
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

82

Manuscript received September 5, 2019
Manuscript revised September 20, 2019

Experimental Analysis of Artificial Neural Networks Used for
Function Approximation

Akram Mustafa

Computer Science Department, Al al-Bayt University, Mafraq, Jordan-Amman, P.O.BOX 922283, 11192, JORDAN

Abstract
Artificial neural network (ANN) is a powerful mathematical
computational model, which is used in many important life
applications such as function approximation, data regression,
solving classification problem, pattern recognition and much
other application. The objective of this paper is to use ANN for
function approximation, to find the relationship from a given
finite input-output data, that using in the many different
application in this time. Different types of ANN will be created,
trained and tested; the obtained experimental results will be
compared and discussed in order to select the best type of ANN,
the best ANN architecture which will minimize the error between
the targeted function value and the calculated one.
Key words:
ANN, neuron, FFANN, cascade ANN, Elman ANN, ANN
architecture, ANN parameters

1. Introduction

Function approximation means determining one or more
output functions depending on the values of the input
variables, such as predicting the value of y when we have
the values of x1, x2, x3, and x4 as show in table 1:

Table 1: Part of the experimental data
X1 X2 X3 X4 y

0.4658 15.5800 84.9479 75.1238 165.0714
93.3944 95.5501 62.9449 67.8084 212.2650
69.9019 72.7400 20.6862 59.2050 69.9172
98.2575 42.4033 72.1063 43.9034 326.5274
26.3808 63.7372 54.0981 29.4660 121.8527
35.3972 24.4231 39.2436 2.2063 161.8957
52.8335 83.3235 59.3606 40.2054 160.2199
79.5806 0.2929 70.1631 56.1366 313.2211
43.4387 43.1544 40.9139 71.9669 94.4980
93.8172 9.6323 86.1930 59.6668 376.9143

Function approximation is the fundamental problem in a
vital majority of real world applications, such as prediction,
pattern recognition, data mining and classification, thus
finding a tool to predict a function value is a very important
task [20].
In this paper we will focus on selecting the appropriate
ANN to calculate the function value for a given variables
value with minimum error between the targeted and the
calculated values of the function.

1.1 Artificial Neural Network

Artificial neural network is a set of fully connected neurons
as shown in figure 1, these neurons are organized in layers,
one input layer, one output layer and zero or more hidden
layers [1], [2].

Fig. 1 ANN architecture

ANN must be fed by an input data set in order to calculate
the predicted outputs, each neuron has one or more inputs,
and each input is associated with a weight [3], figure 2
shows the mathematical model of a neuron which operates
applying the following steps:

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 83

Fig. 2 Neuron mathematical model

- Summation of the products, each product is a
multiplication of the input with the associated
weight.

- According to the selected activation function for
the layer (and neuron in the layer), the neuron
calculates the output.

In this paper we will focus on the mostly used activation
functions: Linear, logsig, and tansig [4], [5];
Using the linear activation function produces an output
equal the sum of products, figures 3 and 4 show how the
outputs are calculated using logsig and tansig activation
functions [6]:

Fig. 3 Using logsig to calculate the output

Fig. 4 Using tansig to calculate the output

Figure 5 shows a Simulink model which simulates the
neuron operations [7]:

Fig. 5 Neuron Simulink model

Using ANN for function approximation requires paying
attention on the following important issues:

1) Selecting an input data set, arranging this set in
suitable matrix to be used for feeding ANN.

2) Defining the correct targets (the predicted values
of the output function).

3) Selecting ANN type.
4) For the selected ANN type define ANN

architecture, which includes:
a) Number of layers to be used,
b) Number of neurons in each layer,
c) Activation functions for layers.

5) Initializing all weights to zero.
6) Defining some parameters for ANN such as: error

which must be closed to zero, number of training
cycles, and each cycle is used to calculate the
outputs in the forward phase, and the propagated
error in the back ward phase, if the calculated
error matches selected error then the training will
be stopped, otherwise the training will be
continued.

