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Summary 
The Android platform has become the most common mobile 
platform of smart mobile devices that attracts many users, 
developers and vendors.  Accordingly, millions of Android 
applications have been created to offer many functionalities and 
services to users. However, the fast growth rate of such 
applications has led to a huge increase in the development and 
spread of Android malware applications by cyber attackers and 
criminals. In order to overcome the difficulties faced by the 
conventional signature-based methods, this paper suggests hybrid 
intelligent Android malware detection approaches based on 
evolving support vector machine with evolutionary algorithms in 
order to enhance Android malware detection. In the proposed 
hybrid intelligent evolving approaches, the optimization problem 
in support vector machine is solved using a genetic algorithm (GA) 
and a particle swarm optimization (PSO), referred to as Droid-
HESVMGA and Droid-HESVMPSO, in order to help in 
increasing the accuracy of the Android malware detection. The 
experimental results showed that the proposed Droid-HESVMGA 
and Droid-HESVMPSO approaches achieved the best detection 
results and substantially outperformed the most popular machine 
learning classifiers and other existing hybrid malware detection 
approaches. 
Key words: 
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Particle swarm optimization. 

1. Introduction 

Recently, smartphones and mobile devices have become the 
most commonly used devices for personal and business use. 
Recent reports and studies have reported that the number of 
mobile device users has been increasing rapidly and will 
reach 6.1 billion by 2020 [1, 2]. 
Over the past few years, the Android platform has become 
the most common mobile platform of smart mobile devices 
as it is free and open-source. In addition, it can be 
customized simply by users, developers and vendors.  
Accordingly, millions of Android applications have been 
developed to offer many functionalities and services to 
users.  Recent reports have indicated that over 2.5 million 
Android apps are available on Google Play store, which is 
considered the largest apps store [3]. 

The fast growth rate of Android applications has led to a 
huge increase in the development and spread of Android 
malware applications by cyber attackers and criminals. 
Primarily, the malware applications can be developed by 
Android apps developers and then distributed in third-party 
Android markets since there are often no constrains for 
Android apps developers. Even at the official Google Play 
store, many new malware apps are periodically discovered 
and not all Android malware Apps can be accurately 
detected, especially in the early stages of publication in the 
Google Android Market [4, 5]. 
Many commercial Android malware detection tools and 
anti-virus programs have used traditional signature-based 
methods, which are based on fixed identifiers called 
signatures [6-8] to detect the Android malware apps. 
However, the conventional signature-based approaches 
cannot detect the recently developed malware apps, 
especially zero-day Android malware apps [6-8]. Hence, 
there is a need to develop more effective and adaptive 
solutions for Android malware detection.  
In order to overcome limitations of the conventional 
Android malware detection approaches, numerous single 
popular machine learning algorithms [6, 7, 9-16] have been 
trained and then applied to detect the Android malware apps. 
The support vector machine (SVM) algorithm has been 
commonly used in literature for detecting malware apps, as 
it has many advantages over the other machine learning 
techniques. However, only the classical SVM has been 
employed in Android malware detection, although the 
classical SVM is still not good enough compared to the 
advanced machine learning classifiers. Furthermore, it can 
be quite long time-consuming in the learning phase, as it is 
based on an analytical approach or complex mathematical 
calculations [17, 18]. 
In addition to single classifiers, ensemble learning methods 
[14, 19] and fusion approaches [8] for multiple machine 
learning classifiers have also been exploited in order to 
enhance the detection accuracy of Android malware apps. 
The single classifiers and ensemble methods have achieved 
better detection performance compared to traditional 
signature-based methods. However, the question: “Which 
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are the most effective machine learning techniques to 
maximize the performance of Android malware detection” 
is still a popular research subject [8, 20-22]. 
Although many intelligent approaches based on machine 
learning have become frequently utilized to detect Android 
malware apps in recent years, not much work has focused 
on the hybrid intelligent Android malware detection 
approaches. Hybrid intelligent approaches can be utilized to 
produce promising solutions with a higher detection 
accuracy of the Android malware apps, since they benefit 
from the advantages of the integrated algorithms and 
overcome their individual drawbacks. 
Over the past few years, evolutionary algorithms have been 
effectively implemented in many recent applications and 
fields, including optimization, feature selection, pattern 
recognition, classification, and clustering. The genetic 
algorithm (GA) and particle swarm optimization (PSO) are 
the most well-known evolutionary algorithms used in 
complicated optimization problems. The GA is the most 
common evolutionary algorithm, based on imitation of 
biological evolution in chromosomes. The PSO is a well-
known optimization and search algorithm inspired by the 
social and cooperative behavior of birds flocking, which 
belongs to a family of evolutionary algorithms.  
In this paper, hybrid intelligent evolving approaches based 
on support vector machine with evolutionary algorithms are 
proposed to enhance Android malware detection. The 
proposed methods integrate the attractive advantages of 
evolutionary algorithms and the good performance of the 
support vector machine in order to produce hybrid 
intelligent evolving Android malware detection approaches 
with outstanding performance. In these proposed hybrid 
intelligent evolving approaches, genetic algorithm (GA) 
and particle swarm optimization (PSO) are adopted to 
effectively solve the optimization problem of support vector 
machine, so-called Droid-HESVMGA and Droid-
HESVMPSO, in order to help in increasing the accuracy of 
the Android malware detection. 
The remainder of the paper is arranged as follows. Section 
2 reviews some existing works on intelligent Android 
malware detection based on static malware analysis. 
Section 3 describes the basics of android malware 
Applications including Android Architecture, Android 
Malware, and Android Permissions. The genetic algorithm 
and particle swarm optimization are described in Section 4. 
Section 5 provides an explanation of the support vector 
machine. Section 6 presents a methodology of the proposed 
hybrid intelligent android malware detection based on 
evolving SVM with GA and PSO.  The experimental results 
of the proposed hybrid evolving intelligent android 
malware detection are analyzed and discussed in Section 7. 
Finally, the conclusion of the proposed work is given in 
Section 8. 

