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Summary 
Sentiment classification is a very popular topic for identifying 
user opinions and has been extensively applied in Natural 
Language Processing (NLP) tasks. Gated Recurrent Unit (GRU) 
has been successfully implemented to NLP mechanism with 
comparable, outstanding results. GRUs network performs better 
on sequential learning tasks and overcomes the issues of 
vanishing and explosion of gradients in standard recurrent neural 
networks (RNNs). In this paper, we describe to improve the 
efficiency of the GRU framework based on batch normalization 
and replace traditional tanh activation function with Leaky ReLU 
(LReLU). Empirically, we present that our model, with slight 
hyperparameters, and tuning the statistic vectors, obtains 
excellent results on benchmark datasets for sentiment 
classification. The proposed BN-GRU model performs well as 
compared to various existing approaches in terms of accuracy 
and loss function. The experimental results has shown that the 
proposed model achieved better performance over several state-
of-the-art approaches on two benchmark datasets, IMDB dataset 
with 82.4% accuracy, and SSTb dataset with 88.1% binary 
classification accuracy and 49.9% Fine-grained accuracy 
respectively. The proposed results are obtained to show the 
proposed model capable to minimize the loss function, and 
extract long-term dependencies with a compact architecture that 
obtained superior performance with significantly fewer 
parameters.  
Key words: 
RNN, GRU, Batch Normalization, Long-term dependencies, 
Sentence Classification.  

1. Introduction 

Natural Language Processing (NLP) is a massive field of 
artificial intelligence that is involved with the connection 
among computers and human language. With the 
exponential development of collected huge numbers of 
opinion-rich resources, sentence analysis [1] has been one 
the superior tasks in (NLP), which purposes to 
automatically categorize the sentiment separation of a 
provided texts as negative, positive or more fine-grained” 
classes. It can support big organization to develop and 
capture valuable information from large amounts of data 
which consist of outstanding business significance in brand 

observation, customer services, and social services. 
Language modeling is an essential task in machine learning 
and NLP. Recent, deep neural networks approaches have 
obtained outstanding performance in text classification [2], 
and computer vision [3]. Sentence classification performs 
as the main task in several NLP applications, such as social 
media analysis [4], documents classification, information 
retrieval, and medical applications [5], in which require to 
assigns predefined categories of the sequential texts. 
Machine learning approaches have been extensively 
applied in sentence classification, and several of them 
follows [6] by concentrating on efficient framework 
handcrafted features for developing an efficient sentiment 
classifier [7].   
However, most of the performance of  machine learning is 
strongly reliant on features representations [8]. Deep 
learning models, included deep belief network (DBN) [9] 
convolutional neural networks [10], and recurrent neural 
networks [11], have successfully achieved remarkable 
performance in sentence classifications. Between these 
models, gated recurrent neural networks (GRNNs) with 
long “short-term memory (LSTM) [12] and gated recurrent 
units (GRU) [13], is a most popular model because of their 
capability to manage variable-size of texts and extracts 
long-term dependency. GRU recently achieved very 
successful results in many sequences of data such as named 
entity recognition [14], audio detection and sentence 
classification [15]. Firstly, their approach performs 
sentence illustration using a type of recurrent model long-
short term memory. Then, these sentences and their 
dependencies relation are appropriately combined using 
GRNNs. We investigate GRU in deep recurrent neural 
networks language model to implement for sentiment 
classification. Mostly, deep recurrent neural network 
architectures for natural language processing required 
several layers to handle variable length and capture long-
term semantics [16]. However, the proposed model was 
inspired by the recently successful standard RNNs 
approaches in natural language processing applications and 
its reality that RNNs can extract long-term dependencies. 
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In this research, we presented a GRU model that takes the 
local features captured by GRU for sentiment classification 
of sequential text. We proposed a new framework that 
exploits and apply the batch normalization    into GRU 
architecture of pre-trained real word vector for sentiment 
classification. We exploit long short-term memory as 
substitutes in order to minimize the loss function, and 
extract long-term dependencies through the sequential 
inputs system. Our research work continues to improve 
these efforts by further revising standard GRUs. Based on 
previous work, our main objective is modifying the 
standard GRU structure to improve the performance of 
sentence classifications and minimize the information loss. 
In particularly, our main contributions of this research are 
summarized in threefold: 
• We applied the batch normalization in each layer of the 

network to reduce the internal covariate shift and cover 
all informatics information. For this purpose, we used a 
technique to feed-forward connections only (i.e., ,  
and ), to acquire a more efficient architecture that is 
approximately similarly performance but significantly 
less computationally expensive.   

