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Summary 
Negative emotional contagion is spreading in social networks and 
is adversely affecting people; it can even lead to depression and 
suicide. By implementing the genetic algorithm along with 
community detection algorithms, this article aims to uncover the 
Twitter features that enhance the spread of negative emotions on 
the network. The novelty of this article is that it focuses on a 
combination of community detection features that enhance the 
diffusion of negative emotions in social networks. The genetic 
algorithm benefits the study as it uses the modularity of the 
community detection algorithms (Louvain and Label Propagation 
algorithms) as fitness values in order to find the most favorable 
values in cost-effective manner. While other studies have 
concentrated on singular Twitter features, applying the Louvain 
genetic algorithm and the Label Propagation genetic algorithm to 
negative emotion data from Twitter resulted in higher modularity 
from a combination of features than the results from single features. 
This demonstrates that a combination of features increases the 
diffusion of negative emotions in Twitter communities. 
Key words: 
Negative emotions, contagion, Twitter, feature selection, 
community detection, genetic algorithm. 

1. Introduction 

Ideas and information spread in social networks like a 
pathogen: each infected person affects his/her friends [2]. 
Studies have found that emotions, including happiness and 
depression, can be contagious both in person and online [3-
5].  
Recently, the Arab Spring and Occupy movements have 
demonstrated the powerful influence of social media [3, 6]. 
In a study that compared people’s beliefs, Soliman et al. [6] 
reported that large networking sites such as Facebook and 
Twitter can have a significant psychological impact on our 
behavior, and people’s opinions are currently changing for 
the worse [3]. Naveed et al.’s [7] analysis of tweets 
indicated that tweets containing negative emoticons are 
more likely to be retweeted than tweets with positive 
emoticons. Additionally, Sobkowicz and Sobkowicz [8] and 
Chmiel et al. [9] studied emotional expression in blogs and 
found that negative emotions drive interaction in users’ 
communities [2]. In response, our study focused on the 
negative emotional contagion spreading in online social 

networks, which affect individuals who have negative 
emotions diffused within their communities. 
The popularity of social networks increases the importance 
of community detection, which is useful for capturing 
valuable metadata about large-scale networks [2]. 
Community detection is important for the easy visualization 
of networks, including network structure and relationships 
[10, 11]. However, community detection is challenging, 
particularly because the number of communities is unknown 
and communities vary widely in size [3, 11]. Another 
challenge in community detection is evaluating the quality 
of community detection algorithms; many studies 
implement Newman’s modularity to assess the quality of 
the results [12]. In this work, we use and compare two 
community detection algorithms, the Louvain algorithm 
(modularity-based) and the Label Propagation algorithm 
(diffusion-based), to emphasize communities in which 
negative emotions are spreading.  
Twitter has a number of features, including retweets, replies, 
mentions, and URLs. In this study, we focus on retweets as 
a diffusion indicator [13] and on mentions, hashtags, 
follows, locations and languages as user features. These 
features have been specifically chosen to indicate link 
similarity, which is a better indicator of similarity between 
social network users than content similarity [10]. 
This article is interested in studying the emotions in tweets, 
specifically tweets that express negative emotions including 
depression and/or anger. Ekman’s basic emotions are 
commonly used for emotion mining and classification [14]. 
Also, Parrott’s emotion framework classifies emotions as 
primary, secondary, and tertiary [15]. Accordingly, for this 
study, we chose to gather data on the most common 
emotions on Twitter. 
The number of features chosen for this study as well as the 
large amount of data crawled from Twitter required the use 
of a genetic algorithm to find the good (may be optimum) 
solution in polynomial time. In this article, we enhanced 
Louvain and Label Propagation algorithms by genetic 
approach yielding Louvain genetic algorithm (LGA) and the 
Label Propagation genetic algorithm (LPGA) which 
improved the community detection of negative emotions on 
Twitter. These algorithms helped find the features that 
enhance the diffusion of negative emotions in the network.  
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The results of the study showed that the modularity was 
similar for both LGA and LPGA, but the Rand index 
showed higher accuracy in the LGA results than in the 
LPGA results. Both algorithms revealed that analyzing a 
combination of features produced higher results than the 
analysis of a single feature, demonstrating that social graphs 
with more than one feature influence the spread of negative 
emotions.  
The contributions of this article can be summarized as 
follows:  

1. We used the genetic algorithm along with 
community detection algorithms to enhance the 
computational time and reach a good solution. It 
also increases the efficiency of the proposed 
algorithm when used with huge number of features. 