1.2 Feed Forward ANN with Back Propagation

This type of ANN has the architecture [5] and [7] as shown
in figure 6, the input layer neuron are connected directly to
the second layer, where the second neuron are connected to
third layer and so on.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 84

Fig. 6 Feed forward ANN

This type of ANN works as follows (in each training cycle):
- Starting from the input layer find the output of

each neuron (feed forward).
- Starting from the output layer calculate the error

using back propagation, if the error is accepted
stop training, else go back by finding the error and
adjusting the weights.

1.3 Cascade FFANN

Cascade feed forward ANN (CFFANN) models are similar
to FFANN, but includes a weight connection from the input
to each layer and from each layer to the successive layers
[8], [9] and [10]. While two-layer feed forward networks
can potentially learn virtually any input/output relationship,
feed-forward networks with more layers might learn
complex relationships more quickly [6]. The function
newcf creates cascade-forward networks [17]. For
example(see figure 7) , a three layer network has
connections from layer 1 to layer 2, layer 2 to layer 3, and
layer 1 to layer 3. The three-layer network also has
connections from the input to all three layers. The
additional connections might improve the speed at which
the network learns the desired relationship [9] and [18]. CF
artificial intelligence model is similar to feed forward back
propagation neural network in using the back propagation
algorithm for weights updating, but the main symptom of
this network is that each layer of neurons related to all
previous layer of neurons [9], [11], [16] and [17].

Fig. 7 CFFANN architecture

1.4 Elman FFANN

One of the most known recurrent neural networks is Elman
neural network [12], [13] Typical Elman network has one
hidden layer with delayed feedback. The Elman neural
network is capable of providing the standard state-space
representation for dynamic systems. This is the reason why
this network architecture is utilized as a recurrent neural
equalizer. Generally, this network is considered as a special
kind feed-forward network, including additional memory
neurons and local feedback [14], [15] and [19]. Typical
structure of Elman neural network is depicted in figure 8.

Fig. 8 Elman ANN architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 85

2. Implementation and Experimental Results

For the above mentioned types of ANN a matlab codes
were written to create, train and test ANN, an input data set
of 100 elements were selected such as the data shown in
table 1. The maximum value of the selected input data set
was around 100, so we do the work in 2 experiments: the
first experiment without data normalization (using the
input data set to feed ANN), the second by using
normalized data by dividing the input data set by 1000 to
avoid zero results of the exponent component of the
activation function.
Matlab codes were written to implement various types of
ANN; each code was implemented applying the following
steps:

1) Select the arranged input data set to feed ANN.
2) Select the output targets.
3) Normalize the data (if necessary).
4) Select the type of ANN.
5) Create ANN by selecting the number of layers, the

number of neurons in each layer, and the
activation function for each layer.

6) Initialize the weights to zero.
7) Set some parameters for ANN (error must be very

closed to zero, High number of training cycles).
8) Train ANN.
9) Save ANN if it meets the performance

requirements.
10) Run ANN using a selected input set data items.

The following matlab code was implemented for various
ANN:

First experiment: Without data normalization
The three types of ANN were created, trained and tested
using various architectures and activation functions, tables
2, 3, and 4 show the results of this experiment where below
symbols (*, & and #) are meaning:
*- Meet the performance requirement.
&- Acceptable but doesn’t real.
#- Not acceptable.

