
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

176

Manuscript received September 5, 2019
Manuscript revised September 20, 2019

An Improved the Performance of GRU Model based on Batch
Normalization for Sentence Classification

Muhammad Zulqarnain† Rozaida Ghazali†, Shihab Hamad Khaleefah††, Ayesha Rehan†,
Muhammad Shehzad†††, Yana Mazwin Mohmad Hassim†

†Faculty of Computer Science and IT, Universiti Tun Hussein Onn Malaysia (UTHM), Johor, Malaysia

††Faculty of Computer Science, Al Maarif University College, “31001, Anbar, Iraq
†††Department of Computer Science and IT, The Islamia University of Bahawalpur, Punjab, Pakistan

Summary
Sentiment classification is a very popular topic for identifying
user opinions and has been extensively applied in Natural
Language Processing (NLP) tasks. Gated Recurrent Unit (GRU)
has been successfully implemented to NLP mechanism with
comparable, outstanding results. GRUs network performs better
on sequential learning tasks and overcomes the issues of
vanishing and explosion of gradients in standard recurrent neural
networks (RNNs). In this paper, we describe to improve the
efficiency of the GRU framework based on batch normalization
and replace traditional tanh activation function with Leaky ReLU
(LReLU). Empirically, we present that our model, with slight
hyperparameters, and tuning the statistic vectors, obtains
excellent results on benchmark datasets for sentiment
classification. The proposed BN-GRU model performs well as
compared to various existing approaches in terms of accuracy
and loss function. The experimental results has shown that the
proposed model achieved better performance over several state-
of-the-art approaches on two benchmark datasets, IMDB dataset
with 82.4% accuracy, and SSTb dataset with 88.1% binary
classification accuracy and 49.9% Fine-grained accuracy
respectively. The proposed results are obtained to show the
proposed model capable to minimize the loss function, and
extract long-term dependencies with a compact architecture that
obtained superior performance with significantly fewer
parameters.
Key words:
RNN, GRU, Batch Normalization, Long-term dependencies,
Sentence Classification.

1. Introduction

Natural Language Processing (NLP) is a massive field of
artificial intelligence that is involved with the connection
among computers and human language. With the
exponential development of collected huge numbers of
opinion-rich resources, sentence analysis [1] has been one
the superior tasks in (NLP), which purposes to
automatically categorize the sentiment separation of a
provided texts as negative, positive or more fine-grained”
classes. It can support big organization to develop and
capture valuable information from large amounts of data
which consist of outstanding business significance in brand

observation, customer services, and social services.
Language modeling is an essential task in machine learning
and NLP. Recent, deep neural networks approaches have
obtained outstanding performance in text classification [2],
and computer vision [3]. Sentence classification performs
as the main task in several NLP applications, such as social
media analysis [4], documents classification, information
retrieval, and medical applications [5], in which require to
assigns predefined categories of the sequential texts.
Machine learning approaches have been extensively
applied in sentence classification, and several of them
follows [6] by concentrating on efficient framework
handcrafted features for developing an efficient sentiment
classifier [7].
However, most of the performance of machine learning is
strongly reliant on features representations [8]. Deep
learning models, included deep belief network (DBN) [9]
convolutional neural networks [10], and recurrent neural
networks [11], have successfully achieved remarkable
performance in sentence classifications. Between these
models, gated recurrent neural networks (GRNNs) with
long “short-term memory (LSTM) [12] and gated recurrent
units (GRU) [13], is a most popular model because of their
capability to manage variable-size of texts and extracts
long-term dependency. GRU recently achieved very
successful results in many sequences of data such as named
entity recognition [14], audio detection and sentence
classification [15]. Firstly, their approach performs
sentence illustration using a type of recurrent model long-
short term memory. Then, these sentences and their
dependencies relation are appropriately combined using
GRNNs. We investigate GRU in deep recurrent neural
networks language model to implement for sentiment
classification. Mostly, deep recurrent neural network
architectures for natural language processing required
several layers to handle variable length and capture long-
term semantics [16]. However, the proposed model was
inspired by the recently successful standard RNNs
approaches in natural language processing applications and
its reality that RNNs can extract long-term dependencies.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 177