2. We tested a combination of Twitter features to 
determine the effect they had on the diffusion of 
negative emotions in the community. In contrast, 
previous studies on Twitter community detection 
concentrated on a single feature, such as retweets 
or mentions, as the relationship indicator.  

 
The rest of the article is organized as follows: Section 2 
reviews related works. Section 3 presents the Louvain and 
Label Propagation community detection algorithms used in 
the experiments. Section 4 explains the proposed 
community detection algorithms that are enhanced by the 
inclusion of multiple features. Section 5 describes and 
discusses the experiments and the results. Finally, section 6 
outlines the conclusions of the study.  

2. Related Work 

Twitter and other social networks continue to gain 
popularity and have an increasing impact on users’ 
emotions and the diffusion of these emotions. Happiness 
and other emotions have recently caught the attention of 
researchers in many fields, including psychology, 
economics, and neuroscience [4], [16-19]. Large-scale 
emotional contagion is occurring in online networks, and 
these emotions can spread worldwide in a single day [2, 19].  
Lately, many researchers have attempted to detect and 
model emotions in social networks. Their findings have 
been made based on the observation that emotion can be 
propagated via online interactions [20, 21]. Councill et al 
[22] proposed a method to improve sentiment classification 
by detecting negation in sentences using a conditional 
random field. Cole et al. [23] presented a method of 
classifying novel variants of a diffusion model to predict the 
emotions of a large set of blog entries based on the emotions 
expressed in entries written by users’ friends [23]. Moreover, 
Rosenquist et al. [24] studied depression in social networks 
and found its effects can extend up to three degrees of 
separation (to ones friends’ friends’ friends). 

The findings of current viral marketing research studies 
show that emotions play a critical role in the spread  
of content online [3, 25]. Kanavos et al. [26] investigated 
the impact of a tweet’s emotional content on its diffusion 
through retweets; they found that tweets containing negative 
emotions were more likely to be contagious. 
Community detection ”formalizes the strong social groups 
based on the social network properties.” [27]. In an online 
social network, community detection is ”based on analyzing 
the structure of the network and finding individuals who 
correlate more with each other than with other users.” [28]. 
Lerman and Gosh’s [29] study on Digg and Twitter showed 
that the structure of a network affects the dynamics of 
information spread. Also, Paranyushkin [30] and Ball [31] 
reported that community structure is essential for 
information contagion to propagate through the network. 
Moreover, Deitrick et al. [11] stated that combining 
sentiment analysis with community detection results helps 
to illuminate the sentiment that is expressed by different 
communities easier [2]. 
It is important to apply the appropriate tools in detecting and 
understanding the behaviors of network communities to be 
able to model the dynamism of the domain to which they 
belong [32, 33]. Different clustering techniques have been 
applied to detect communities in online social networks [27, 
32, 34]. Clustering individuals into groups that share com-
mon characteristics helps to assess individual behaviors and 
what activities, goods, and services an individual is 
interested in [28]. Rani and Goyal [35] reported that the 
application of clustering techniques is used by many 
researchers to improve the performance of information 
retrieval. Furthermore, Kim et al. [36] found that dividing 
and clustering the Twitter network helps individuals to find 
a group of users with a similar inclination, which is called 
a ”community” [2]. 
 Dividing graphs into homogeneous, densely interconnected 
clusters of nodes with minimal connection between clusters 
has been a topic of community discovery [2, 27, 34, 37-40]. 
Diverse clustering techniques have been applied by 
different researchers to detect communities in social 
networks [27, 32, 34]. Shalizi and Thomas [37] thought that 
it was ideal to first establish the existence of these clusters, 
to note the memberships of each individual in the chosen 
model and to control this when looking for evidence of 
contagion or influence. 
Rosenquist et al. [24] study of the factors of depression in 
social networks used clustering. The network was clustered 
according to the level of depression, such as moderately 
depressed or very depressed, and according to the 
relationships between individuals, such as friends, siblings 
or spouses. The study proved that emotion propagate from 
person to the other and that it depends on social ties between 
the nodes and where they are located in the network. 
 Zhu et al. [41] used Louvain algorithm [1] and CNM [42] 
algorithm to detect emotional communities where they 
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proofed that the emotional network is more suitable for 
detecting emotional communities. Also, Xiong et al. [21] 
indicated that users in a small community are more likely to 
change the mood for the influence of community leader. 
Cha et al. [43] used indegree, retweets, and mentions as 
measures of influence on Twitter and concluded that users 
who are mentioned frequently are also retweeted frequently 
and vice versa. Kim et al. [44] indicated that tweets and 
retweets help diffuse information on Twitter and that the 
analysis of information diffusion help understand overall 
social behaviors among the users in a social network. Yang 
et al. [45] found Twitter interactions, specifically mentions, 
were strong predictors of information diffusion. In addition, 
Tareaf et al. [46] analyzed how quickly information spread 
on Twitter based on the influence of friend relationships. 
 