Table 2: Feed forward ANN results

ANN size
(byte)

Input layer
neurons and

activation
function

Hidden layer neurons
and activation function

Output layer
neurons and

activation
function

Training
cycles Training time Error

26659 * 4 linear * 0* 1 Linear* 6* 0.235000* 0*
26653& 4 logsig& 0& 1 Linear& 8000& 189.481000& 0.0029&
26653& 4 tansig& 0& 1 Linear& 8000& 188.524000& 0.00071942&
33367 * 4 linear* 4 linear* 1 Linear* 6* 0.221000* 0*
33367# 4 linear# 4 logsig# 1 Linear# 4# 0.222000# Fail#
33367# 4 linear# 4 tansig# 1 Linear# 5# 0.248000# Fail#
33367& 4 logsig& 4 logsig& 1 Linear& 8000& 168.265000& 0.9223&
33367& 4 logsig& 4 tansig& 1 Linear& 8000& 122.017000& 0.9728&
33367& 4 logsig& 4 linear& 1 Linear& 8000& 200.949000& 0.00071942&
33367# 4 linear# 4 logsig# 1 Linear# 4# 0.240000# Fail#
33367# 4 linear# 4 tansig# 1 Linear# 5# 0.245000# Fail#
33367& 4 tansig& 4 linear& 1 Linear& 8000& 203.476000& 0.0014&
33367# 4 tansig# 4 logsig# 1 Linear# 70# 0.636000# Fail#

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 86

Table 3: Cascade ANN results

ANN size
(byte)

Input layer
neurons and

activation function

Hidden layer neurons
and activation function

Output layer neurons
and activation function

Training
cycles Training time Error

28667 * 4 linear * 0# 1 Linear * 6 * 0.225000 * 0 *
28661 * 4 logsig * 0# 1 Linear * 4 * 0.217000 * 0 *
28661 * 4 tansig * 0# 1 Linear * 4 * 0.217000 * 0 *
39759 * 4 linear * 4 linear# 1 Linear * 4 * 0.223000 * 0 *
39753 * 4 linear * 4 logsig# 1 Linear * 10 * 0.259000 * 0 *
39753 * 4 linear * 4 tansig# 1 Linear * 5 * 0.235000 * 0 *
39747 * 4 logsig * 4 logsig# 1 Linear * 5 * 0.231000 * 0 *
39747 * 4 logsig * 4 tansig# 1 Linear * 6 * 0.239000 * 0 *
39753 * 4 logsig * 4 linear# 1 Linear * 7 * 0.237000 * 0 *
39753 * 4 linear * 4 logsig# 1 Linear * 2030 * 33.734000 * 0 *
39753 * 4 linear * 4 tansig# 1 Linear * 6 * 0.235000 * 0 *
39753 * 4 tansig * 4 linear# 1 Linear * 8 * 0.252000 * 0 *
39747 * 4 tansig * 4 logsig# 1 Linear * 6 * 0.241000 * 0 *

Table 4: Elman ANN results

ANN size
(byte)

Input layer neurons
and activation

function

Hidden layer neurons and
activation function

Output layer neurons
and activation function

Training
cycles Training time Error

29029& 4 linear& 0& 1 Linear& 8000& 19.987000& 5.9849&
29023# 4 logsig# 0# 1 Linear# 8000# 21.126000# Fail#
29023# 4 tansig# 0# 1 Linear# 8000# 21.769000# Fail#
38105& 4 linear& 4 linear& 1 Linear& 8000& 24.757000& 17.9475&
38099# 4 linear# 4 logsig# 1 Linear# 8000# 25.813000# Fail#
38099# 4 linear# 4 tansig# 1 Linear# 8000# 25.221000# Fail#
38093# 4 logsig# 4 logsig# 1 Linear# 8000# 26.434000# Fail#
38093# 4 logsig# 4 tansig# 1 Linear# 8000# 25.968000# Fail#
38099# 4 logsig# 4 linear# 1 Linear# 8000# 25.536000# Fail#
38099# 4 linear# 4 logsig# 1 Linear# 8000# 25.846000# Fail#
38099# 4 linear# 4 tansig# 1 Linear# 8000# 25.076000# Fail#
38099# 4 tansig# 4 linear# 1 Linear# 8000# 25.360000# Fail#
38093# 4 tansig# 4 logsig# 1 Linear# 8000# 26.535000# Fail#

From the obtained experimental results shown above we
can conclude the following:

- It is better to use cascade ANN with any
architecture to solve the function approximation
problem.