• We proposed to replace hyperbolic tangent activation 
function (tanh) with Leaky Rectified Linear Unit 
(LReLU) activation. LReLU units have been 
demonstrated to be better performance than sigmoid 
non-linearities and tanh” for feed-forward DNNs. 

• The proposed BN-GRU architecture performs both 
tasks well to takes advantages of extracted encoded 
local features and captured the long-term dependencies 
between word sequence texts. Experimental results 
showed that proposed framework attains better results 
with fewer parameters.  

2. Recurrent Neural Network  

Recurrent Neural Networks (RNNs) are effective archi-
tecture for sequential datasets. The purpose of RNN is to 
utilize consistent information and output depends on the 
previous calculation. RNNs are deep learning network that 
use deep temporal dimension in sequential modeling 
through time and has presented excellent performance in 
several NLP tasks [17]. The purpose of RNNs for sentence 
embeddings are located a dense and illustration low-
dimensional semantically by recurrently and consecutively 
handling each word in a sentence and mapping it through a 
low-dimensional word vectors. The inclusive contextual 
features of the entire texts will be in the semantic 
illustration of the last word in the sentence [18]. If we have 
accessible to the whole sequential input, we can utilize 
information not only from the previous time steps, but also 
from the future ones, enabling for bidirectional RNNs [19] 
as follows: 
 

   (1) 
 

   (2) 
 

    (3) 
 

The activation function φ is commonly used as a sigmoid 
function such as the hyperbolic tangent in existing RNNs. 
However, training of the networks specifically 
complicated, because of vanishing and exploding 
gradients [18]. 

 
 

Fig. 1  Traditional structure of RNN 

In Fig. 1, Xt is the input unit of timestep t, which shows the 
word vector of the t th word in the text; ht is the hidden 
state of timestep t; Ot shows the output of step t, the output 
is chosen regarding to the require of the network; U, W 
and V are the weights matrix of the networks that are 
require to be trained in the model.  
Given an sequential input of word vectors (X1,...,XT), they 
generate a sequential hidden states (h1,...,hT), which are 
calculated at time step t, thus we can calculate the output 
as follows in a RNNs:  
 

   (4) 
 

   (5) 
 
where  is the recurrent weights matrix, is the 
input to-hidden weights matrix, and φ is an arbitrary 
activation function. The equations transmit to shows 
hidden layer activity with its previous hidden layer 
activity . This dependence is non-linear due to the 
usage of logistic activation function (·).  

3. GRU-Based Model 

The GRU was recently introduced by [20]. GRU is one of 
the latest type of the traditional gated RNNs which are 
applied to addresses the common issues of vanishing and 
exploding gradients in standard RNNs when capturing 
long-term dependencies. The architecture of GRU is 
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adaptively reset or updates its memory contents and is a 
slightly more simplified variation of the LSTM.  
It is combination of the input and forget gates into a single 
“update gate” and has an additional “reset gate”. The GRU 
model is simpler and fewer parameters as compare 
traditional LSTM models and are gain progressively 
popularity. However, distinct the LSTM, the GRU 
completely exposed it’s memory contents each time step 
and balance among the previous memory contents and the 
new memory contents particularly use leaky combination, 
although with its adaptive time continuously control by 
update gate. The activation  of the GRU at timestep t is a 
linear interpolating among the previous activation  and 
the candidate activation : 

   (6) 
 
The update gate  help the model to decides how much 
the unit updates its activation 

 = sigm( )i    (7) 
 
The candidate activation  is calculated same to the 
update gate: 

 = tanh( ))i   (8) 
 
where  is referred to as reset gate and ∗ denoted by 
element-wise multiplication. When the reset gate is off 

 it permits the unit to forget the past. This is 
similar to allow the unit learning the first symbol of a 
sequential input. The reset gate is evaluates the following 
equation: 

= sigm( )i    (9) 
 
Update gate ƶ decides how much the previous state should 
matter now. Units of reset gate  help to capture short-term 
dependencies with the time-step t. Units of update gate  
help to capture long-term dependencies with the timestep t. 