 

Fig. 1  Visualization of Louvain algorithm steps [1] 

After a thorough review of related studies, we predicted the 
Twitter community structure influenced the diffusion of 
negative emotional contagion. Accordingly, we found that 
Twitter features (either one feature or a combination of 
features) affect the diffusion of tweets and increase the 
spread of negative emotions. 

3. Community Detection 

A widespread informal definition of community is a group 
of nodes that are densely interconnected [27, 47, 48]. 
Community detection is a key characteristic used to extract 
useful information from networks [49]. One of the greatest 
challenges in community detection is evaluating the quality 
of community detection algorithms, so many studies use 
Newman’s modularity to assess the quality of the results 
[12]. On the other hand, the Rand Index is used to measure 
the similarity between two data clusters. 

3.1 Community Detection Algorithms 

There are numerous community detection algorithms, and 
they translate and combine aspects of cohesion and 
separation differently. 
For this study, we selected community detection algorithms 
that assisted in the study of the diffusion of negative 
emotions. First, we chose the Label propagation algorithm, 
a diffusion-based community detection algorithm that 
detects communities by considering how information is 
propagated in a network. We also selected the Louvain 
algorithm, which is an efficient modularity-based 
community detection algorithm that assesses cohesion and 
separation through the number of intra-and intercommunity 
links, respectively [50, 51].  
Louvain Algorithm: This method is an agglomerative 
hierarchical modularity-based community detection 
algorithm introduced by Blondel et al. [1] that relies on a 
greedy optimization process, and includes an additional 
aggregation step to improve processing in large networks 
[48]. This algorithm is fast, allowing for the analysis of huge 
networks with billions of edges [52], and produces 
significant partitions [53], which has made it extremely 
popular in recent years.  
The algorithm starts with placing each node in its own 
community. The modularity gain is calculated for each node 
that is moved to its neighbors’ community, where the node 
will be moved to the community with the largest gain or stay 
in its community if no gain is possible [48]. The procedure 
is repeated for all nodes until no further improvement is 
applicable, thus ending the first step. For the second step, a 
new network is built where nodes are the communities 
estimated during the first step, and community links are 
represented in the new network by weighted regular links 
and self-loops. Later, the first step is applied to the new 
network, and both steps are repeated until stable 
communities are reached [48] figure (1).  
High modularity indicates strong ties between nodes in the 
community. This shows higher diffusion in negative 
emotions because it depends on the edge weights in 
calculating clusters, which serves our study since the edge 
weight reflects the diffusion of the negative emotions This 
algorithm has been proven to produce good community 
structures. Its complexity is expected to be O(n log n), but 
precise complexity analysis is still lacking due to the 
difficulty of describing the number of corrections in 
advance [54, 55]. 
Label Propagation Algorithm: This algorithm, by Raghavan 
et al. [56], uses the concept of the node’s neighborhood and 
the diffusion of information in the network to identify 
communities [12]. Initially, each node in the network is 
assigned a unique label; then, through an iterative process, 
each node is updated with the label held by the majority of 
its neighbors [12, 57]. This process continues until one of 
several conditions is met, such as no label change. The  
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resulting communities are defined by the last assigned label 
values figure(2). 
 