- CFFANN with one input layer and output layer
gave the best performance (zero error and
0.225000 s training time).

- Only one FFANN architecture gave a good
performance.

- No EANN architecture gave an acceptable
performance.

Second experiment: With data normalization
The three types of ANN were created, trained and tested
using various architectures and activation functions, tables
5, 6, and 7 show the results of this experiment:

Table 5: Feed forward ANN results with data normalization

ANN size
(byte)

Input layer
neurons and

activation
function

Hidden layer neurons
and activation

function

Output layer
neurons and

activation
function

Training
cycles Training time(s) Error

26659# 4 linear# 0# 1 Linear# 11 * 0.253000 * 0 *
26653# 4 logsig# 0# 1 Linear# 8000& 189.748000& 0.0022&
26653 * 4 tansig * 0 * 1 Linear * 8000 * 115.678000 * 0 *

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 87

33367 * 4 linear * 4 linear * 1 Linear * 12 * 0.264000 * 0 *
33367# 4 linear# 4 logsig# 1 Linear# 5# 0.253000# Fail#
33367& 4 linear& 4 tansig& 1 Linear& 3576& 21.354000& 0.6029&
33367# 4 logsig# 4 logsig# 1 Linear# 3# 0.233000# Fail#
33367& 4 logsig& 4 tansig& 1 Linear& 8000& 198.120000& 0.0683&
33367 * 4 logsig * 4 linear * 1 Linear * 8000 * 81.322000 * 0 *
33367# 4 linear# 4 logsig# 1 Linear# 4# 0.245000# Fail#
33367& 4 linear& 4 tansig& 1 Linear& 8000& 216.336000& 0.0029&
33367& 4 tansig& 4 linear& 1 Linear& 8000& 39.303000& 0.0151&
33367# 4 tansig# 4 logsig# 1 Linear# 4# 0.271000# Fail#

Table 6: Cascade ANN results with data normalization

ANN size
(byte)

Input layer
neurons and

activation function

Hidden layer neurons
and activation function

Output layer neurons
and activation

function

Training
cycles Training time(s) Error

28667 * 4 linear * 0 * 1 Linear * 13 * 0.237000 * 0 *
28661 * 4 logsig * 0 * 1 Linear * 5 * 0.236000 * 0 *
28661 * 4 tansig * 0 * 1 Linear * 22 * 0.412000 * 0 *
39759 * 4 linear * 4 linear * 1 Linear * 15 * 0.295000 * 0 *
39753 * 4 linear * 4 logsig * 1 Linear * 340 * 6.438000 * 0 *
39753 * 4 linear * 4 tansig * 1 Linear * 230 * 5.042000 * 0 *
39747 * 4 logsig * 4 logsig * 1 Linear * 8000 * 47.111000 * 0 *
39747 * 4 logsig * 4 tansig * 1 Linear * 26 * 0.419000 * 0 *
39753 * 4 logsig * 4 linear * 1 Linear * 4880 * 126.318000 * 0 *
39753 * 4 linear * 4 logsig * 1 Linear * 1294 * 30.826000 * 0 *
39753 * 4 linear * 4 tansig * 1 Linear * 861 * 11.960000 * 0 *
39753 * 4 tansig * 4 linear * 1 Linear * 8000 * 131.544000 * 0 *
39747 * 4 tansig * 4 logsig * 1 Linear * 5 * 0.256000 * 0 *

Table 7: Elman ANN results with data normalization

ANN size
(byte)