2. Related Work 

In order to overcome the difficulties faced by the 
conventional signature-based methods, machine learning 
techniques have been employed to discriminate the new 
malware from benign apps [8, 19, 20, 23]. In Android 
malware detection, the static analysis-based machine 
learning approach and the dynamic analysis-based machine 
learning approach are two popular approaches used to 
detect the malware apps. 
In the static analysis-based approach, the machine learning 
models are trained based on static features of Android apps, 
which are extracted without installing or running these 
Android apps, in order to detect the malware applications. 
On the other hand, the dynamic-based approach requires 
installing, running and then monitoring the dynamic 
behavior of the Android application to collect the dynamics 
features in order to train the machine learning models.  
The static malware analysis-based malware detection 
methods are easier, faster, and less resource-intensive [8, 
20-22] compared with the dynamic analysis-based methods, 
since they do not require the android applications to be 
installed or run. Therefore, much emphasis in this study is 
focused on intelligent malware detection methods based on 
static malware analysis.  
In recent years, several existing intelligent methods using 
machine learning have been developed based on static 
features of Android apps in order to detect Android malware 
applications. Support vector machine (SVM) [10-12, 16], 
naive Bayes [11, 13], k-NN [7, 9, 13], neural network [11], 
decision tree [7, 12], random forest [7, 11, 12, 14, 16], 
regularized logistic regression [6], neuro-fuzzy [24], hybrid 
evolving neuro-fuzzy [20], deep belief networks [15, 23], 
ensemble learning method [14, 19], fusion approach [8] and 
other machine learning classifiers have been trained and 
constructed using static features for detecting Android 
malware applications. Some previous intelligent Android 
malware detection methods based on the static malware 
analysis are summarized in Table 1.  
By examining the existing works in Table 1, it can be 
observed that permissions, intents, and API calls were 
extracted and then used to train some popular conventional 
machine learning classifiers. In this study, instead of the 
classical machine learning classifiers used in the literature, 
alternative hybrid intelligent approaches based on evolving 
support vector machine with a genetic algorithm and a 
particle swarm optimization are suggested in order to 
enhance the performance of Android malware detection.  
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Table 1: Summary of the existing intelligent Android malware detection based on the static malware analysis 
Approach Features Machine learning Feature selection Dataset source 

DroidMat([9] Permissions, intents, and 
API calls k-means and k-NN None Google Play and 

Contagio Mobile 

DREBIN [10] Permissions, API calls 
and network addresses SVM None 

Several markets, 
Google Play and 

Genome 
Mining API calls and 

permissions for Android 
malware detection [13] 

Permissions and API 
calls 

Naive Bayes and  k-
NN 

Correlation-based 
feature selection and 

information gain 

Official, third party 
Android markets and 

Android malware 
Genome project 

Static detection of Android 
malware by using permissions 

and API calls [11] 
Permissions and API 

calls 
Naive Bayes, SVM, 
MLP, random forest, 

and J48 
Information 

gain 
Anzhi Market and 
Contagio Mobile 

Exploring Permission-induced 
Risk in Android Applications 

for Malicious Application 
Detection  [12] 

Individual permission 
and group of 
collaborative 
permissions. 

SVM, decision 
trees, and random 

forest. 

Forward selection 
(SFS) and principal 
component analysis 

(PCA) 

Google Play 
, Mal Zhou and 

VirusShare 
A probabilistic discriminative 
model for Android malware 
detection with decompiled 

source code [6] 
API calls and permissions Regularized logistic 

regression 
Information gain and 

Chi-square 
Google Play and 

Genome 

K-ANFIS [24] Permission-based 
features 

kEFCM-based 
Adaptive Neuro-
Fuzzy Inference 

System 

Information gain 
ratio 

Google Play and 
Genome 

High Accuracy Android 
Malware Detection Using 
Ensemble Learning [14] 

Permissions and API call 
features 

Random forest as 
an ensemble 

learning method 
None McAfee’s internal 

repository 

DroidDetector [15] 
Static analysis-based 
features and dynamic 

analysis -based features 
Deep belief 
networks 

Frequency analysis -
based feature 

evaluation 

Google Play, Contagio 
Community and 
Genome Project 

EHNFC [20] Permission-based 
features 

Hybrid neuro-fuzzy 
classifier with 

evolving clustering 
Information gain 

ratio 
Google Play and 
Genome Project 

Identification of malicious 
Android app using manifest 

and opcode features [16] 

Static features from the 
manifest and executable 

files 

SVM, random 
forest, and rotation 

forests 

Entropy based 
Category Coverage 

Difference and 
Weighted Mutual 

Information 

Google Play store and 
Drebin dataset 

DAPASA [7] 
Utilizing sensitive 

subgraphs to construct 
five features depicting 

invocation patterns. 

Random forest, 
decision tree, k-NN, 

and PART 
None 

Google Play, Anzhi 
Market, Android 
Malware Genome 

Project and 
piggybacked families 

Detecting Android malicious 
apps and categorizing benign 

apps with ensemble of 
classifiers [19] 

11 types of static features 
from each app to 
characterize the 

behaviors of the app 

Ensemble of 
multiple classifiers 

SVM was used to 
sort the weight of 

each feature 
Markets in China called 

Anzhi and Wild 

DroidFusion [8] Permissions, API calls 
and intents Fusion approach Information gain DREBIN and 

Malgenome project 
 
Compared to the existing studies, the hybrid evolving 
support vector machine proposed for Android malware 
detection is more accurate and effective than the usual 
support vector machine and other classical machine 
learning classifiers used in the literature. 
As in most of the existing intelligent approaches, the most 
important permission features were extracted and then used 
to train the proposed hybrid evolving support vector 
machine. Compared to intents and API call features, the 
permission features are the most common and considered 
the first line of defense in the Android system. Furthermore, 
extracting the permission features and then applying them 
on machine learning models are easier, and consume fewer 
resources and require a shorter time [20, 24]. Thus, the 
permission features are more suitable to be used in the 
mobile environment to train the machine learning models. 

3. Android Malware Applications 

3.1 Android Architecture 

The Android platform was introduced by Google on 
September 23, 2008 based on a Linux kernel, and has 
become a leading mobile operating system. Android 
consists of four layers: the Linux kernel layer, a native 
library layer, an application framework layer, and the 
application layer [25, 26].   
The most significant layer that represents the core of the 
Android system is the Linux kernel layer. This layer is 
responsible for managing the services and hardware's 
functions. The native library layer deploys system libraries 
and the Android Dalvik virtual machine, which provides a 
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variety of functionalities and runtime environment for 
Android applications. The application framework layer is 
responsible for the Android APIs required to interact with 
the running apps and manage the essential functions. 
Eventually, all Android functionalities and applications are 
running and provided to the end-user by the application 
layer. 

3.2 Android Malware 

Malware is a malicious software and refers to several forms 
of hostile or intrusive applications, which are intentionally 
developed to damage, disrupt, steal, or primarily inflict 
some illegitimate and harmful actions on the computer or 
network. There are several common several types of 
Android malware, depending on their purpose, such as 
worm, virus, trojan, adware, spyware, rootkit, backdoor, 
keylogger, ransomware and remote administration tools 
(RAT). 
Basically, Android applications are Java codes compiled by 
the Android SDK tools into an Android package (APK). 
The APK file is a type of archive files with a .apk suffix, 
which consists of the files and folders shown in Table 2 that 
are used by Android to install the application [27, 28]. 