 

Fig. 2  Nodes are updated one by one as we move from left to right [56]. 

This algorithm is desirable because it is quick, effective, and 
easy to implement [48, 57]. The overall complexity of this 
method depends on the number of iterations (taking the 
linear time of O (m)); this number cannot be estimated but 
has been observed to stay relatively low in many examples 
[54, 55]. Papadopoulos et al. [55] pointed out that the 
computational efficiency and conceptual simplicity of the 
Label Propagation algorithm facilitates the development of 
method extensions or adaptations that cater to particular 
problems.  
Similar to the Louvain algorithm, the Label Propagation 
algorithm is applied to data generated from the genetic 
algorithm and the modularity is calculated for the specific 
combination of features. High modularity indicates strong 
ties between the nodes in the community and shows a higher 
level of diffusion in the network. 

3.2 Evaluation Metrics 

Modularity: The most widely used and accepted metric 
designed specifically for the purpose of measuring the 
quality of a network’s division into communities is 
modularity (Q) [38, 58]. Modularity compares the density 
of links inside communities to the links between 
communities [34, 50].  
Thus, Q effectively measures the fraction of edges in the 
network that connect nodes in the same community minus 
the expected value of this quantity if the edges were placed 
at random. The value ranges from Q = 0, when the within-
community edges are no better than random, to Q = 1 [58]. 
The modularity Q is defined as follows:  

𝑄𝑄 = 1
2𝑚𝑚

 � �𝐴𝐴𝑖𝑖,𝑗𝑗 −
𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

� 
𝑖𝑖,𝑗𝑗

δ(c𝑖𝑖 , 𝑐𝑐𝑗𝑗)     (1) 

 
Rand index: The Rand Index [59] corresponds to the 
proportion of node pairs for which both the estimated and 
reference community structures agree. A pair of nodes is 
considered correct if the nodes either share the same cluster 
in both clusterings or if they are in different clusters in both 
clusterings. The fraction of pairs of nodes that are correct is 
the Rand Index. Let a11 be the number of pairs of nodes that 
are in the same cluster in both clusterings. Let a00 be the 
number of pairs of nodes that are in different clusters in both 
clusterings. Let a01 and a10 be the nodes that are in the 

same cluster in one clustering and in different clusters in the 
other. Thus, then the Rand Index is as follows:  

𝑎𝑎11+𝑎𝑎00
𝑎𝑎11+𝑎𝑎10+𝑎𝑎01+𝑎𝑎00

     (2) 
 
The Rand Index ranges from 0 (the algorithm completely 
failed to estimate the community structure) to 1 (the 
algorithm perfectly estimated the community structure).  

3.3 Testing  

We used of a pair of publicly available Twitter datasets to 
test the community detection algorithms using evaluation 
metrics; this showed that the algorithm did not fit the data 
[60]. The datasets were chosen according to their similarity 
to our data and included retweet views. Four datasets, the 
Olympics, Political (UK), Political (IE), and Rugby, 
contained weighted, directed retweets of users in the 
specified domain.  

• Olympics This dataset consisted of 464 users and 
covered athletes and organizations involved in the 
London 2012 Summer Olympics. The disjointed 
ground-truth communities corresponded to 28 
different sports [60]. 

