On the WWW, URL
https://www.appbrain.com/stats/number-of-android-apps

[4] W. J. Buchanan, S. Chiale, and R. Macfarlane, “A
methodology for the security evaluation within third-party
Android Marketplaces,” Digital Investigation, vol. 23, pp.
88–98, 2017.

[5] F. Martinelli, I. Matteucci, M. Petrocchi, A. Saracino, G. Dini,
and D. Sgandurra, “Risk analysis of Android applications: A
user-centric solution,” Future Generation Computer Systems,
vol. 80, pp. 505–518.

[6] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic
discriminative model for Android malware detection with
decompiled source code,” IEEE Trans. Depend. Secure
Comput., vol. 12(4), pp. 400–412.

[7] Fan Ming, Liu Jun, Wang Wei, Li Haifei, Tian Zhenzhou, and
Liu Ting, “DAPASA: Detecting Android piggybacked apps
through sensitive subgraph analysis,” IEEE Trans. Inf.
Forensics Security, vol. 12(8), pp. 1772–1785, 2017.

[8] S. Y. Yerima, and S.Sezer, “DroidFusion: A Novel
Multilevel Classifier Fusion Approach for Android Malware
Detection,” IEEE Transactions on Cybernetics, vol. 49(2), pp.
453–466, 2019.

[9] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M Lee, and K.-P Wu,
“DroidMat: Android malware detection through manifest and
API calls tracing,” In Proc. 7th Asia Joint Conf. Inf. Security
(Asia JCIS), pp. 62–69, 2012.

[10] Arp, Daniel, M. Spreitzenbarth, M. Hübner, H. Gascon, and
K. Rieck, “Drebin: Effective and Explainable Detection of
Android Malware in Your Pocket,” In Proceedings 2014
Network and Distributed System Security Symposium, pp. 1–
15, 2014.

[11] P. P. K. Chan, and W.-K. Song, “Static detection of Android
malware by using permissions and API calls,” In Proc. Int.
Conf. Mach. Learn. Cybern., Lanzhou, pp. 82–87, 2014.

[12] Wang, Wei, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang,”
Exploring Permission-Induced Risk in Android Applications
for Malicious Application Detection,” IEEE Transactions on
Information Forensics and Security, vol. 9(11), pp. 1869 –
1882, 2014.

[13] A. Sharma and S. K. Dash, “Mining API calls and
permissions for Android malware detection,” In Cryptology
and Network Security, Cham, Switzerland: Springer Int., pp.
191–205, 2014.

[14] Yerima , S. Sezer, and Igor Muttik, “High Accuracy Android
Malware Detection Using Ensemble Learning,” IET
Information Security, vol. 9(6), pp. 313 – 320, 2015.

[15] Yuan, Zhenlong, Yongqiang Lu, and Yibo Xue.,
“Droiddetector: Android Malware Characterization and
Detection Using Deep Learning,” Tsinghua Science and
Technology, vol. 21(1), pp. 114-123, 2016.

https://www.digitaltrends.com/mobile/smartphone-users-number-6-1-billion-by-2020
https://www.digitaltrends.com/mobile/smartphone-users-number-6-1-billion-by-2020

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

27

[16] M. V. Varsha, P. Vinod, and K. A Dhanya. “Identification of
malicious Android app using manifest and opcode features,”
J. Comput. Virol. Hacking Tech., vol. 13(2), pp. 125–138,
2017.

[17] M. L. Dantas Dias, and A. R. R. Neto, “Evolutionary support
vector machines: A dual approach,” In 2016 IEEE Congress
on Evolutionary Computation, pp. 2185–2192, 2016.

[18] I. Mierswa, “Evolutionary Learning with Kernels: A Generic
Solution for Large Margin Problems,” In Proceedings of the
8th annual conference on Genetic and evolutionary
computation - GECCO ’06 (p. 1553), 2006.

[19] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting
Android malicious apps and categorizing benign apps with
ensemble of classifiers,” Future Generation Computer
Systems, vol. 78, pp. 987–994, 2018.

[20] A. Altaher, “An improved Android malware detection
scheme based on an evolving hybrid neuro-fuzzy classifier
(EHNFC) and permission-based features,” Neural
Computing and Applications, vol. 28(12), pp. 4147–4157,
2017.