Table 2: Components of Android package (APK) 
Component Description 

AndroidManifest.xml 
A meta-data XML file including 

information related to application’s 
descriptions, package information 

and security permissions. 

Classes.dex 

A file that contains the source code 
of an Android application written in 

Java programming language 
compiled into .dex format (Dalvik 

Executable) 
Resources.arsc A binary XML file that contains 

precompiled application resources 

Resources folder 
(res/) 

A folder that includes non-pre-
compiled resources that the 

application needs in runtime, such as 
pictures, layout, use of a database 

and data stored in the database, etc. 

Assets (assets/) 
An optional folder that contains 

application assets that can be 
retrieved by AssetManager 

Libraries (lib/) 
An optional folder that contains 

compiled code that is specific for 
different processors, such as arm, 

mips, x86, etc 

META-INF 
A folder that contains 

MANIFEST.MF file, APK signature, 
etc. 

 
According to the McAfee threat report in September 2018 
[29] there were over 25 million mobile malware 
applications as shown in Fig. 1.  According to this report, 
over 2 million new mobile malware applications had been 
detected during the second quarter of 2018 only, mostly 
targeting Android, due to the vast distribution of Android 
devices, as well as the relatively open system for the 
distribution of apps. 

 

 

Fig. 1  The total number of mobile malware applications, mostly 
targeting Android [29] 

Over the past few years, the fast growth rate of Android 
applications has led to a huge increase in developing and 
spreading Android malware applications by cyber attackers 
and criminals. Although numerous malware apps are 
frequently detected, other new Android malware Apps 
cannot be accurately discovered in the early stages by third-
party Android markets, even by the official Market [4, 5].  
Android malware apps can use different techniques in order 
to hijack the mobile device and access personal data. 
Primarily, repackaging, update attack and drive-by-
download techniques are used to trick users into 
downloading the Android malware apps [27, 30]. In 
repackaging, some popular applications from legitimate 
sources are downloaded and disassembled by the malware 
developer.  The malware developer can enclose the malware 
payload to these popular applications, and then resubmit 
them to official or other Android markets. Over 80% of 
Android malware is a repackaged application. In an update 
attack, the malware developer attaches only an update 
component to these popular applications, instead of 
attaching the whole payload into the application code.  The 
update component can then download the entire malware 
payload in the app’s runtime. The drive-by-download is a 
conventional social-engineering method implemented in 
the mobile devices field, through which the malware 
developer deceives the mobile user into installing 
interesting apps, which will perform other expected actions. 

3.3 Android Permissions 

In the Android platform, the security issue is mainly based 
on permissions-based mechanism, which is utilized to 
protect Android users from undesirable activities of some 
Android apps, such as accessing sensitive user data, system 
resources, and other app's data. The Android platform has 
more than 130 official permissions [30, 31, 32]. Some 
permissions are commonly requested by the malware and 
benign apps while other permissions are rarely requested.  
At the installation time, some permissions are immediately 
granted by Android without user confirmation, while the 
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user’s approval is required with other permissions, 
according to the category of the permission requested, either 
normal or potentially dangerous permission.  
The low-risk permissions are classified under normal 
permission category, which are not particularly harmful and 
do not present any risk to the user's privacy or the device's 
operation such as INTERNET, 
ACCESS_NETWORK_STATE, and 
MODIFY_AUDIO_SETTINGS [20, 30]. On the other hand, 
the higher risk permissions could potentially affect the 
user's privacy, hardware, software or system.  These high-
risk permissions are categorized under the dangerous 
permission category. The malware apps are highly 
interested in requesting the dangerous permissions to gain 
the required privileges in order to access sensitive 
information.  For example, READ_CONTACTS, 
WRITE_CONTACTS, CALL_PHONE, and SEND_SMS 
are four dangerous permissions, requiring the explicit 
approval of the user at the installation time [20, 30].  
The permission request can be approved or rejected by the 
user without stopping the application, which will run with 
limited capabilities. In Android 6.0 or higher, the dangerous 
permissions must be granted by user at runtime, in the case 
where the user is not notified of any app permissions at the 
installation time. Even if the dangerous permissions are 
granted by the user at the installation time, the user can 
enable and disable permissions one-by-one in system 
settings at runtime [33]. 

4. Support Vector Machine 

The support vector machine (SVM) was introduced by 
Vapnik [34] and has become one of the most popular 
machine learning techniques. SVM has many advantages 
over others. The generalization ability of SVM can be 
maximized, since SVM is trained to maximize the margin. 
In addition, there is a global optimum solution in SVM 
training. Furthermore, SVM is robust to outliers, because 
the margin parameter C controls the misclassification error. 
Therefore, SVM has been successfully applied in many 
complex classification applications.  
Consider a set of training data vectors 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛},
𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑, and a set of corresponding labels 𝑌𝑌 = {𝑦𝑦1, … ,𝑦𝑦𝑛𝑛},
𝑦𝑦𝑖𝑖 ∈ {1,−1} . SVM aims to maximize the margin between 
the separating hyperplane and the closest instance in each 
class in order to obtain the ideal hyperplane between the two 
different classes. The hyperplane can be expressed as in Eq. 
(1). 

(𝑤𝑤. 𝑥𝑥) + 𝑏𝑏 = 0,𝑤𝑤 ∈ 𝑅𝑅𝑑𝑑 , 𝑏𝑏 ∈ 𝑅𝑅 (1) 
 
where the vector w defines the boundary, x is the input 
vector of dimension d, and b is a scalar threshold. 