• Political (UK) This dataset included 419 Members 
of Parliament (MPs) in the United Kingdom. The 
ground-truth communities consisted of five groups 
corresponding to specific political parties [61].  

• Political (IE) This dataset was a collection of Irish 
politicians and political organizations assigned to 
seven disjointed ground-truth groups by party 
affiliation [60]. 

• Rugby This dataset was a collection of 854 
international Rugby Union players, clubs, and 
organizations that were active on Twitter [62]. The 
ground-truth groups consists of overlapping 
communities corresponding to 15 countries. The 
user accounts of rugby players can potentially be 
assigned to both their home nation and the nation 
in which they play rugby [60].  

• Negative Emotions This dataset contained the data 
collected for our study and also contained retweets 
containing negative emotions that were passed 
between users. (Explained in detail in section 5.)  

 
Table 1 shows that the modularity for the Political, 
Olympics, and Rugby datasets are higher with the Louvain 
algorithm than the Label Propagation algorithm, which 
indicates that the nodes in the communities are more 
connected and have stronger ties. On the other hand, the 
Rand index was higher for Label Propagation than Louvain, 
thus indicating a higher accuracy in the partitioning of 
communities. Although the Rand index showed the opposite, 
the modularity is considered a stronger evaluation metric for 
the formation of communities. On the other hand, the 
Negative emotions data showed high modularity in both the 
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Louvain and Label Propagation, but the Rand index was 
higher in the Louvain results, thus emphasizing more 
accuracy in the construction of communities. The number 
of nodes in each community of the Negative emotions 
dataset was small, while the number of communities was 
large, because the relations between the nodes depended on 
the diffusion of the emotions [63]. While the number of 
nodes in each community was high, the number of 
communities was small in the other datasets. As a result, the 
modularity of the Negative emotion data was higher than 
the modularity of the other datasets. These results guided us 
to use both the Louvain Community Detection algorithm 
and the Label Propagation algorithm with the Genetic 
Algorithm to the find an optimal solution, which, in our 
situation, is the combination of features with stronger 
relations and higher diffusion of negative emotions. 

Table 1: Evaluation Metric Results for Community Detection Algorithms 
of the Different Datasets 

Datasets Evaluation 
Metrics 

Community Detection Algorithms 
Louvain 

algorithm 
Label Propagation 

Algorithm 
Political 

(UK) 
Modularity 0.4487 0.3459 
Rand Index 0.684 0.995 

Olympics Modularity 0.8534 0.582 
Rand Index 0.642 0.9838 

Political 
(IE) 

Modularity 0.5499 0.5071 
Rand Index 0.8032 0.9892 

Rugby Modularity 0.6203 0.5235 
Rand Index 0.6116 0.9915 

4. Proposed Feature Selection Community 
Detection Algorithms 

4.1 Feature Selection 

 Twitter (http://twitter.com) is a popular social networking 
site that allows registered users to post and read short text 
messages called tweets [29]. Twitter has features, rules, and 
regulations to ensure a positive user experience [64]. A user 
can retweet or comment on another user’s post, usually 
preceded by “RT @x,” where x is the name of the user being 
retweeted. Twitter also allows users to designate other users 
they want to follow. Twitter  
 

 

Fig. 3  The Computation Time of Data with and without Genetic 
Algorithm 

restricts large-scale access to its data to a limited number of 
entities [29]. We used Twitter4J to retrieve tweets using 
keywords such as sad, upset, and angry to find tweets 
containing negative emotions; however, Twitter limits the 
retrieval of tweets to 3000 tweets every 15 minutes. For 
each tweet, we retrieved the account of the user who wrote 
the tweet and the account of users who retweeted it. Then, 
we crawled account features such as follows, mentions, 
language, location, and hashtags, and the data were stored 
in a database.  
Twitter has many features such as replies, mentions, and 
followers that may affect the diffusion of negative emotions.  
Five commonly studied features proven to affect diffusion 
were selected for the study. Cha et al. [43] studied followers, 
mentions, and retweets and found retweets have the most 
influence on diffusion. Zhu et al. [65] also indicated that 
retweeting is the best way to spread information on Twitter. 
Therefore, our study depends on retweets for identifying the 
diffusion of negative emotions on Twitter.  Del Vicario et 
al. [20] proved that active users shift more quickly to 
negativity than less active users. For this reason, we are 
concerned with interaction features that showed users’ 
activity levels and their interactions in the network. We 
focused on an individual’s potential to engage others in a 
certain act by concentrating on five popular activities on 
Twitter, and these activities were considered as features of 
the network communities. These features were chosen to 
show link similarity, which is a better indicator of similarity 
between users than content similarity [10] The five features 
are as follows: 