4. Limitations and Motivation 

Recurrent Neural Networks (RNNs) is a suitable 
architecture for modeling units in sequential learning 
processing [21]. In this way, most of the cases the elements 
of a sequence are not independent. Means, in common, the 
transmission of the specific output could depend on the 
wrapping elements or even on the full-history. But in 
standard RNN architecture, the vanishing gradient and 
exploding problem have properly addressed. An ordinary 
approach dependent on the RNNs, which is a fundamental 
concept to presents gating techniques for superior handling 
the flow of the data over the several timesteps. Based on 

this architecture, vanishing gradient issues are mitigated by 
generating effective “shortcuts”, in which the gradients can 
bypass many temporal steps. While overcome this issue the 
most popular gated RNNs are GRU. The main goal of 
using the GRU network is for which can train to extracts 
higher-level translation and capture the invariants features 
from the sequential inputs by composing multiple layers. 
Regarding this advantage, we found that most of the 
traditional deep learning architectures need many recurrent 
layers to extract long-term dependencies but in every 
recurrence are maximum chances to lose informatics local 
features. This issue becomes much crucial of RNNs as the 
range of the sequential inputs increases.  
Therefore, we substitute try to use a GRU model is 
captures long-term dependencies more effectively and also 
to adjust the number of suitable parameters in the structure. 
According to the literature reviews and base on existing 
observations, we concentrated on proposing an efficient 
model that concentrates on loss reduction from the 
experimental design, while also extracting long-term 
depen-dencies more effectively in the term of accuracy and 
reduce the maximum loss function by using batch 
normalization (BN) technique. Furthermore, we trained the 
model by using pre-trained word embedding method and 
also fed the features maps to the recurrent layer to extract 
long-term semantic for more powerful classification as 
presented in the proposed architecture. 

5. The Proposed BN-GRU Architecture 

In this work, we demonstrate the particular description of 
the proposed framework architecture that contains gated 
recurrent unit with batch normalization. The proposed 
architecture apply word embedding as inputs and learns to 
extract high-level context words features through time 
steps, whose outputs are then given by GRU language 
model, and finally, followed by a softmax classifier.  

5.1 The Embedding Layer 

In the sentence classification process the initial step is 
“pre-processing the inputs sentence and sentiment context 
words. We used the pre-trained GloVe [22] method in the 
words embedding layer in sequence to transmit each word 
in the sentences to a real value vector. The embedding 
layer of the model changes words context into real-valued 
features vectors that captured semantic and syntactic 
information. Let L ∈ RV*d be the embedding query table 
produced by Glove, where d is the dimension of words and 
V is the vocabulary size. Assume that the sequential input 
contains of n words and the sentiment resource contains m 
words. The input sentence retrieves the word vectors from 
L and obtains a list of vectors [W1, W2 …, Wn] where 
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 is the word vector of the  word. Consequently, 
the sentiment resource sequence can recover the word 
vectors from and form a list of vectors [ ]. 
In this way, we can get the matrix  

 for context words and the 
matrix = [ ] for sentiment  

resource words. Consequently, we describe to structure the 
word-level relationship among the sentiment words and the 
context words to the format of the correlations matrix 
presented in Fig.2 This process is simply a concatenation 
of all words embedding in V.   
 

 

Fig. 2  Sentiment-context word correlation 

5.2 The Recurrent Layer  

GRU is latest kind of traditional RNNs which are 
particularly have to use for sequential modeling. At each 
timestep t, a recurrent layer takes the input vector xt ∈ Rn 
and hidden state ht by implementing the recurrent 
procedure: 

= ƒ( )   (10) 
 
The major modification of the standard GRU design 
involves the batch normalization and Leaky ReLU 
activations as summarized in the next sub-sections. Where 
W ∈ , b ∈ , b ∈ ,  weights matrix, and ƒ is 
an element-wise nonlinearity. Training the long-term 
dependencies with a RNNs is very complicated because  
the problem of vanishing and exploding gradient [23]. 
However, gated recurrent unit GRU overcomes such 
deficiencies of existing RNNs by adding the RNN with a 
update and reset gates that takes as an input  and 
generates ,” by the following: 