The optimal hyperplane can be obtained as a solution to the 
following optimization problem. 

minimize   
1
2
‖𝑤𝑤‖2 (2) 

subject to  𝑦𝑦𝑖𝑖�(𝑤𝑤. 𝑥𝑥𝑖𝑖) + 𝑏𝑏� ≥ 1  ,∀𝑖𝑖 (3) 

 
In real-world applications, the data are usually influenced 
by outliers, which are affected by noise. The decision 
boundaries can be softened by introducing a slack positive 
variable ξ for each training pattern. Eq. (4) is called the 
primal optimization of SVM. 

minimize   
1
2
‖𝑤𝑤‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝐿𝐿

𝑖𝑖=1

  (4) 

subject to   𝑦𝑦𝑖𝑖�(𝑤𝑤. 𝑥𝑥𝑖𝑖) + 𝑏𝑏� ≥ 1 − 𝜉𝜉𝑖𝑖   ,∀𝑖𝑖 (5) 

 
where C is a positive regularization constant, which controls 
the degree of penalization of ξ . Therefore, C controls 
allowable errors in the trained solution: high C permits few 
errors while low C allows a higher proportion of errors in 
the solution.  
To solve the convex optimization problem, Lagrangian 
multipliers 𝛼𝛼𝑖𝑖 are used to produce the to the dual 
optimization problem, as shown in Eq. (6), which must be 
solved in order to find a separating maximum margin 
hyperplane for a given set of data points.  

maximize  �𝛼𝛼𝑖𝑖 −
1
2

𝑛𝑛

𝑖𝑖=1

��𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗(𝑥𝑥𝑖𝑖 . 𝑥𝑥𝑗𝑗) (6) 

subject to 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 for all 𝑖𝑖 = 1, … ,𝑛𝑛 (7) 

and �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑛𝑛

𝑖𝑖=1

 (8) 

 
In most cases, the data points are not linearly separable. 
Thus, the SVM will transform the data to a higher-
dimensional space and then classify them using the same 
principle as the linear case. A kernel function  𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) is 
used to perform this transformation and the dot product in a 
single step. Thus, the final dual optimization problem using 
kernel function can be expressed using Eq. (9) to find a 
separating maximum margin hyperplane for non-separable 
data points.  

maximize  �𝛼𝛼𝑖𝑖 −
1
2

𝑛𝑛

𝑖𝑖=1

��𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) (9) 

subject to 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 for all 𝑖𝑖 = 1, … ,𝑛𝑛 (10) 
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and �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑛𝑛

𝑖𝑖=1

 (11) 

 
The dual optimization problem of SVM is usually solved by 
classical optimization methods such as Sequential Minimal 
Optimization (SMO) [35], Kernel Adatron (KA) [36, 37] 
and Quadratic Program (QP)[38]. However, these classical 
optimization methods are based on an analytical approach 
or complex mathematical calculations. Furthermore, and 
their performances are modest compared to those of the 
evolutionary algorithms used in this paper.  

5. Evolutionary Algorithms 

In the past few years, evolutionary algorithms have become 
a very popular research topic, which have been effectively 
employed in many applications and fields such as 
optimization, feature selection, pattern recognition, 
classification, and clustering. Evolutionary algorithms are a 
set of modern metaheuristic optimization algorithms based 
on the evolution of populations, which are primarily 
developed to solve complicated optimization problems.  
The most well-known evolutionary algorithms used in 
optimization problems are the genetic algorithm (GA) [39] 
and particle swarm optimization (PSO) [40]. 

5.1 Genetic Algorithm 

The genetic algorithm [39] is the most common 
evolutionary algorithm based on the simulation of the 
biological evolution process in chromosomes.  In other 
words, the genetic algorithm mimics the survival of the 
fittest among chromosomes of consecutive generations in 
order to solve a certain optimization problem. The genetic 
algorithm (GA) is commonly utilized to solve the 
optimization problems with a large search space [41, 42].  
In GA, all possible candidate solutions construct the search 
space or population of a specific optimization problem. A 
basic GA mainly implements the following four major 
steps: 

i. Encoding of chromosomes:  Each candidate 
solution represents chromosome in a population, 
which is encoded with several genes.  Each gene is 
a small part of a candidate solution, which can 
represent one parameter to be optimized. 

ii. Initialization of the population: An initial 
population of chromosomes is randomly generated, 
which consists of the initial solutions of a specific 
optimization problem. 

iii. Fitness evaluation: The GA computes the fitness 
value of each individual chromosome, which 
indicates the goodness of the solution provided by 
the individual chromosome. The chromosomes in 
the population are then evaluated using the fitness 

function. The fittest chromosomes will be given 
more opportunities to reproduce and evolve. 

iv. Reproduction:  As in biological evolution, a GA 
can recombine the fittest chromosomes to create 
new better chromosomes and solutions. The 
reproduction process is conducted through three 
genetic operators: selection, crossover, and 
mutation.  
• Selection: The better chromosomes are 

selected based on the fitness values to become 
parents to produce new chromosomes 
(offspring).  

• Crossover: In the crossover operator, GA 
randomly chooses a crossover point, where 
two parent chromosomes break, and then 
exchanges the chromosome parts after that 
point in order to create new offspring.   

• Mutation: The mutation operator changes the 
gene value in some randomly chosen location 
of the chromosome.  

 
Some selected chromosomes are iteratively evolved to 
produce a new generation of new better solutions. The 
reproduction and fitness evaluation are repeated until the 
termination criterion is satisfied. 

5.2 Particle Swarm Optimization 

The particle swarm optimization algorithm (PSO) is a 
common population-based optimization algorithm tied to 
evolutionary computation, which was introduced by 
Kennedy and Eberhart [40].  PSO is a simpler and faster 
evolutionary algorithm and has fewer parameters compared 
to GA. Therefore, PSO has been widely applied in many 
problems and areas such as optimization, feature selection, 
pattern recognition, classification and clustering [42-46]. 
Unlike the chromosome’s evolution in GA, PSO is inspired 
by the social behavior of birds flocking in interacting and 
cooperating to find food.  Like evolutionary algorithms, a 
PSO population (called a swarm) consists of candidate 
solutions or individuals (called particles) which are 
randomly initialized.  Each particle then moves in the search 
space with a velocity 𝑣𝑣 in order to find the optimal solution. 
The particles learn over time based on their own experience 
and the experience of the other particles in the swarm.  
Le 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1 ,𝑥𝑥𝑖𝑖2 , 𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖) be the current position of 
particle i, and  𝑣𝑣𝑖𝑖 = (𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖2, 𝑣𝑣𝑖𝑖3 , … , 𝑣𝑣𝑖𝑖𝑖𝑖)be the velocity of 
particle i, where D is the dimensionality of the search space. 
To find the best solution in PSO, each particle changes its 
velocity, as shown in Eq. (12) and Eq. (13), according to 
pbest and gbest, which represent the best previous position 
of a particle (personal best position) and the best position 
obtained by the whole population (global best position), 
respectively.  
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𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡 +  𝑣𝑣𝑖𝑖𝑑𝑑𝑡𝑡+1 (12) 

𝑣𝑣𝑖𝑖𝑑𝑑𝑡𝑡+1 = 𝑤𝑤 ∗ 𝑣𝑣𝑖𝑖𝑑𝑑𝑡𝑡 +  𝑐𝑐1 ∗ 𝑟𝑟1 ∗ (𝑝𝑝𝑖𝑖𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡 )
+ 𝑐𝑐2 ∗ 𝑟𝑟2(𝑝𝑝𝑔𝑔𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡 ) (13) 

 
where d=1,2,3 …D, t represents the tth iteration, 𝑝𝑝𝑖𝑖𝑑𝑑 and 
𝑝𝑝𝑔𝑔𝑑𝑑 denote the pbest and gbest, 𝑤𝑤 is inertia weight, 𝑐𝑐1 and 
𝑐𝑐2 are acceleration parameters which are commonly set to 
2.0, and 𝑟𝑟1 and 𝑟𝑟2 are random values in the range [0, 1].  