• Mention: A mention is when a user comments on 
another user’s tweet using the following tag: 
@username.  

• Following: Another user account following the 
user who wrote the tweet.  

• Hashtag: Hashtags are words or phrases preceded 
by a hash sign (#). Users can place this sign in 
tweets to identify messages on a specific topic  

• Location: A user’s location or place.  
• Language: The first language a user employs when 

tweeting. 
 
Community features that affect the diffusion of negative 
emotions in the network may be limited to one feature or a 
combination of features. According to the following 
calculation, number of combinations can be created from 
the initial features [40]:  

   (3) 
 
C(n,r) is a combination of features where n is the number 
of features and r is the number of initially chosen features. 
The community detection algorithm we ran had exponential 
computational time. The use of the genetic algorithm helped 
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us choose a useful set of features in polynomial time figure 
(3).  

4.2 Genetic Algorithm 

Since we aimed to find the features that affected emotional 
diffusion the most in polynomial time, we needed to 
decrease unnecessary features to reduce the computation 
time. The genetic algorithm is best used to find the most 
favourable solution in polynomial computation time; the 
solution might be optimal but it is not guaranteed. The 
algorithm is a randomized adaptive search and optimization 
method inspired by the natural gene selection process and is 
based on Darwin’s principle of the survival of the fittest [66]. 
The genetic algorithm finds the most favourable solutions 
in a quick and inexpensive manner [67].  
In this study, the genetic algorithm was used to select the 
best combination of features in polynomial computational 
time. The initial population of genetic algorithm is 
generated from the five features, and individuals with the 
highest fitness values are randomly combined to generate 
the next generation. Individuals are selected according to 
the fitness values, then crossover and mutation are 
performed. The crossover operator produces new 
individuals from two selected individual used as parents, by 
swapping segments to produce new individuals. The 
mutation operator is used to maintain diversity. During the 
mutation phase value of each segment in each selected 
individual is changed. Better solutions are created by 
repeating this process for many generations.  
For feature selection, we used a string consisting of binary 
digits (i.e., 0s and 1s) , which denoted a solution [67]. The 
length of the string corresponded with the total number of 
features. In a binary string, the exclusion of a feature was 
indicated by a 0 in a particular position while a 1 in a 
particular position designated inclusion in the feature subset 
[67]. For example, a candidate solution with the binary 
representation 11001 indicates that there are a total of five 
features, and the feature subset contains three features (1, 2, 
and 5) Table 2. Data were later retrieved to generate graphs 
according to the selected features. Each graph represented a 
feature or combination of features and was used for the 
proposed community detection algorithms.  

Table 2: Individuals (Features) Representation 
Mention Hashtag Location Language Following 

1 1 0 0 1 

4.3 Louvain Genetic Algorithm (LGA) and Label 
Propagation Genetic Algorithm (LPGA)  

In this section we will enhance Louvain algorithm and Label 
Propagation algorithm with genetic algorithm. The two 
enhanced algorithms are named LGA and LPGA. The LGA 
and the LPGA were used to calculate the fitness values from 
the modularity of the Louvain algorithm and Label 