In this research, we presented a GRU model that takes the
local features captured by GRU for sentiment classification
of sequential text. We proposed a new framework that
exploits and apply the batch normalization into GRU
architecture of pre-trained real word vector for sentiment
classification. We exploit long short-term memory as
substitutes in order to minimize the loss function, and
extract long-term dependencies through the sequential
inputs system. Our research work continues to improve
these efforts by further revising standard GRUs. Based on
previous work, our main objective is modifying the
standard GRU structure to improve the performance of
sentence classifications and minimize the information loss.
In particularly, our main contributions of this research are
summarized in threefold:
• We applied the batch normalization in each layer of the

network to reduce the internal covariate shift and cover
all informatics information. For this purpose, we used a
technique to feed-forward connections only (i.e., ,
and), to acquire a more efficient architecture that is
approximately similarly performance but significantly
less computationally expensive.

• We proposed to replace hyperbolic tangent activation
function (tanh) with Leaky Rectified Linear Unit
(LReLU) activation. LReLU units have been
demonstrated to be better performance than sigmoid
non-linearities and tanh” for feed-forward DNNs.

• The proposed BN-GRU architecture performs both
tasks well to takes advantages of extracted encoded
local features and captured the long-term dependencies
between word sequence texts. Experimental results
showed that proposed framework attains better results
with fewer parameters.

2. Recurrent Neural Network

Recurrent Neural Networks (RNNs) are effective archi-
tecture for sequential datasets. The purpose of RNN is to
utilize consistent information and output depends on the
previous calculation. RNNs are deep learning network that
use deep temporal dimension in sequential modeling
through time and has presented excellent performance in
several NLP tasks [17]. The purpose of RNNs for sentence
embeddings are located a dense and illustration low-
dimensional semantically by recurrently and consecutively
handling each word in a sentence and mapping it through a
low-dimensional word vectors. The inclusive contextual
features of the entire texts will be in the semantic
illustration of the last word in the sentence [18]. If we have
accessible to the whole sequential input, we can utilize
information not only from the previous time steps, but also
from the future ones, enabling for bidirectional RNNs [19]
as follows:

 (1)

 (2)

 (3)

The activation function φ is commonly used as a sigmoid
function such as the hyperbolic tangent in existing RNNs.
However, training of the networks specifically
complicated, because of vanishing and exploding
gradients [18].

Fig. 1 Traditional structure of RNN

In Fig. 1, Xt is the input unit of timestep t, which shows the
word vector of the t th word in the text; ht is the hidden
state of timestep t; Ot shows the output of step t, the output
is chosen regarding to the require of the network; U, W
and V are the weights matrix of the networks that are
require to be trained in the model.
Given an sequential input of word vectors (X1,...,XT), they
generate a sequential hidden states (h1,...,hT), which are
calculated at time step t, thus we can calculate the output
as follows in a RNNs:

 (4)

 (5)

where is the recurrent weights matrix, is the
input to-hidden weights matrix, and φ is an arbitrary
activation function. The equations transmit to shows
hidden layer activity with its previous hidden layer
activity . This dependence is non-linear due to the
usage of logistic activation function (·).

3. GRU-Based Model

The GRU was recently introduced by [20]. GRU is one of
the latest type of the traditional gated RNNs which are
applied to addresses the common issues of vanishing and
exploding gradients in standard RNNs when capturing
long-term dependencies. The architecture of GRU is

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 178

adaptively reset or updates its memory contents and is a
slightly more simplified variation of the LSTM.
It is combination of the input and forget gates into a single
“update gate” and has an additional “reset gate”. The GRU
model is simpler and fewer parameters as compare
traditional LSTM models and are gain progressively
popularity. However, distinct the LSTM, the GRU
completely exposed it’s memory contents each time step
and balance among the previous memory contents and the
new memory contents particularly use leaky combination,
although with its adaptive time continuously control by
update gate. The activation of the GRU at timestep t is a
linear interpolating among the previous activation and
the candidate activation :

 (6)

The update gate help the model to decides how much
the unit updates its activation

 = sigm()i (7)

The candidate activation is calculated same to the
update gate:

 = tanh())i (8)

where is referred to as reset gate and ∗ denoted by
element-wise multiplication. When the reset gate is off

 it permits the unit to forget the past. This is
similar to allow the unit learning the first symbol of a
sequential input. The reset gate is evaluates the following
equation:

= sigm()i (9)

Update gate ƶ decides how much the previous state should
matter now. Units of reset gate help to capture short-term
dependencies with the time-step t. Units of update gate
help to capture long-term dependencies with the timestep t.