6. Methodology 

This section will describe the methodology of the proposed 
hybrid intelligent Android malware detection approaches 
using evolving support vector machine (SVM) based on 
genetic algorithm (GA) and particle swarm optimization 
(PSO). In the proposed approaches, GA and PSO are 
adopted to solve the dual optimization problem in SVM, so-
called Droid-HESVMGA and Droid-HESVMPSO, in order 
to help in increasing the accuracy of the Android malware 
detection. Fig. 2 shows the methodology of the hybrid 
evolving support vector machine approach suggested for 
Android malware detection. 

6.1 Collection of Malware and Benign Apps 

Numerous researchers have collected and analyzed many 
malware and benign apps from several sources such as 
Google Play store [47], Genome [48], Contagiodump [49], 
VirusTotal [50], MalShare[51], VirusShare[52] , and 
theZoo [53].  

In this study, we used the same dataset as that used in [20], 
which consists of 500 malware and benign apps, in order to 
evaluate the performance of the proposed methods. In the 
dataset used in this study, 250 benign apps and 250 malware 
apps were collected from official Google Play store [54] and 
Genome [55], respectively, which are the most common 
sources of benign and malware apps.  These apps have 
many permission features that can be used as input features 
to train and test the proposed hybrid intelligent Android 
malware detection. 

6.2 Feature Extraction 

The extraction and selection of the important features of 
Android apps play an extremely important role in 
recognizing malware from benign apps. In this step, some 
popular permission features of apps are extracted from these 
Android apps since the permissions features are the most 
significant features that can be utilized in Android malware 
detection.  
In the development phase of an Android app, the developers 
of Android apps must declare all the permissions required 
to access system resources using <uses-permission> tags in 
the AndroidManifest.xml [31] as shown in Fig. 3. 
As can be seen from Fig. 3, AndroidManifest.xml is an 
XML file that includes the permission features of Android 
applications.  In this study, Apktool was used to decompress 
the Android application package (APK file) and then extract 
the AndroidManifest.xml in order to obtain the permission 
features. Only 50 frequently requested permissions were 
collected from Android applications to be used as input 
features to train and test the proposed hybrid Droid-
HESVMGA and Droid-HESVMPSO. 
 

 

 

Fig. 2  A methodology of the proposed hybrid intelligent android malware detection using evolving SVM based on GA and PSO 
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Fig. 3  The permissions declared to access system resources in 
AndroidManifest.xml of Android apps 

6.3 Dataset Preparation 

In this phase, the permission features of Android apps are 
converted into numerical form to be effectively used to train 
and construct the proposed hybrid Droid-HESVMGA and 
Droid-HESVMPSO. Initially, a base vector is prepared, 
which includes a set of the frequently requested permissions 
that can be effectively utilized in Android malware 
detection. For each Android app, a binary vector of 
permission features is then created as an instance of the base 
vector.  
Each Android app represents a single training pattern, 
which is encoded with a binary vector of permission 
features and a class label indicates whether the Android app 
is benign or malware. A permission feature is assigned to 
binary value based on whether the permission feature is 
requested or not by the Android apps. The permission 
feature is represented by 1 in the binary vector if it is 
requested by the app. Otherwise, the permission feature is 
set to 0 in the binary vector. Furthermore, the last value in 
the binary vector represents the class of the Android app, 
either a malware or a benign app. 

6.4 Feature Selection 

In the mobile environment, feature selection is a vital step 
used to remove redundant and irrelevant permission 
features that can produce noisy data, causing a negative 
impact on the performance of intelligent classifiers. 
Therefore, a feature selection method should be used to 
identify the most significant permissions that can be 
effective in distinguishing malware from benign apps.  
Generally, there are two primary feature selection 
approaches used in data mining: the filter approach and the 
wrapper approach. The methods under the filter feature 
selection approach are easier and faster compared to the 
methods of the wrapper approach, since they analyze and 
evaluate the features without training of the classifiers. 
Hence, the feature selection methods under the filter 
approach are more suitable to be used in the mobile 
environment.  

In this study, one of the most common filter-based methods, 
known as information gain ratio, is applied to select highly 
significant permission features of Android apps.  
Eq. (14) computes the information gain, Gain(S, A) of a 
feature A, relative to a collection of examples S. 
𝐺𝐺𝐺𝐺𝑖𝑖𝑛𝑛(𝑆𝑆,𝐴𝐴) =  𝐸𝐸𝑛𝑛𝐸𝐸𝑟𝑟𝐸𝐸𝑝𝑝𝑦𝑦(𝑆𝑆)

− �
|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝑣𝑣∈𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝐴𝐴)

𝐸𝐸𝑛𝑛𝐸𝐸𝑟𝑟𝐸𝐸𝑝𝑝𝑦𝑦(𝑆𝑆𝑣𝑣) (14) 

 
where Value(A) is the set of all possible values for a feature 
A, and 𝑆𝑆𝑣𝑣  is the subset of S for which feature A has value 
v. Entropy(S) is defined as Eq. (15): 

𝐸𝐸𝑛𝑛𝐸𝐸𝑟𝑟𝐸𝐸𝑝𝑝𝑦𝑦(𝑆𝑆) = −�𝑃𝑃𝑟𝑟(
/𝐶𝐶/

𝑗𝑗=1

𝑐𝑐𝑗𝑗) 𝑙𝑙𝐸𝐸𝑙𝑙2 𝑃𝑃𝑟𝑟( 𝑐𝑐𝑗𝑗) (15) 

 
where  𝑃𝑃𝑟𝑟( 𝑐𝑐𝑗𝑗)  denotes the probability of class  in S. It is 
the number of examples of class  𝑐𝑐𝑗𝑗 in S divided by the total 
number of examples in S.  
The information gain ratio is an enhancement of the 
information gain that decreases its bias toward high-branch 
attributes. The information gain ratio is employed in feature 
selection to achieve better performance.  In the information 
gain ratio, Eq. (16) is used in order to evaluate the features: 