[21] A. T. Kabakus, and I. A. Dogru, “An in-depth analysis of
Android malware using hybrid techniques,” Digital
Investigation, vol. 24, pp. 25–33, 2018.

[22] C. Zhao, C. Wang, and W. Zheng, “Android Malware
Detection Based on Sensitive Permissions and APIs,” In
International Conference on Security and Privacy in New
Computing Environments (SPNCE), pp. 96–104, 2019.

[23] E. M. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“MalDozer: Automatic framework for android malware
detection using deep learning,” Digital Investigation, vol. 24,
pp. S48–S59, 2018.

[24] A. Shubair, and A. Altaher, “Intelligent Approach for
Android Malware Detection,” KSII Transactions on Internet
and Information Systems, vol. 9(8), pp. 2964 – 2983, 2015.

[25] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L.
Cavallaro, “The Evolution of Android Malware and Android
Analysis Techniques,” ACM Computing Surveys, vol. 49(4),
pp. 1–41, 2017.

[26] H. S. Ham, and M. J. Choi, “Analysis of Android malware
detection performance using machine learning classifiers,” In
International Conference on ICT Convergence, 2013.
https://doi.org/10.1109/ICTC.2013.6675404

[27] A. Guerra, “APPLICATION OF FULL MACHINE
LEARNING WORKFLOW FOR MALWARE
DETECTION IN ANDROID ON THE BASIS OF SYSTEM
CALLS AND PERMISSIONS,” MS Thesis, TALLINN
UNIVERSITY OF TECHNOLOGY, School of Information
Technologies, 2018. See also URL
https://digi.lib.ttu.ee/i/?10770

[28] Yerima, S. Sezer, and G. McWilliams, “Analysis of Bayesian
classification-based approaches for Android malware
detection,” IET Information Security, vol. 8(1), pp. 25-36,
2014.

[29] McAfee, McAfee Labs Threats Report, 2018. On the WWW,
URL https://www.mcafee.com/enterprise/en-
us/assets/reports/rp-quarterly-threats-sep-2018.pdf

[30] N. Peiravian, and X. Zhu, “Machine learning for Android
malware detection using permission and API calls,” In
Proceedings - International Conference on Tools with
Artificial Intelligence, ICTAI, pp. 300–305, 2013.

[31] Android, Manifest.permission | Android Developers, 2019.
On the WWW, URL
https://developer.android.com/reference/android/Manifest.p
ermission#summary

[32] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y.
Rahulamathavan, “PIndroid: A novel Android malware
detection system using ensemble learning methods,”
Computers and Security, vol. 68, pp. 36–46, 2017.

[33] Google, Control your app permissions on Android 6.0 and up
- Google Play Help, 2019. On the WWW, URL
https://support.google.com/googleplay/answer/6270602?hl=
en

[34] V. Vapnik, “The nature of statistical learning theory,” (2nd
edition), New York: Springer, 1995.

[35] J. C. Platt, “Fast training of support vector machines using
sequential minimal optimization,” In Advances in Kernel
Methods - Support Vector Learning. Cambridge, MA, USA:
MIT Press, 1999.

[36] J. K. Anlauf and M. Biehl, “The adatron: An adaptive
perceptron algorithm,” Europhysics Letters, vol. 10(7), pp.
687, 1989.

[37] T-T. Frie, N. Cristianini, and C. Campbell, “The kernel-
adatron algorithm: a fast and simple learning procedure for
support vector machines,” In Machine Learning: Proceedings
of the Fifteenth International Conference (ICML’98),
Citeseer, pp. 188–196, 1998

[38] P. E. Gill, W. Murray, and M. H. Wright, Practical
optimization, 1981.

[39] D. E. Goldberg, “Genetic Algorithms in Search Optimization
and Machine Learning,” Addison-Wesley, 1989.

[40] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
In IEEE International Conference on Neural Networks, pp.
1942–1948, 1995.

[41] B. Chakraborty, “Evolutionary Computational Approaches to
Feature Subset Selection,” International Journal of Soft
computing and Bioinformatics, vol. 1(2), pp. 59-65, 2010.

[42] A. Kawamura, and B. Chakraborty, “A hybrid approach for
optimal feature subset selection with evolutionary
algorithms,” Proceedings - 2017 IEEE 8th International
Conference on Awareness Science and Technology, ICAST
2017, pp. 564–568, 2018.