 = σ( xt + + )   (11) 
 

 = σ( xt +  + )   (12) 
 

 = tanh( xt +  *  + )  (13) 
 

 = *  + (1- ) *    (14) 

 
where σ is the logistic sigmoid activation function and tanh 
is the element-wise hyperbolic tangent function and zt, rt, 
ĥt are referred to as update gate, reset gate, and candidate 
state. At t=1,  are started to zero vector. * is the element-
wise product operator, W, U are weights matrix and 
vectors. At currently, for RNNs such as GRU, become a 
common training method include back propagation trough 
time (BPTT) and real time recurrent learning (RTRL).  

5.3 Back Propagation Through Time 

Back propagation through time (“BPTT) is the basic 
procedure which produces the learning algorithm of deep 
neural networks by computationally adjustable, and in this 
way of calculating gradients expression over the recursive 
technique of the chain rule. The essential problem is 
provided to approximately function ƒ(x) where inputs 
vectors is x, and we are absorbed in calculating the 
gradient of ƒ at x(i.e ∇f (x)). BPTT is a simple variation 
of the backpropagation algorithm for RNNs, with BPTT 
the error is broadcasted through recurrent connection back 
in time for particular time-steps. Consequently, the 
networks absorb and remember information for many time-
steps in the hidden layers when it is trained by BPTT.” 
Further detail about the implementation description can be 
find in [24].  
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5.4 Leaky Relu Activations (LRelu) 

In deep neural network, it’s an attempts to solve the 
prevents dying ReLU issue. The leaky ReLU is a variation 
of the ReLU has small positive values in the negative area, 
so it does allow back-propagation, even for negative input 
values. In this research, we performed second modification 
to replacing the standard hyperbolic tangent tanh with 
Leaky ReLU activation. In particularly, we change the 
candidate state  (Eq. (13)), by computation as follow:  

 (15) 
 
Standard tanh activations function is less utilized in feed-
forward networks because they do not perform better as 
piecewise-linear activations when training deep network 
[48]. The selection of ReLU-based neurons, which have 
demonstrated the efficient to enhancing such constraints, 
was not so general in the previous for RNNs. However, the 
activation function connection through batch normalization 
turns out to be effective for getting benefit of LReLU 
neurons excluding statistical problems. 

5.5 Batch Normalization  

Batch normalization is a method to developing with the 
purpose of directly solves the issue of internal covariate 
shift. Its known that for deep learning approaches, an 
internal covariate shift is an ordinary problem where the 
features  are presenting to network changes in distribution 
during the training process [25]. When using a GRU that 
resembles very deep feed-forward networks to process 
sequence data, this internal covariate shift may play an 
especially important role. 
In order to addressed internal covariates shift issue and 
reduce them by standardizing the intermediate 
representations of each layer using the statistics for each 
existing training mini-batch. Batch normalization includes 
standardizing the activations going into each layer, 
enforcing their means µ and variances “  to be invariant 
to changes in the parameters of the underlying layers, to 
accelerate the training. Many previously research efforts 
have already presented that this method is efficient to 
increase the system performance and to speed-up the 
learning process [25]. In recurrent neural networks, the 
batch normalization can be implemented in various ways. 
In [26], the author proposed to applied normalization step 
to feed-forward connections only, however in [27] the 
normalization steps is extended to recurrent connections, 
utilizing distinct statistics for each timestep.  
In this research work, we have to try both techniques, but 
we did not perceive significant benefit when extension the 
batch normalization to recurrent settings (i.e., ,  and 

). Based on this observation, we proposed this method 

to feed-forward connections only (i.e., ,  and ), 
achieving a more efficient architecture that is 
approximately similarly performance but significantly less 
computationally expensive. When batch standardization is 
particularly bounded to feed-forward connection,” 
obviously completely of the relating computations 
becomes separated by each time-step and they can be 
executed in equivalent. Batch normalization, adjust the 
neurons pre-activation, essentially bounding the values of 
the Leaky (LReLU) neurons. Consequently, the proposed 
architecture simultaneously takes advantages of both 
common beneficial impact of LReLU activation and batch 
normalization. In experimental research, we discovered the 
recent method which supports against statistical problem 
also when it is restricted to feed-forward connections only.  
Conventionally, in our research, we have applied Leaky 
ReLU activation with the replacement of standard tanh 
activation function, and implemented batch normalization. 
In particular, this change leads to the subsequently 
modification of Eq. (16, 17, 18), now conducts to the 
following equations: 
The update gate :  