Input layer
neurons and

activation function

Hidden layer neurons
and activation function

Output layer neurons
and activation

function

Training
cycles Training time(s) Error

29029 * 4 linear * 0 * 1 Linear * 3589 * 9.285000 * 0 *
29023# 4 logsig# 0# 1 Linear# 8000# 20.989000# Fail#
29023# 4 tansig# 0# 1 Linear# 8000# 21.088000# Fail#
38105 * 4 linear * 4 linear * 1 Linear * 3872 * 11.341000 * 0 *
38099# 4 linear# 4 logsig# 1 Linear# 8000# 24.828000# Fail#
38099# 4 linear# 4 tansig# 1 Linear# 8000# 24.959000# Fail#
38093# 4 logsig# 4 logsig# 1 Linear# 8000# 25.784000# Fail#
38093# 4 logsig# 4 tansig# 1 Linear# 8000# 25.884000# Fail#
38099# 4 logsig# 4 linear# 1 Linear# 8000# 24.913000# Fail#
38099# 4 linear# 4 logsig# 1 Linear# 8000# 25.325000# Fail#
38099# 4 linear# 4 tansig# 1 Linear# 8000# 25.335000# Fail#
38099# 4 tansig# 4 linear# 1 Linear# 8000# 24.931000# Fail#
38093# 4 tansig# 4 logsig# 1 Linear# 8000# 25.776000# Fail#

From the obtained experimental results shown above we
can conclude the following:

- CFFANN still the best type to be selected for
function approximation.

- Anny selected CFFANN architecture with any
activation function will produce a zero error.

- FFANN can be used for function approximation,
but we have to be careful of selecting the

appropriate architecture with a suitable activation
function

- Elman ANN can be used for function
approximation using any architecture, but the
activation functions must be linear.

- CFFANN always give a better performance.
- For any selected architecture of CFFANN, the

created ANN requires a small size of memory to

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 88

be stored in, and ranges from 29 to 40 Kbytes.

Third experiment:
Normalization of both input data set and targets, making
the target always less than 1.

Here we took the minimum architecture of ANN (one input
layer with 4 neurons, and one output layer with one neuron),
tables 8, 9 and 10 show the results of this experiment.

Table 8: Experiment 3 results 1

ANN type Input layer activation
function

Output layer activation
function

ANN size
(byte)

Training
cycles

Training
time(s) Error

FFANN
purelin * purelin * 26659 * 7 * 0.236000 * 0 *
logsig& purelin& 26653& 8000& 70.701000& 5.4662&
tansig& purelin& 26653& 8000& 65.913000& 5.6223&

CFANN
purelin * purelin * 28667 * 4 * 0.238000 * 0 *
logsig * purelin * 28661 * 5 * 0.253000 * 0 *
tansig * purelin * 28661 * 4 * 0.230000 * 0 *

ELANN
purelin * purelin * 29029 * 1987 * 5.103000 * 0 *
logsig# purelin# 29023# 8000# 20.704000# Fail#
tansig# purelin# 29023# 8000# 20.927000# Fail#

Table 9: Experiment 3 results 2
ANN
type

Input layer activation
function

Output layer activation
function

ANN size
(byte)

Training
cycles

Training
time(s) Error

FFANN
purelin# logsig# 26653# 16# 0.252000# Fail#
logsig# logsig# 26647# 8000# 28.270000# Fail#
tansig# logsig# 26647# 8000# 92.489000# Fail#

CFANN
purelin# logsig# 28661# 17# 0.257000# Fail#
logsig& logsig& 28655& 1859& 13.233000& 11.1820&
tansig& logsig& 28655& 8000& 30.586000& 6.3496&

ELANN
purelin# logsig# 29023# 1720# 4.539000# Fail#
logsig# logsig# 29017# 8000# 20.833000# Fail#
tansig# logsig# 29017# 8000# 21.014000# Fail#

Table 10: Experiment 3 results 3
ANN
type

Input layer activation
function

Output layer activation
function

ANN size
(byte)

Training
cycles

Training
time(s) Error

FFANN
purelin# logsig# 26653# 16# 0.252000# Fail#
logsig# logsig# 26647# 8000# 28.270000# Fail#
tansig# logsig# 26647# 8000# 92.489000# Fail#