[43] M-Y Cho, and T. T. Hoang, “Feature Selection and
Parameters Optimization of SVM Using Particle Swarm
Optimization for Fault Classification in Power Distribution
Systems,” Computational Intelligence and Neuroscience,
Article ID 4135465, 9 pages, 2017.

[44] L. M. Abualigah, A. T. Khader, and E. S. Hanandeh, “A new
feature selection method to improve the document clustering
using particle swarm optimization algorithm,” Journal of
Computational Science, vol. 25, pp.456-466, 2018.

[45] J. Wei, Z. Jian-Qi, and Z. Xiang, “Face recognition method
based on support vector machine and particle swarm
optimization,” Expert Systems with Applications, vol. 38(4):
pp. 4390-4393, 2011.

[46] D. O’Neill, A. Lensen, B. Xue, and M. Zhang, “Particle
Swarm Optimisation for Feature Selection and Weighting in
High-Dimensional Clustering,”. In 2018 IEEE Congress on
Evolutionary Computation(CEC), 2018.

[47] Google Play, Google Play Store, 2019. On the WWW, URL
https://play.google.com/store?hl=en

https://doi.org/10.1109/ICTC.2013.6675404
https://digi.lib.ttu.ee/i/?10770
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
https://developer.android.com/reference/android/Manifest.permission#summary
https://developer.android.com/reference/android/Manifest.permission#summary
https://support.google.com/googleplay/answer/6270602?hl=en
https://support.google.com/googleplay/answer/6270602?hl=en
https://play.google.com/store?hl=en

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

28

[48] Genome, Android Malware Genome Project, 2019. On the
WWW, URL http://www.malgenomeproject.org

[49] Contagio, Contagio Mobile: mobile malware mini dump,
2019. On the WWW, URL
http://contagiominidump.blogspot.co.uk

[50] VirusTotal, VirusTotal for Android, 2019. On the WWW,
URL https://www.virustotal.com/en/documentation/mobile-
applications

[51] MalShare, MalShare project, 2019. On the WWW, URL
http://malshare.com/about.php

[52] VirusShare,VirusShare.com, 2019. On the WWW, URL
https://virusshare.com

[53] theZoo, theZoo aka Malware DB, 2019. On the WWW, URL
http://ytisf.github.io/theZoo

[54] Google Play, Google Play Store, 2014. On the WWW, URL
https://play.google.com/store?hl=en

[55] Genome, Android Malware Genome Project, 2014. On the
WWW, URL http://www.malgenomeproject.org

[56] C. C. Chang, and C. J. Lin. LIBSVM: A library for support
vector machines, 2001.
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[57] S. Ruping, mySVM Manual, Universit¨at Dortmund,
Lehrstuhl Informatik VIII, 2000. http://www-ai.cs.tu-
dortmund.de/SOFTWARE/MYSVM/index.html

[58] N. Kasabov, Q. Song, “DENFIS: dynamic evolving
neuralfuzzy inference system and its application for time-
series prediction,” IEEE Trans Fuzzy Syst, vol. 10(2), pp.
144–154, 2002.

Waleed Ali received his B.Sc. in Computer
Science from Faculty of Science, Taiz
University, Yemen in 2005. He obtained his
M.Sc and Ph.D (Computer Science) from
Faculty of Computing, Universiti
Teknologi Malaysia(UTM), Malaysia in
2009 and 2012 respectively. Currently, he
is Assistant Professor in IT department,
Faculty of Computing and Information

Technology in Rabigh, King Abdulaziz University since
September 2013. He has published many papers in international
journals, conferences and book chapters. His research interests
include Intelligent Web caching, Intelligent Web prefetching, Web
usage mining, Intelligent phishing website detection, Intelligent
Android malware detection, and machine learning techniques and
their applications.

http://www.malgenomeproject.org/
http://contagiominidump.blogspot.co.uk/
https://www.virustotal.com/en/documentation/mobile-applications
https://www.virustotal.com/en/documentation/mobile-applications
http://malshare.com/about.php
https://virusshare.com/
http://ytisf.github.io/theZoo
https://play.google.com/store?hl=en
http://www.malgenomeproject.org/
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm
http://www-ai.cs.tu-dortmund.de/SOFTWARE/MYSVM/index.html
http://www-ai.cs.tu-dortmund.de/SOFTWARE/MYSVM/index.html