 = σ( )  (16) 
 

The reset gate : 
 = σ( )  (17) 

 
Candidate hidden state :  

 (18) 
 
Current (output) state : 

 = ( )  (19) 
 

The output state  utilizes the update gate  to update the 
past hidden state  and the candidate hidden state . If 
the update gate  is approximately 1, the previous hidden 
state will be held and passed to the current moment. When 
provided a sequential inputs X = [x1, x2 ... xt ... xT] of 
length T, GRU passes the last hidden state hT through a 
nonlinear transformation as the output. Furthermore, GRU 
network constrained with batch normalization concentrate 
significantly faster and improve generalize. The batch 
normalizing transform is as follows: 

BN( ) =   + β  (20) 

 
where  ∈  are normalized vectors, λ ∈   and β ∈ 

 are architecture parameters that define the mean and 
standard deviation of the normalized activation and ε ∈ 

 is a regularization hyperparameter. The ∗ denotes the 
Hademard product (element-wise multiplication). 
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According to Reference [27] we set β and ε equal 0. At 
training time, we apply the mini-batch training approach, 
which splits all the training samples into several mini-
batches, and each mini-batch holds out a parameter update. 
Consequently, the input of batch normalization is the 
current mini-batch consisting k samples, which can be 

express as B = { }.  is the sample 

mean and is the sample variance. 
We called this architecture Batch Normalization GRU 
(BN-GRU), to focus the modification procedure performed 
on a traditional GRU. 

5.6 The Classification Layer  

In neural networks, for text sentiment classification, 
softmax regression is frequently implemented as a final 
layer for binary and multiclass classification. Its computes 

fast and provide results with a probabilistic description. 
Assume that the final sentence representation S∗ of the 
input text S is fed into a softmax layer to predictive the 
probabilities distribution of sentences sentiment label over 
C (“number of sentiment category labels”), and the 
sentiment label with the maximum possibility is chosen as 
the final sentiment classification to which the sentence 
relates. The function is presented as follows:  

Ɏ =    (21) 

 
    (22) 

Where the predicted sentiment distribution of the 
sentence is,  is the selected sentiment label,  and  
are the parameters of the softmax regression model to be 
learned 

 

 

Fig. 3  The proposed flowchart of sentence classification method based on GRU 

6. Loss Function and Optimizer 

The main concept of the forward pass is performed to 
calculate the loss functions at the output of GRU (mean 
squared error for sentiment classification) calculate the 
values of the  weight appropriates gradients, and back 
propagate them. Therefore, at the level of text sentiment 
classification, the parameters updates not only rely on the 
sentence classification cost function but also on the 
sentiment classification loss. Based on the experimental 
results, the entire BN-GRU model is trained by minimize 
the cost function K(Θ) and also computes the classification 
loss as follows:  

 (23)  

 
   (24) 

 
where Θ = {Wzx, Wĥx, Uzh, Uĥh, Wo, bz, bh, bo, ¥,θ} is 
the set of training parameters consisting of all the 
parameters above. As discussed earlier, this paper uses the 
mini-batch training scheme, so d here can be understood as 
a mini-batch. K is the number of classes, 1{  = k} is the 
indicative function indicating that if the class of the ith 
sample is k, then 1 {  = k}= 1, otherwise 1{ = k}= 0. 
In our research, we used Adam algorithm [28] to optimize 
the loss function. Adam is the first-order optimizer 
algorithm that can replace the standard stochastic gradient 
descent procedure. It can iteratively update deep neural 
networks parameters base on training data. The learning 
rate maintains by stochastic gradient descent to update all 
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parameters, in fact, the learning rate does not change 
during the training process.  
Adam optimizer evaluates independently adaptively learn-
ing rates for various parameters by computing the first-
moment calculation and second-moment calculation of the 
gradients. The inputs were fixed by through the idea have 
applied in [29] to suitable an input to a recurrent unit and 
implemented Adam optimization function [28] with β1 = 
0.9, β2 = 0.999 and initial learning rate α = 0.001. The 
softmax classifier calculates the loss function by using the 
dense layer. In Eq.24  are the parameters of the 
sentiment classification BN-GRU,  is the gradient of 
such parameters calculated from the sentiment 
classification cost function (“mean squared error”). Finally, 

 is a hyper-parameter for weighting  and  is the 
learning rate.     
The pseudocode of the Adam algorithm for updating  is 
shown in Fig 4. For more details regarding Adam, please 
refer to [28]. 
 