Propagation algorithm, and the genetic algorithm was used 
to find the most favourable solution quickly and 
inexpensively [67].  
The data used for the experiment has been crawled and 
organized in a database for easy extraction and generation 
of graphs. For both algorithms, the genetic algorithm 
generates a new individual that is consisted of combination 
of features (Table 2) in each population, crossover and 
mutation are performed on each individual to generate new 
individuals and accordingly the graph is extracted from the 
database according to the features of each individual. The 
graph is later used for the Louvain and Label 
Propagation algorithms, and the modularity of each 
algorithm is calculated. Then, the next generation in the 
genetic algorithm is generated for a new combination of 
features, and each modularity is recalculated. The process 
continues until the condition is reached. The results shows 
the most optimal feature or combination of features with the 
highest modularity for both algorithms. The details of the 
LGA and LPGA steps are shown in Algorithm 1 and 
Algorithm 2, respectively. 
 

 Algorithm 1 LGA Pseudo-code 
1 Generation = 0 
2 Initialize population of individuals (features) 
3 While Generation < MaxGeneration do 
4 Evaluate Fitness of individuals 
5 Repeat  
6      for each individual generate network G 
7      Repeat 
8           Put each node of G in its own community 
9           while some nodes are moved do 
10                for all node n of g do 
11                    place n in its neighbouring community 

including its own which maximizes the modularity 
gain 

12                end for 
13           end while 
14           if the new modularity is higher than the initial  

then  
15                G = the network between communities of 

G 
16           end if 
17       until  no further movements of nodes 
18 Until BestFitness < MaxFitness       
19 Select the best-fit individual for reproduction             
20 Breed new individual through crossover and 

mutation operations 
21 Replace least-fit population with new individuals 
22 Increment Generation 
23 End while 
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 Algorithm 2 LPGA Pseudo-code 
1 Generation = 0 
2 Initialize population of individuals (features) 
3 While Generation < MaxGeneration do 
4 Evaluate Fitness of individuals 
5 Repeat  
6      for each individual generate network G 
7      Initialize the labels for all nodes  
8      while not converged and num_iterations < 

max_iterations do 
9           Arrange the nodes in the network in random 

order 
10           Assign label with highest frequency among 

neighbors     
11       end while 
12 Until BestFitness < MaxFitness       
13 Select the best-fit individual for reproduction             
14 Breed new individual through crossover and 

mutation operations 
15 Replace least-fit population with new individuals 
16 Increment Generation 
17 End while 

5. Experiments and Results 

5.1 Data Description  

The datasets used for this study consisted of data down-
loaded directly from the Twitter API. The tweets containing 
negative emotions were crawled using Twitter4J. The  

negative emotion words were selected according to Parrot’s 
emotions framework [15, 68] and Ekman’s scale [14, 69]. 
Ekman’s scale classified emotions to six basic emotions 
(Anger, Disgust, Fear, Joy, Sadness, and Surprise) that are 
commonly used for emotion mining and classification [14]. 
Also, Parrott emotion framework has classified emotions 
into primary, secondary and tertiary emotions [15]. 
Disappointment is secondary emotions that is classified 
from the primary emotion sadness, while depression is 
tertiary emotion classified from secondary emotion sadness. 
Accordingly, most commonly used emotions in Twitter 
have been chosen for crawling data needed for the study. 
 We used Twitter’s search API to retrieve all English tweets 
containing words such as sad, upset, disappointed, angry, 
frustrated, and sad emoticons. We crawled 751 tweets and 
529K users who have initiated, retweeted or mentioned the 
tweets. We also collected the retweets of each tweet, the 
hashtags and the mentions that each tweet contains, and 
other information of the users, such as followers, locations, 
and languages. Although tweets collected were in English 
only, some accounts showed that English was not their first 
language, 17 different languages were found for accounts 
who tweeted or retweeted English tweets. The search 
depended on the retweets 
 
 
 
 
 
 
 

 

 

Fig. 4  Modularity of Feature Graphs with Community Detection Algorithms 

as an indication of diffusion existence in the network. The 
data collected were uploaded in the database. The retrieval 
of the data from the database to generate a weighted and 
directed graph (G) was conducted according to the 
similarities between the users. Retrieval depended on 5 
features.  
 