CFANN
purelin# logsig# 28661# 17# 0.257000# Fail#
logsig& logsig& 28655& 1859& 13.233000& 11.1820&
tansig& logsig& 28655& 8000& 30.586000& 6.3496&

ELANN
purelin# logsig# 29023# 1720# 4.539000# Fail#
logsig# logsig# 29017# 8000# 20.833000# Fail#
tansig# logsig# 29017# 8000# 21.014000# Fail#

From the obtained results in experiment 3 we can conclude
that cascade ANN provides the best performance when the
activation function of the output layer was setting to linear. 3. Conclusion

Different types of ANN were implemented tested with a
function approximation test data, the obtained
experimental results showed that:

- CFFANN is the best type of ANN to be used for

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 89

function approximation, with any architecture of
CFFANN and with any activation functions we
can reach a zero error between the target value of
the function and the calculated one by CFFANN.

- FFANN can be also used for function
approximation, but here we have to be careful
when selecting ANN architecture and when
assigning the activation function for each layer.

- Elman ANN can be used for function
approximation, but the activation functions must
be linear for all ANN layers.

- Data normalization improves the performance of
any ANN type.

References
[1] Akram A Moustafa “ Performance evaluation of artificial

neural networks for spatial data analysis, Contemporary
engineering sciences, v 4, issue 4, pp 149-163, 2011.

[2] Khaled M Matrouk, Alasha'ary, Abdullah I. Al-Hasanat,
Ziad A. Al-Qadi, Hasan M. Al-Shalabi, Investigation and
Analysis of ANN Parameters, European Journal of Scientific
Research, v 121, issue 2, pp 217-225, 2014.

[3] Jamil Al-Azzeh, Ziad Alqadi, Mohammed Abuzalata,
Performance Analysis of Artificial Neural Networks used for
Color Image Recognition and Retrieving, IJCSMC, Vol. 8,
Issue. 2, pp 20 – 33, 2019.

[4] Khaled M Matrouk, Alasha'ary, Abdullah I. Al-Hasanat,
Ziad A. Al-Qadi, Hasan M. Al-Shalabi, Experimental
Investigation of Training Algorithms used in Back
propagation Artificial Neural Networks to Apply Curve
Fitting, European Journal of Scientific Research, v 121, issue
4, pp 328-335, 2014.

[5] Prof. Mohammed Abu Zalata Dr. Ghazi. M. Qaryouti ,
Dr.Saleh Khawatreh, Prof. Ziad A.A. Alqadi, Optimal Color
Image Recognition System (OCIRS), International Journal
of Advanced Computer Science and Technology., v 7, issue
1, pp 91-99, 2017.

[6] Eng. Sameh S. Salma Prof. Ziad A. AlQad, Eng. Ahmad S.
AlOthma , Eng. Mahmoud O. Alleddaw ,Eng. Mohammad
Ali Al-Hiar , Eng. Osama T. Ghaza, Investigation of ANN
Used to Solve MLR Problem, IJCSMC, v 8, issue 5, 2019.

[7] Jamil Al-azzeh Belal Ayyoub, Ahmad Sharadqh, Ziad
Alqadi, Simulink based RNN models to solve LPM,
International Journal of Research in Advanced Engineering
and Technology, v 5, issue 1, pp 49-55, 2019.

[8] Sumit Goyal and Gyandera Kumar Goyal, Cascade and Feed
forward Back propagation Artificial Neural Network Models
For Prediction of Sensory Quality of Instant Coffee Flavored
Sterilized Drink, Canadian Journal on Artificial Intelligence,
Machine Learning and Pattern Recognition Vol. 2, No. 6,
2011.

[9] Sumit Goyal and G.K.Goyal,”Radial basis artificial neural
network computer engineering approach for predicting shelf
life of brown milk cakes decorated with almonds”,
International Journal of Latest Trends in Computing, vol.2,
no.3, pp. 434-438,2011.