1:   Required   α = 0.001, 
2:   Required     
3:   Required    
4:   GRU initialization 
5:   while i in mini-batches do 
6:         (Initialize 1st moment) 
7:         (Initialize 2st moment) 
8:         (Initialize timestep) 
9:      Forward Pass: 
10:    Initiating from the input layer do a forward pass 
11:    (“with batch normalization”) over the networks 
12:    (   not converged) 
13:     Compute SC Cost Function: 
14:     = 2 

15:    Backward pass: 
16:    Calculate the grad.  of and back-progate it.  
17:     Parameters Updates:  
18:      𝒊𝒊  𝒊𝒊 + 1 
19:                                                       
20: Θ ( )  (Get gradient at step 𝒊𝒊)                                     
21 (Update biased 1st                       
moment estimation) 
22:        (Update biased 2nd raw 
moment estimation) 
23:            (Computer bias-corrected “1st       
moment-estimation)                                                                                          
24:           (Computer bias-corrected 2nd raw 
moment estimation)  
25:     (Update parameters)  
26:    end while 
27:  return      (resulting parameters) 

Fig. 4  Pseudocode of the Adam algorithm 

7. Experiment Setup 

In this section, we explain the experimental settings and 
empirical results of the proposed model.  

7.1 Sentiment Analysis Datasets 

In this section, we manage the experimental activity was 
conducted to achieved results on two publically accessible 
datasets. To typically evaluated state-of-the-art    
performance of the proposed BN-GRU model on two 
experimental sentiment classification datasets: the Stanford 
Large Movie Review dataset (IMDB) and the Stanford 
Sentiment Treebank dataset (SSTb). 

7.1.1 IMDB Dataset 

The IMDB dataset was initially introduced by [23] as a 
benchmark for sentence classification. It contains the 
labeled dataset of 50,000 binary IMDB movie reviews; 
especially chosen for sentiment classification. The IMDB 
reviews are dividing into 50:50 training and testing sets. 
The sentiment classification contains determine positive 
and negative reviews. One basic prospect of this data set is 
that particular review has many sentences. 

7.1.2 SSTb Dataset 

The SSTb-1 (Fine-grained) dataset was first introduced by 
[30] and extended by [31] as a benchmark for sentiment 
classification. It contains approximately 11,857 reviews 
adopted from the movie review site Rotten Tomatoes, with 
one sentence for each review. The SSTb-1 was divided 
into three sets: 8544 sentences for training, 2210 sentences 
for testing, and 1101 sentences for validation (or 
development””) which purposes to categorize a review 
with fine-grained labels (“very negative, negative, neutral, 
positive, and very positive”). In Table 1, we provide 
further detail about the two benchmark datasets. SSTb-2 
(Binary): is similar to SSTb-1 (fine-grained) dataset but 
remove the neutral reviews from it and the binary labels 
(positive, negative) are implemented. 

Table 1: The summary statistics of the two data sets. “#Classes: number 
of target classes, Ave.length: average sentence length, Max.length: 

maximum sentence length, train/dev/test: train/development/test set size, 
V-size: vocabulary size, V-sizepre: number of words show in the set of 

pre-trained word embeddings, Cross.V: 10-fold” cross validation. 