𝐺𝐺𝐺𝐺𝑖𝑖𝑛𝑛 𝑟𝑟𝐺𝐺𝐸𝐸𝑖𝑖𝐸𝐸(𝑆𝑆,𝐴𝐴) =
𝐺𝐺𝐺𝐺𝑖𝑖𝑛𝑛(𝑆𝑆,𝐴𝐴)

𝑆𝑆𝑝𝑝𝑙𝑙𝑖𝑖𝐸𝐸 𝑖𝑖𝑛𝑛𝑖𝑖𝐸𝐸𝑟𝑟𝑖𝑖𝐺𝐺𝐸𝐸𝑖𝑖𝐸𝐸𝑛𝑛(𝑆𝑆,𝐴𝐴)
 (16) 

 
where Split information (S, A) is computed using Eq. (17): 

Split information(𝑆𝑆, A) = −�
|𝑆𝑆𝑖𝑖|
|𝑆𝑆|

𝑘𝑘

𝑖𝑖=1

𝑙𝑙𝐸𝐸𝑙𝑙2
|𝑆𝑆𝑖𝑖|
|𝑆𝑆|  (17) 

 
where 𝑆𝑆1 through 𝑆𝑆𝑘𝑘 are the k subsets of examples resulting 
from partitioning S by the k-values feature A. 
In the proposed hybrid Droid-HESVMGA and Droid-
HESVMPSO, only the best 25 permission features that have 
a high impact on Android malware detection are selected 
using the information gain ratio (IGR), in order to 
contribute toward enhancing the performance of the 
evolving support vector machine classifiers suggested to 
detect the Android malware apps. 

6.5 Training of Droid-HESVMGA and Droid-
HESVMPSO 

In this phase, the proposed Droid-HESVMGA and Droid-
HESVMPSO are trained using the prepared training dataset 
with the Android permission features selected by 
information gain ratio. The significant permission features 
are used as input features of Droid-HESVMGA and Droid-
HESVMPSO, which are trained in order to classify the 
Android apps into two classes, either the malware or benign 
apps.  
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Unlike the conventional SVM, the GA and PSO are used in 
the proposed Droid-HESVMGA and Droid-HESVMPSO to 
solve the dual optimization problem in support vector 
machine in order to increase accuracy of the Android 
malware detection.  
In the proposed Droid-HESVMGA and Droid-
HESVMPSO, each candidate solution or individual is 
represented by a vector and denoted as a chromosome in 
population GA or a particle in the PSO swarm.  The GA 
chromosome and position of each PSO particle is 
represented by a vector of real values, in which each value 
represents the value of the Lagrange multiplier for a training 
example as shown in Fig. 4.  Fig. 4 illustrates an example 
of encoding the Lagrange multipliers vector in a GA 
chromosome and PSO particle in the proposed Droid-
HESVMGA and Droid-HESVMPSO. 
 
𝒚𝒚 𝑦𝑦1 𝑦𝑦2 𝑦𝑦3  𝑦𝑦𝑛𝑛−1 𝑦𝑦𝑛𝑛 

𝜶𝜶 𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 ………………. 𝛼𝛼𝑛𝑛−1 𝛼𝛼𝑛𝑛 

Fig. 4  Encoding of Lagrange multipliers vector in GA chromosome and 
PSO particle 

In the evolutionary algorithms, once the candidate solutions 
are encoded, the fitness function is used to evaluate the 
candidate solutions or individuals. In order to find a 
separating maximum margin hyperplane of SVM for a 
given set of data points, Eq. (9) is used as the fitness 
function in the proposed Droid-HESVMGA and Droid-
HESVMPSO to evaluate the GA chromosomes and PSO 
positions. 
In the proposed Droid-HESVMGA, an initial population of 
chromosomes is randomly generated, which represent the 
values of Lagrange multipliers for training patterns.  The 
chromosomes’ performances are then computed and 
evaluated by the fitness function shown in Eq. (9). The GA 
will stop the search and return the optimal vector of 
Lagrange multipliers if the good fitness or maximum 
generations number is reached. Otherwise, the GA 
implements selection, crossover, and mutation to produce a 
new generation of chromosomes in order to find the optimal 
vector of Lagrange multipliers that can maximize the 
performance of SVM. The fittest chromosomes are the most 
appropriate candidate for mating to produce a new 
generation. Crossover and mutation are then employed to 
produce child chromosomes, used as alternative 
chromosomes to their parent chromosomes in the GA 
population. The parent chromosomes are then chosen to 
exchange the chromosome genes using the crossover 
process to offer a child chromosome with genetic materials.  
In GA mutation, a gene in the child chromosome can be 
changed to a random value between 0 and C in the proposed 
Droid-HESVMGA.  

In the proposed Droid-HESVMPSO, an initial swarm of 
particles is randomly generated; each particle represents the 
value of the Lagrange multiplier for a certain training 
example. Each particle’s fitness is then computed using Eq. 
(9) and evaluated accordingly. The PSO fitness function 
aims at finding a separating maximum margin hyperplane 
for given training examples. If the current particle fitness is 
better than the best fitness of that particle (pbest), then the 
new pbest will be updated to the current particle fitness. The 
global best fitness(gbest) is then updated to the particle with 
the best fitness value of all the particles. If the stopping 
criteria (sufficiently good fitness or maximum iterations) 
are met, the PSO will terminate the search and return the 
optimal values of the Lagrange multipliers. Otherwise, the 
pbest and gbest are utilized to update the velocity and 
position for every particle using Eq. (12) and Eq. (13). This 
process is repeated until the stop conditions are met. 
After solving the optimization problem and obtaining the 
Lagrange multipliers by using the GA and PSO, the 
proposed Droid-HESVMGA and Droid-HESVMPSO can 
be used in Android malware detection. The proposed Droid-
HESVMGA and Droid-HESVMPSO use the decision Eq. 
(18) to classify each input vector x into positive or negative 
class. In Android malware detection, the positive class 
refers to the malware apps, while the negative class 
represents the benign apps. 

𝑦𝑦(𝑥𝑥) = 𝑠𝑠𝑙𝑙𝑛𝑛 ��𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

+ 𝑏𝑏� (18) 

 
In the proposed Droid-HESVMGA and Droid-
HESVMPSO, the radial basis function (RBF) defined as Eq. 
(19) was used as the kernel function 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) , since it 
achieved a better performance in many applications 
compared to other kernel functions. The parameter 𝛾𝛾   
represents the width of the RBF. 

𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑝𝑝( − 𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥‖2), 𝛾𝛾 > 0 (19) 

7. Analysis and Discussion of Results 

7.1 Dataset Collection and Preparation 

In this study, the dataset with 500 Android apps used by 
[20] was adopted in our experiments in order to train and 
evaluate the proposed hybrid intelligent android malware 
detection based on the evolving support vector machine: 
Droid-HESVMGA and Droid-HESVMPSO. In this dataset, 
250 malware apps were collected from official Google Play 
[54] while 250 malware apps were collected from Genome 
[55], which is commonly used in the literature to collect 
malware apps.  
In order to prepare the training dataset, the permission 
features of these Android apps were extracted and 
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converted to binary forms based on whether the permission 
feature is requested or not by the Android apps. 
Accordingly, the best 25 permissions features were selected 
by using information gain ratio in order to help in improving 
the performance of the proposed hybrid intelligent Android 
malware detection method based on evolving support 
vector machine. 
7.2 Evaluation Measures 
In order to evaluate the proposed methods, Droid-
HESVMGA and Droid-HESVMPSO were trained and 
evaluated using 5-fold cross-validation.  
In our experiments, we used five popular metrics, which are 
commonly used in the literature for detecting malware apps, 
to evaluate the performance of the proposed Droid-
HESVMGA and Droid-HESVMPSO. Correct classification 
rate, true positive rate, false positive rate, false negative rate 
and area under ROC curve were calculated in order to judge 
the effectiveness of the proposed Droid-HESVMGA and 
Droid-HESVMPSO. The correct classification rate (CCR) 
is the rate of malware and benign apps that are correctly 
classified with respect to all Android apps. True positive 
rate (TPR) is the rate of malware apps classified as malware 
out of total malware apps. False positive rate (FPR) is the 
rate of benign apps classified as malware out of total benign 
apps. False negative rate (FNR) is the rate of malware apps 
classified as benign out of total malware apps. The area 
under ROC curve (AUC) is a measure used to evaluate the 
trade-off between TPR and FPR.  
Table 3 shows the measures used to evaluate the 
performance of proposed evolving support vector machine 

classifiers in Android malware detection. In Table 3, true 
positive (TP) is the number of correctly classified malware 
apps, false negative (FN) is the number of incorrectly 
classified malware apps, true negative (TN) is the number 
of correctly classified benign apps, and false positive (FP) 
is the number of incorrectly classified benign apps. 

7.3 Comparison Against Popular Machine Learning 
Classifiers 

In this study, the proposed Droid-HESVMGA and Droid-
HESVMPSO were trained and compared with two common 
implementations of SVM, known as LibSVM [56] and 
mySVM [57], which use the classical optimization 
techniques to solve the quadratic programming problem.  
In all SVMs, RBF was used as the kernel function while the 
best parameters C (margin softness) and γ (RBF width) 
were obtained by using a grid search algorithm in order to 
achieve the best performance for Android malware 
detection. In addition, the proposed Droid-HESVMGA and 
Droid-HESVMPSO were compared with other four 
machine learning classifiers commonly used in the 
literature to detect the Android malware applications: back-
propagation neural network (BPNN), naïve Bayes classifier 
(NB), random forest (RF), and k-Nearest neighbour (kNN).  
In the proposed Droid-HESVMGA and Droid-
HESVMPSO, it was found by a trial-and-error basis that the 
parameters settings of the GA and PSO shown in Tables 4 
and 5 produced good results. 
 

Table 3: The performance measures used to evaluate the proposed methods 
Measure name Formula (%) Description 

Correct classification rate 
(CCR) 𝐶𝐶𝐶𝐶𝑅𝑅 =

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇

× 100 
The rate of malware and benign apps 

correctly classified with respect to all the 
apps. 

True positive rate (TPR) 𝑇𝑇𝑃𝑃𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇
× 100 Rate of malware apps classified as 

malware out of total malware apps. 

False positive rate (FPR) 𝐹𝐹𝑃𝑃𝑅𝑅 =
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇
× 100 Rate of benign apps classified as malware 

out of total benign apps. 

False negative rate (FNR) 𝐹𝐹𝑇𝑇𝑅𝑅 =
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑃𝑃
× 100 Rate of malware apps classified as benign 

out of total malware apps. 

Area under ROC curve (AUC) 𝐴𝐴𝐴𝐴𝐶𝐶 =
1 + 𝑇𝑇𝑃𝑃𝑅𝑅 − 𝐹𝐹𝑃𝑃𝑅𝑅

2
× 100 This measures the trade-off between TPR 

and FP 
 

Table 4: Parameters settings of GA used in the proposed Droid-
HESVMGA 

Parameter Value 
Population size 20 

Maximum generation 1000 
Crossover probability 0.9 

Mutation type Switching mutation 
Selection scheme Tournament (0.75) 

 

 

 

Table 5: Parameters settings of PSO used in the proposed Droid-
HESVMPSO 

Parameter Value 
Number of particles 20 
Maximum iterations 

(generations) 1000 
C1 2 
C2 2 

Stop condition maximum number of 
iterations 

 
Table 6 shows the performance in terms of CCR, TPR, FPR, 
FNR, and AUC for the proposed Droid-HESVMGA and 
Droid-HESVMPSO against other machine learning 
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classifiers used in Android malware detection. It is clear 
from Table 6 that the proposed Droid-HESVMGA and 
Droid-HESVMPSO outperformed BPNN, NB, RF, kNN, 
mySVM, and LibSVM in most of the performance 
measures. 

Table 6: Comparison of the proposed Droid-HESVMGA and Droid-
HESVMPSO against popular machine learning classifiers used in 

Android malware detection 
 CCR TPR FPR FNR AUC 

BPNN 87.80 91.20 15.60 8.80 95.40 
NB   74.80 99.20 49.60 0.80 70.60 
RF 88.80 89.60 12.00 10.40 97.30 

kNN   86.80 77.60 4.00 22.40 95.70 
mySVM 82.00 85.60 21.60 14.40 96.10 
LibSVM 88.20 91.60 15.20 8.40 96.20 
Proposed  