4. Limitations and Motivation

Recurrent Neural Networks (RNNs) is a suitable
architecture for modeling units in sequential learning
processing [21]. In this way, most of the cases the elements
of a sequence are not independent. Means, in common, the
transmission of the specific output could depend on the
wrapping elements or even on the full-history. But in
standard RNN architecture, the vanishing gradient and
exploding problem have properly addressed. An ordinary
approach dependent on the RNNs, which is a fundamental
concept to presents gating techniques for superior handling
the flow of the data over the several timesteps. Based on

this architecture, vanishing gradient issues are mitigated by
generating effective “shortcuts”, in which the gradients can
bypass many temporal steps. While overcome this issue the
most popular gated RNNs are GRU. The main goal of
using the GRU network is for which can train to extracts
higher-level translation and capture the invariants features
from the sequential inputs by composing multiple layers.
Regarding this advantage, we found that most of the
traditional deep learning architectures need many recurrent
layers to extract long-term dependencies but in every
recurrence are maximum chances to lose informatics local
features. This issue becomes much crucial of RNNs as the
range of the sequential inputs increases.
Therefore, we substitute try to use a GRU model is
captures long-term dependencies more effectively and also
to adjust the number of suitable parameters in the structure.
According to the literature reviews and base on existing
observations, we concentrated on proposing an efficient
model that concentrates on loss reduction from the
experimental design, while also extracting long-term
depen-dencies more effectively in the term of accuracy and
reduce the maximum loss function by using batch
normalization (BN) technique. Furthermore, we trained the
model by using pre-trained word embedding method and
also fed the features maps to the recurrent layer to extract
long-term semantic for more powerful classification as
presented in the proposed architecture.

5. The Proposed BN-GRU Architecture

In this work, we demonstrate the particular description of
the proposed framework architecture that contains gated
recurrent unit with batch normalization. The proposed
architecture apply word embedding as inputs and learns to
extract high-level context words features through time
steps, whose outputs are then given by GRU language
model, and finally, followed by a softmax classifier.

5.1 The Embedding Layer

In the sentence classification process the initial step is
“pre-processing the inputs sentence and sentiment context
words. We used the pre-trained GloVe [22] method in the
words embedding layer in sequence to transmit each word
in the sentences to a real value vector. The embedding
layer of the model changes words context into real-valued
features vectors that captured semantic and syntactic
information. Let L ∈ RV*d be the embedding query table
produced by Glove, where d is the dimension of words and
V is the vocabulary size. Assume that the sequential input
contains of n words and the sentiment resource contains m
words. The input sentence retrieves the word vectors from
L and obtains a list of vectors [W1, W2 …, Wn] where

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 179

 is the word vector of the word. Consequently,
the sentiment resource sequence can recover the word
vectors from and form a list of vectors [].
In this way, we can get the matrix

 for context words and the
matrix = [] for sentiment

resource words. Consequently, we describe to structure the
word-level relationship among the sentiment words and the
context words to the format of the correlations matrix
presented in Fig.2 This process is simply a concatenation
of all words embedding in V.

Fig. 2 Sentiment-context word correlation

5.2 The Recurrent Layer

GRU is latest kind of traditional RNNs which are
particularly have to use for sequential modeling. At each
timestep t, a recurrent layer takes the input vector xt ∈ Rn
and hidden state ht by implementing the recurrent
procedure:

= ƒ() (10)

The major modification of the standard GRU design
involves the batch normalization and Leaky ReLU
activations as summarized in the next sub-sections. Where
W ∈ , b ∈ , b ∈ , weights matrix, and ƒ is
an element-wise nonlinearity. Training the long-term
dependencies with a RNNs is very complicated because
the problem of vanishing and exploding gradient [23].
However, gated recurrent unit GRU overcomes such
deficiencies of existing RNNs by adding the RNN with a
update and reset gates that takes as an input and
generates ,” by the following:

 = σ(xt + +) (11)

 = σ(xt + +) (12)

 = tanh(xt + * +) (13)

 = * + (1-) * (14)

where σ is the logistic sigmoid activation function and tanh
is the element-wise hyperbolic tangent function and zt, rt,
ĥt are referred to as update gate, reset gate, and candidate
state. At t=1, are started to zero vector. * is the element-
wise product operator, W, U are weights matrix and
vectors. At currently, for RNNs such as GRU, become a
common training method include back propagation trough
time (BPTT) and real time recurrent learning (RTRL).

5.3 Back Propagation Through Time

Back propagation through time (“BPTT) is the basic
procedure which produces the learning algorithm of deep
neural networks by computationally adjustable, and in this
way of calculating gradients expression over the recursive
technique of the chain rule. The essential problem is
provided to approximately function ƒ(x) where inputs
vectors is x, and we are absorbed in calculating the
gradient of ƒ at x(i.e ∇f (x)). BPTT is a simple variation
of the backpropagation algorithm for RNNs, with BPTT
the error is broadcasted through recurrent connection back
in time for particular time-steps. Consequently, the
networks absorb and remember information for many time-
steps in the hidden layers when it is trained by BPTT.”
Further detail about the implementation description can be
find in [24].

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 180

5.4 Leaky Relu Activations (LRelu)

In deep neural network, it’s an attempts to solve the
prevents dying ReLU issue. The leaky ReLU is a variation
of the ReLU has small positive values in the negative area,
so it does allow back-propagation, even for negative input
values. In this research, we performed second modification
to replacing the standard hyperbolic tangent tanh with
Leaky ReLU activation. In particularly, we change the
candidate state (Eq. (13)), by computation as follow:

 (15)

Standard tanh activations function is less utilized in feed-
forward networks because they do not perform better as
piecewise-linear activations when training deep network
[48]. The selection of ReLU-based neurons, which have
demonstrated the efficient to enhancing such constraints,
was not so general in the previous for RNNs. However, the
activation function connection through batch normalization
turns out to be effective for getting benefit of LReLU
neurons excluding statistical problems.

5.5 Batch Normalization

Batch normalization is a method to developing with the
purpose of directly solves the issue of internal covariate
shift. Its known that for deep learning approaches, an
internal covariate shift is an ordinary problem where the
features are presenting to network changes in distribution
during the training process [25]. When using a GRU that
resembles very deep feed-forward networks to process
sequence data, this internal covariate shift may play an
especially important role.
In order to addressed internal covariates shift issue and
reduce them by standardizing the intermediate
representations of each layer using the statistics for each
existing training mini-batch. Batch normalization includes
standardizing the activations going into each layer,
enforcing their means µ and variances “ to be invariant
to changes in the parameters of the underlying layers, to
accelerate the training. Many previously research efforts
have already presented that this method is efficient to
increase the system performance and to speed-up the
learning process [25]. In recurrent neural networks, the
batch normalization can be implemented in various ways.
In [26], the author proposed to applied normalization step
to feed-forward connections only, however in [27] the
normalization steps is extended to recurrent connections,
utilizing distinct statistics for each timestep.
In this research work, we have to try both techniques, but
we did not perceive significant benefit when extension the
batch normalization to recurrent settings (i.e., , and

). Based on this observation, we proposed this method

to feed-forward connections only (i.e., , and),
achieving a more efficient architecture that is
approximately similarly performance but significantly less
computationally expensive. When batch standardization is
particularly bounded to feed-forward connection,”
obviously completely of the relating computations
becomes separated by each time-step and they can be
executed in equivalent. Batch normalization, adjust the
neurons pre-activation, essentially bounding the values of
the Leaky (LReLU) neurons. Consequently, the proposed
architecture simultaneously takes advantages of both
common beneficial impact of LReLU activation and batch
normalization. In experimental research, we discovered the
recent method which supports against statistical problem
also when it is restricted to feed-forward connections only.
Conventionally, in our research, we have applied Leaky
ReLU activation with the replacement of standard tanh
activation function, and implemented batch normalization.
In particular, this change leads to the subsequently
modification of Eq. (16, 17, 18), now conducts to the
following equations:
The update gate :