Details 
(SSTb-1) 

Fine-
grained 

(SSTb-2) 
Binary IMDB 

Train 8544 6920 10,662 
Dev 1101 872 - 
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Test 2210 1821 Cross.V 
Max.lengt

h 51 48 59 

Ave.length 18 19 21 
V-size 17,836 16,185 20,191 

V-sizepre 14,378 13,985 16,746 
#Classes 5 2 2 

7.2 Implementation Detail 

In order to improve the performance of the proposed 
model, that first step is to improve the quality of the 
dataset, we enhance the quality of text dataset by 
preprocessing technique such as eliminating stop words 
from the input sequence (e.g., “and”, “are” “of”, “the”, 
“to”) and punctuations. Through the training of sentence 
embeddings, no stemming is implemented, since, in this 
way, we will maintain the all information. Then, all words 
embedding from the text data were initialized by “300-
dimensional GloVe word vectors pre-trained by Penington 
et al. [22]. Some researchers adopted the fine-tuned 
training strategies for word vectors to enhance the 
performance for sentence sentiment classification tasks 
[32]. In a variation, with the aim of well-reflected 
generalization capability of the model, we prefer to apply 
the common embeddings for all datasets. For the deep 
learning networks, the hidden states of the GRU unit in 
each layer were set to 200. Through the training process, 
we optimized the proposed model with the AdaDelta 
algorithm [28] by following the learning rate of 0.001 and 
the mini-batch size of 32. To alleviate the overfitting 
problem, we applied the dropout strategy [33], with a 
dropout rate of 0.5 for the Bi-GRU layer and 10−5 for the 
coefficient λr of L2 regularization. To evaluate state-of-
the-art performance, we have used accuracy and error rate 
as metrics for the sentiment classification task. 

7.3 Hyperparameters and Software  

Data preprocessing and manipulate have performed in 
Python 3.6 and anaconda, required libraries that are used 
in this research work such as TensorFlow, Sklearn, Numpy, 
Scipy, Pandas and Keras packages. Deep learning GRU 
networks and traditional DNNs are executed with 
TensorFlow, an open-source software library for 
numerically computations using data flows graph. 
Performance of all methods was based on pre-defined 
assessment measures. Completely simulations were 
implemented on Intel Core i7-3770CPU @3.40 GHz,” and 
4GB of RAM machine. 

Table 2: Hyperparameters used in proposed BN-GRU model  
Hyperparameter

s BN-GRU 

Mini-batch Size 32 
Cell Size 128 

Dropout Rate 0.5 
Epochs 20-30 

Learning Rate 0.001 
No.of classes 2,5 

8. Empirical Results and Analysis 

8.1 Effects of Batch Normalization 

In deep neural networks, such as gated recurrent unit, as 
the deep network, there will be issues with the covariate 
shift, which will minimize the learning efficiency of the 
GRU network. The recently proposed batch normalization 
algorithm that helps to addresses these issues and solves it 
efficiently. We can see the impact of batch normalization 
from the convergence speed and extent of the loss function 
during the training process in Figure 5.  
In addition, Table 3 compares the proposed BN-based 
GRU with standard GRU in various details and presents 
that the BN-based GRU is better, both on the basis of 
speed and accuracy. The decision of architecture 
hyperparameters and the utilization of BN techniques are 
conceptually based.  
The deep neural networks models have too many 
parameters (weights and biases), thus it has poor 
generalization capability and is easily over-fitted when 
handling with high-dimensional data, that is, the “curse of 
dimensionality”. Therefore, the GRU model is adopted in 
this research paper. The GRU model is comparatively 
sparse, so it has benefits   in processing texts data. The 
research experimental results also present to reduce the 
sentence classification loss function, when applied the 
batch normalization with GRU architecture. Furthermore, 
in order to avoid over-fitting, the BN algorithm was cited 
here to increase the GRU performance, and shows that the 
introduction of BN was efficient. 
 

 

Fig. 5  Loss function of GRU and BN-GRU during the training process. 

Table 3: The comparison between GRU and BN-GRU 
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Details GRU BN-GRU 