Droid-HESVMGA 95.60 98.00 6.80 2.00 96.90 
Proposed  

Droid-HESVMPSO 94.80 98.00 8.40 2.00 96.00 

 
As can be observed from Table 6, the proposed Droid-
HESVMGA and Droid-HESVMPSO achieved much better 
CCR than other machine learning classifiers used in 
Android malware detection. In particular, the proposed 
Droid-HESVMGA produced the highest CCR (95.60%), 
followed by Droid-HESVMPSO (94.80%), among the other 
machine learning classifiers. This indicates that the 
proposed Droid-HESVMGA and Droid-HESVMPSO were 
able to correctly detect both malware and benign apps with 
respect to all the Android apps.  
In terms of other measures, the results shown in Table 6 
demonstrate that the proposed Droid-HESVMGA and 
Droid-HESVMPSO also achieved better performance in 
both TPR and FPR compared to other machine learning 
classifiers used in Android malware detection. Actually, 
there is a trade-off between TRR and FPR. Therefore, a 
balanced performance between TPR and FPR should be 
provided in a good malware detection system. 
 Although the highest TPR was accomplished by NB, NB 
also produced the poorest FPR among other machine 
learning classifiers used in this study. This was due to NB 
produced unbalanced detection between malware and 
benign apps. This negatively affected the overall accuracy 
and AUC of NB used in Android malware detection. On the 
other hand, the proposed Droid-HESVMGA and Droid-
HESVMPSO produced balanced detection performance 
between the positive and negative classes in both TRR and 
FPR. This indicates that the proposed Droid-HESVMGA 
and Droid-HESVMPSO were able to precisely detect both 
malware and benign apps. Consequently, the proposed 
Droid-HESVMGA and Droid-HESVMPSO achieved better 
performance in terms of the overall accuracy (CCR), TPR , 
FPR and AUC compared to the other machine learning 
classifiers.  
In addition, Table 6 presents the performance in terms of 
FNR for the proposed Droid-HESVMGA and Droid-
HESVMPSO compared to other machine learning 
classifiers. FNR is also an important measure in Android 

malware detection, since it calculates the rate of malware 
apps classified as benign out of total malware apps. It can 
be seen in Table 6 that the proposed Droid-HESVMGA and 
Droid-HESVMPSO achieved lower FNR compared to most 
of the other machine learning classifiers used in Android 
malware detection. Only 2% of malware apps were 
incorrectly classified as benign apps by the proposed Droid-
HESVMGA and Droid-HESVMPSO. 

7.4 Comparison Against Other Hybrid Android 
Malware Detection Works 

In this section, the proposed Droid-HESVMGA and Droid-
HESVMPSO were compared with other existing hybrid 
malware detection approaches, which combined several 
algorithms into classifiers to enhance the performance of 
malware detection. The proposed Droid-HESVMGA and 
Droid-HESVMPSO were compared to other previous 
works: evolving hybrid neuro-fuzzy classifier (EHNFC) 
[20], dynamic evolving fuzzy inference system (DENFIS) 
[20, 58] and adaptive fuzzy inference system with triangular 
membership function (TRIMF–ANFIS) [20]. For a fair 
comparison, the proposed Droid-HESVMGA and Droid-
HESVMPSO were trained and then evaluated using the 
same dataset used in these previous works. 
The results in Table 7 clearly depict the overall 
classification accuracy (CCR), TPR, FPR, FNR and AUC 
for the proposed Droid-HESVMGA and Droid-
HESVMPSO compared to those of EHNFC, DENFIS, and 
TRIMF–ANFIS.  

Table 7: Comparison of the proposed Droid-HESVMGA and Droid-
HESVMPSO against other hybrid Android malware detection works 

 CCR TPR FPR FNR AUC 
EHNFC 90.00 88.24 5.00 5.00 95.00 
DENFIS   82.20 87.50 19.05 12.50 92.20 

TRIMF–ANFIS 88.00 78.95 11.11 21.05 93.00 
Proposed  

Droid-HESVMGA 95.60 98.00 6.80 2.00 96.90 
Proposed  

Droid-HESVMPSO 94.80 98.00 8.40 2.00 96.00 

 
In terms of CCR, the results in Table 7 show that the 
proposed Droid-HESVMGA accomplished the highest 
accuracy (95.60%), followed by the proposed Droid-
HESVMPSO (94.80%), EHNFC (90.00%), TRIMF–
ANFIS (88.00%), and EHNFC (82.20%).  
In terms of TPR, FPR, and FNR, the proposed Droid-
HESVMGA and Droid-HESVMPSO achieved much better 
TPR than EHNFC, DENFIS, and TRIMF–ANFIS. 
Furthermore, the lowest FNR (only 2.00%) was 
accomplished by the proposed Droid-HESVMGA and 
Droid-HESVMPSO. Meanwhile, the proposed Droid-
HESVMGA and Droid-HESVMPSO produced lower FPR 
compared to the FPRs obtained by DENFIS and TRIMF–
ANFIS.  This was primarily due to the capability of the 
proposed Droid-HESVMGA and Droid-HESVMPSO to 
successfully detect both malware and benign apps. On the 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 
 

 

26 

 

other hand, EHNFC performed unbalanced performance 
between malware and benign apps, since it produced lower 
TPR and the best FPR among other malware detection 
approaches.   
The best TPR and FPR of the proposed Droid-HESVMGA 
and Droid-HESVMPSO produced the best AUC (96.00%) 
among the AUCs achieved by other malware detection 
approaches. This was because the AUC metric is used to 
measure the trade-off between TPR and FPR, as shown in 
Table 3. The results in Table 7 demonstrate that the 
proposed Droid-HESVMGA had the highest AUC 
(96.90%), followed by Droid-HESVMPSO (96.00%), 
EHNFC (95.00%), TRIMF–ANFIS (93.00%), and then 
DENFIS (92.20%). 

8. Conclusion and Future Work 

This paper has presented a methodology for proposed 
hybrid intelligent Android malware detection approaches 
using evolving support vector machine based on 
evolutionary algorithms. In the proposed hybrid intelligent 
Android malware detection approaches, GA and PSO were 
exploited in SVM to solve the dual optimization problem, 
referred to as Droid-HESVMGA and Droid-HESVMPSO, 
in order to enhance the detection accuracy of Android 
malware apps. The proposed Droid-HESVMGA and Droid-
HESVMPSO produced promising solutions with higher 
detection accuracy of the Android malware apps, since they 
had the potential gains derived from exploiting both GA and 
PSO optimization methods in SVM classifier. The 
experimental results demonstrated that the proposed Droid-
HESVMGA and Droid-HESVMPSO accomplished much 
better CCRs than popular machine learning classifiers and 
other existing hybrid malware detection approaches used in 
Android malware detection. Furthermore, the best TPR, 
FPR, FNR and AUC measures were accomplished by the 
proposed Droid-HESVMGA, followed by the proposed 
Droid-HESVMPSO.  
In this study, the proposed Droid-HESVMGA and Droid-
HESVMPSO were trained using only the permission 
features of Android malware applications.  The proposed 
Droid-HESVMGA and Droid-HESVMPSO can be 
improved further by utilizing the intents and API call 
features of Android malware applications in the training 
phase. 
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