 = σ() (16)

The reset gate :
 = σ() (17)

Candidate hidden state :

 (18)

Current (output) state :

 = () (19)

The output state utilizes the update gate to update the
past hidden state and the candidate hidden state . If
the update gate is approximately 1, the previous hidden
state will be held and passed to the current moment. When
provided a sequential inputs X = [x1, x2 ... xt ... xT] of
length T, GRU passes the last hidden state hT through a
nonlinear transformation as the output. Furthermore, GRU
network constrained with batch normalization concentrate
significantly faster and improve generalize. The batch
normalizing transform is as follows:

BN() = + β (20)

where ∈ are normalized vectors, λ ∈ and β ∈

 are architecture parameters that define the mean and
standard deviation of the normalized activation and ε ∈

 is a regularization hyperparameter. The ∗ denotes the
Hademard product (element-wise multiplication).

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 181

According to Reference [27] we set β and ε equal 0. At
training time, we apply the mini-batch training approach,
which splits all the training samples into several mini-
batches, and each mini-batch holds out a parameter update.
Consequently, the input of batch normalization is the
current mini-batch consisting k samples, which can be

express as B = { }. is the sample

mean and is the sample variance.
We called this architecture Batch Normalization GRU
(BN-GRU), to focus the modification procedure performed
on a traditional GRU.

5.6 The Classification Layer

In neural networks, for text sentiment classification,
softmax regression is frequently implemented as a final
layer for binary and multiclass classification. Its computes

fast and provide results with a probabilistic description.
Assume that the final sentence representation S∗ of the
input text S is fed into a softmax layer to predictive the
probabilities distribution of sentences sentiment label over
C (“number of sentiment category labels”), and the
sentiment label with the maximum possibility is chosen as
the final sentiment classification to which the sentence
relates. The function is presented as follows:

Ɏ = (21)

 (22)

Where the predicted sentiment distribution of the
sentence is, is the selected sentiment label, and
are the parameters of the softmax regression model to be
learned

Fig. 3 The proposed flowchart of sentence classification method based on GRU

6. Loss Function and Optimizer

The main concept of the forward pass is performed to
calculate the loss functions at the output of GRU (mean
squared error for sentiment classification) calculate the
values of the weight appropriates gradients, and back
propagate them. Therefore, at the level of text sentiment
classification, the parameters updates not only rely on the
sentence classification cost function but also on the
sentiment classification loss. Based on the experimental
results, the entire BN-GRU model is trained by minimize
the cost function K(Θ) and also computes the classification
loss as follows:

 (23)

 (24)

where Θ = {Wzx, Wĥx, Uzh, Uĥh, Wo, bz, bh, bo, ¥,θ} is
the set of training parameters consisting of all the
parameters above. As discussed earlier, this paper uses the
mini-batch training scheme, so d here can be understood as
a mini-batch. K is the number of classes, 1{ = k} is the
indicative function indicating that if the class of the ith
sample is k, then 1 { = k}= 1, otherwise 1{ = k}= 0.
In our research, we used Adam algorithm [28] to optimize
the loss function. Adam is the first-order optimizer
algorithm that can replace the standard stochastic gradient
descent procedure. It can iteratively update deep neural
networks parameters base on training data. The learning
rate maintains by stochastic gradient descent to update all

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 182

parameters, in fact, the learning rate does not change
during the training process.
Adam optimizer evaluates independently adaptively learn-
ing rates for various parameters by computing the first-
moment calculation and second-moment calculation of the
gradients. The inputs were fixed by through the idea have
applied in [29] to suitable an input to a recurrent unit and
implemented Adam optimization function [28] with β1 =
0.9, β2 = 0.999 and initial learning rate α = 0.001. The
softmax classifier calculates the loss function by using the
dense layer. In Eq.24 are the parameters of the
sentiment classification BN-GRU, is the gradient of
such parameters calculated from the sentiment
classification cost function (“mean squared error”). Finally,

 is a hyper-parameter for weighting and is the
learning rate.
The pseudocode of the Adam algorithm for updating is
shown in Fig 4. For more details regarding Adam, please
refer to [28].