Training accuracy 0.883
5 0.9164 

Testing accuracy 0.794
0 0.8231 

Training loss 0.386
5 0.0016 

Testing loss 0.721
6 0.4029 

Epochs at 
convergence 30 25 

8.2 Optimization 

We executed the implementation of our proposed BN-
GRU model on two “SSTb, IMDB benchmark datasets 
with particular parameters. Model training was completed 
over the stochastic gradient descent through shuffled mini-
batches. For training and validation, we randomly divided 
the complete training examples. The limit of the validation 
set is similar to the respective test limit and is balanced in 
each class. We trained the proposed model by reducing the 
negative log-likelihood or cross-entropy loss. In addition, a 
common direction was identified the number of dimensions 
in words embedding and result in the performance of gated 
units is superior. But the improvement significantly 
reduces as they are increases beyond a particular limit [34]. 
We also observed that maintaining the embedding 
dimensions equivalent to the number of gated units 
performed well than networks containing units much more 
than words embedding dimensions.  
In our work, we employed the pre-trained GloVe [22] 
method in the word-level embedding layer in sequence to 
transfer each word in the sentences for computing a real 
value vector representation of a word. We conducted the 
experiment on SSTb and IMDB datasets, SSTb consists of 
two sentiment categories, (Fine-grained and binary) 
consider variance in the number of parameters. We 
evaluated the classification performance of the proposed 
BN-GRU model with traditional RNNs models, CNN and 
SVM. Our model BN-GRU achieved much better 
performance in both datasets in the term of accuracy. Table 
4 is shown evaluation results (accuracy %) on IMDB and 
SSTb datasets. The best result of each dataset shows in 
bold. Results marked with * are obtained either by our own 
implementation or with the same codes shared by the 
original authors. While those without * were re-printed 
from the references (i.e.,” [[35], [36], [31], [37], [38], 
[39]]). 

Table 4: Comparison accuracy results of proposed model with existing 
models 

Models 
(SSTb-1) 

Fine-
grained 

(SSTb-2) 
Binary IMDB 

CNN-non-static [35] 48.0 87.2 81.5 
DRNN [36] 49.8 86.6 78.8* 

RNTN [31] 45.7 85.4 76.1* 
MV-RNN [37],[31] 44.4 82.9 79.0 

LSTM [38] 46.4 85.8* 77.4 
Bi-LSTM [39] 49.1 87.5 80.2* 

GRU 49.5* 87.4* 80.0* 
SVM 40.8* 79.4* 76.6* 

BN-GRU 
(Proposed) 49.9 88.1 82.4 

8.3 Comparison an Error rate with traditional RNNs 

In this section, we compare and analysis an error rate of 
our proposed BN-GRU model with two traditional deep 
learning RNNs models GRU and LSTM [20]. We fixed 
both the word embedding dimensions and the number of 
units in a hidden layer to 128 and execute the model for 26 
epochs. We found that BN-GRU model converged faster 
than GRU and LSTM to achieved lower error rate even 
after many epochs. To make these models comparable, we 
implement these models with the identical structural design 
shown in Fig 6. The traditional RNNs models were run for 
30 to 35 epochs to achsieve the shown accuracy while BN-
GRU was trained in just 24 epochs. Furthermore, we 
identified that the proposed BN-GRU model outperformed 
all of the other RNNs models by an important margin. We 
evaluate our model BN-GRU with traditional RNNs 
models on two SSTB, and IMDB datasets. Fig 6 shows the 
results that proposed BN-GRU performs better than 
standard GRU and LSTM. Our model BN-GRU achieves 
much better performance in the term of the error rate than 
GRU and LSTM. 
 

 

Fig. 6  Comparison an error rate (%) with traditional RNNs models 

9. Conclusion 

Sentiment classification remains common and significant 
area of natural language processing. In this paper, we 
proposed and improved gated recurrent unit for sentiment 
classification. The main idea of our proposed model is 
utilize to replace the standard hyperbolic tangent activation 
function (tanh) with Leaky Rectified Linear Unit (LReLU) 
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activation with final softmax output layer to the sentence 
classification. Furthermore, we add the batch 
normalization technique only feed forward connections 
(i.e., , , and ) to cover the all informatics 
information to minimize the loss function and attaining a 
more compact model that is approximately similar 
performance but significantly less computationally 
expensive. In this way, data can be well trained using the 
BN-GRU neural network. Moreover, we trained the GRU 
model and optimized it with the batch normalization 
method to minimize the influence of the covariate 
displacement that exists in the deep neural networks. The 
proposed approach of using the GRU-based model was 
relatively simple and efficient, and being a recurrent 
network its guarantee to both efficiency and significant 
accuracy when capturing the useful information from a 
massive array of sequential text data. The proposed model 
performed better on two experimental datasets included 
(SSTb, IMDB) and obtained competitive classification 
accuracy while outperforming some other traditional RNNs 
models. Furthermore, it will be remarkable to observe 
future work on implementing proposed model for further 
applications such as information retrieval or machine 
translation. 
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