[10] Scott E. Fahlman and Christian Lebiere, the Cascade
Correlation Learning Architecture. D. S. Touretzky (ed.),

Advances in Neural Information Processing Systems 2,
pages 524–532, 1990.

[11] Thomas R. Schultz, Francois Rivest, Laszl ´ o Egri, ´ Jean-
Philippe Thivierge, and Fred´ eric Dandurand, ´ Could
Knowledge-based Neural Learning Be Useful in
Developmental Robotics?. The Case of KBCC.
International Journal of Humanoid Robotics Vol. 4, No. 2,
pages 245–279, 2007.

[12] Chong, S., Rui, S., Jie, L.: Temperature drift modeling of
MEMS gyroscope based on Genetic-Elman neural network.
In : Mechanical Systems and Signal Processing, 2016, vol.
72, p. 897-905.

[13] Yongchun, L.: Application of Elman neural network in
short-term load forecasting. In : Artificial Intelligence and
Computational Intelligence (AICI), 2010 International
Conference on, IEEE, 2010. p. 141-144.

[14] Storn, R., Price, K.: Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces. In: Journal of global optimization, 1997, vol. 11, no
4, p. 341-359.

[15] Nonlinear autoregressive neural network for estimation soil
temperature: a comparison of different optimization neural
network algorithms Omaima N. A. AL-Allaf #1 and Shahlla
A. AbdAlKader Special Issue of ICIT 2011 Conference.

[16] Plantdiseasedetectionandclassificationusingimageprocessin
gandartificialneuralnetworksMr.SanjayMirchandani,MihirP
endse,PrathameshRane,AshwiniVedula, International
Research Journal of Engineering and Technology(IRJET)e-
ISSN: 2395-0056Volume: 05 Issue: 06
June2018www.irjet.net.

[17] Power System Planning and Operation Using Artificial
Neural NetworksAnkita Shrivastava1and Arti
Bhandakkar21PG Scholar, Shriram Institute ofTechnology,
Jabalpur2Associate Professor, Shriram Institute
ofTechnology, Jabalpur.

[18] International Journal of Computer Applications (0975 –
8887)Volume 161 –No 7, March 201741Improved the
Prediction of Clinical Data Accuracy using RBF Neural
Network ModelDineshKumarSahuSri Satya Sai College of
EngineeringBhopal M.P., IndiaRavishKumarSri Satya Sai
College of EngineeringBhopal M.P., IndiaAnilRajputCSA,
Govt. P.G. CollegeSehore M.P., India.

[19] Elman neural networks in model predictive control
[20] Proceedings 23rd European Conference on Modelling and

Simulation ©ECMS Javier Otamendi, Andrzej Bargiela,José
Luis Montes, Luis Miguel Doncel Pedrera (Editors)ISBN:
978-0-9553018-8-9 / ISBN: 978-0-9553018-9-6.

[21] International journal of systems applications, engineering &
development, Function Approximation Using Artificial
Neural Networks, zarita zainuddin & ong pauline.

Akram Aref Mustafa was born in Kuwait,
on Jun 23, 1973.He received B.Sc. degree
and M.Sc. degree in computer engineering
from The National Technical University of
Ukraine in 1997 and 1999, respectively. He
received the Ph.D. degree in computer
engineering from The National Technical
University of Ukraine in 2003. From 2001
to 2002, he was an instructor of computer at

Yarmouk University, and from 2004 to 2011, he was an Assistant

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 90

Professor of computer science department at Al al-Bayt
University, Jordan and since November 2011, he has been an
Associate Professor of computer science department at Al al-
Bayt University, Jordan.
Dr. Mustafa has served as a reviewer for several international
journals and conferences; he has published more than 40 scientific
papers in computer science field. His research interests include
network, image processing, network security, and programming.