 

Fig. 5  Comparison of Modularity Measure 
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• Mention (M) Graph: Take a pair (u,v) where u,v ∈ 
G; Edge E exists between (u,v) if u mentions v. The 
edge is given a weight w, where w(u,v)= the 
number of times a node mentions the other.  

• Hashtag (H) Graph: Take a pair (u,v) where u,v ∈ 
G; Edge E exists between (u,v) if u and v have the 
same hashtag. The edge is given a weight w, where 
w(u,v)= the number of times that nodes had similar 
hashtags.  

• Location (Lo) Graph: Take a pair (u,v) where u,v 
∈ G; Edge E exists between (u,v) if u and v have 
the same location. The edge is given a weight w, 
where w(u,v)= the number of times users 
retweeted each other while in the same location.  

• Language (La) Graph: Take a pair (u,v) where u,v 
∈ G; Edge E exists between (u,v) if u and v have 
the same language. The edge is given a weight w, 
where w(u,v)= the number of times that users 
retweeted each other when the accounts had the 
same first language.  

• Following (F) Graph: Take a pair (u,v); u where v 
∈ G; Edge E exists between (u,v) if u and v follow 
similar accounts. The edge is given a weight w, 
where w(u,v)= the number of followers that users 
have in common. 

5.2 Experiment Results 

In this section, we report the results of applying the LGA 
and LPGA to detect the features of communities that 
increase the diffusion of negative emotions in the network 
(Twitter). Applying the LGA to test Twitter’s features 
(mentions, hashtags, locations, followers, and languages) 
found that mentions had the highest modularity (0.773) and 
language had the second-highest modularity (0.528) (Figure 
4). However, combining mentions, followers, locations, and 
languages provided the highest modularity (0.976). If two 
accounts mention each other, follow similar accounts, are in 
the same location, and have the same first language, there is 
a higher possibility they retweet each other and negative 
emotions spread between them easily. The experiment 
results showed that the combination of mentions, hashtags, 
followers, and locations resulted in the second-highest 
modularity. This was followed by the combination of 
mentions, languages, and hashtags. On the other hand, the 
LPGA found the combination of mentions, locations, and 
languages had the highest modularity. The combination of 
mentions, followers, locations, and languages had the 
second-highest modularity followed by the combination of 
mentions, hashtags, and followers. 

 

Fig. 6  Comparison of Rand Index Measure 

The modularity of combinations was similar for both the 
LGA and the LPGA (Figure 5), but the Rand index showed 
higher accuracy in the results of the LGA than the results of 
the LPGA (Figure 6). The results of both algorithms 
revealed that combining features produced higher results 
than relying solely on one feature. This demonstrates that 
social graphs including more than one feature influence the 
spread of negative emotions. Overall, the study found that 
mentions have the most significant influence on the 
diffusion of negative emotions. Each combination of 
features that included mentions produced higher modularity 
results. Similar hashtags, locations, and languages also 
enhanced the diffusion of tweets containing negative 
emotions. High modularity indicated strong ties between the 
nodes in the community, which indicated the diffusion of 
negative emotions. These results support [42] the 
conclusion that users who are retweeted are usually 
mentioned in tweets as well. It also supports results of [45]; 
the conclusion that Twitter interactions, specifically 
mentions, were strong predictors of information diffusion 
on the network. 

6. Conclusion 

Social media such as Twitter heavily influences individuals 
daily lives. Large amounts of information are distributed, 
which affects users in different ways. Negative emotion 
diffusion on Twitter is enhanced by a communities features, 
such as mentions, hashtags, etc. This article has proven that 
the combination of features increases the diffusion of 
negative emotions. The LGA a less computationally 
expensive and quicker manner. This work can be enhanced 
by considering diffusion measures that can measure the 
extent of the diffusion and find the features that depend on 
that. Additionally, the work can be enhanced by finding the 
prominent actor and if he affects the diffusion of negative 
emotions contagion in social networks.  
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