1: Required α = 0.001,
2: Required
3: Required
4: GRU initialization
5: while i in mini-batches do
6: (Initialize 1st moment)
7: (Initialize 2st moment)
8: (Initialize timestep)
9: Forward Pass:
10: Initiating from the input layer do a forward pass
11: (“with batch normalization”) over the networks
12: (not converged)
13: Compute SC Cost Function:
14: = 2

15: Backward pass:
16: Calculate the grad. of and back-progate it.
17: Parameters Updates:
18: 𝒊𝒊 𝒊𝒊 + 1
19:
20: Θ () (Get gradient at step 𝒊𝒊)
21 (Update biased 1st
moment estimation)
22: (Update biased 2nd raw
moment estimation)
23: (Computer bias-corrected “1st
moment-estimation)
24: (Computer bias-corrected 2nd raw
moment estimation)
25: (Update parameters)
26: end while
27: return (resulting parameters)

Fig. 4 Pseudocode of the Adam algorithm

7. Experiment Setup

In this section, we explain the experimental settings and
empirical results of the proposed model.

7.1 Sentiment Analysis Datasets

In this section, we manage the experimental activity was
conducted to achieved results on two publically accessible
datasets. To typically evaluated state-of-the-art
performance of the proposed BN-GRU model on two
experimental sentiment classification datasets: the Stanford
Large Movie Review dataset (IMDB) and the Stanford
Sentiment Treebank dataset (SSTb).

7.1.1 IMDB Dataset

The IMDB dataset was initially introduced by [23] as a
benchmark for sentence classification. It contains the
labeled dataset of 50,000 binary IMDB movie reviews;
especially chosen for sentiment classification. The IMDB
reviews are dividing into 50:50 training and testing sets.
The sentiment classification contains determine positive
and negative reviews. One basic prospect of this data set is
that particular review has many sentences.

7.1.2 SSTb Dataset

The SSTb-1 (Fine-grained) dataset was first introduced by
[30] and extended by [31] as a benchmark for sentiment
classification. It contains approximately 11,857 reviews
adopted from the movie review site Rotten Tomatoes, with
one sentence for each review. The SSTb-1 was divided
into three sets: 8544 sentences for training, 2210 sentences
for testing, and 1101 sentences for validation (or
development””) which purposes to categorize a review
with fine-grained labels (“very negative, negative, neutral,
positive, and very positive”). In Table 1, we provide
further detail about the two benchmark datasets. SSTb-2
(Binary): is similar to SSTb-1 (fine-grained) dataset but
remove the neutral reviews from it and the binary labels
(positive, negative) are implemented.

Table 1: The summary statistics of the two data sets. “#Classes: number
of target classes, Ave.length: average sentence length, Max.length:

maximum sentence length, train/dev/test: train/development/test set size,
V-size: vocabulary size, V-sizepre: number of words show in the set of

pre-trained word embeddings, Cross.V: 10-fold” cross validation.

Details
(SSTb-1)

Fine-
grained

(SSTb-2)
Binary IMDB

Train 8544 6920 10,662
Dev 1101 872 -

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 183

Test 2210 1821 Cross.V
Max.lengt

h 51 48 59

Ave.length 18 19 21
V-size 17,836 16,185 20,191

V-sizepre 14,378 13,985 16,746
#Classes 5 2 2

7.2 Implementation Detail

In order to improve the performance of the proposed
model, that first step is to improve the quality of the
dataset, we enhance the quality of text dataset by
preprocessing technique such as eliminating stop words
from the input sequence (e.g., “and”, “are” “of”, “the”,
“to”) and punctuations. Through the training of sentence
embeddings, no stemming is implemented, since, in this
way, we will maintain the all information. Then, all words
embedding from the text data were initialized by “300-
dimensional GloVe word vectors pre-trained by Penington
et al. [22]. Some researchers adopted the fine-tuned
training strategies for word vectors to enhance the
performance for sentence sentiment classification tasks
[32]. In a variation, with the aim of well-reflected
generalization capability of the model, we prefer to apply
the common embeddings for all datasets. For the deep
learning networks, the hidden states of the GRU unit in
each layer were set to 200. Through the training process,
we optimized the proposed model with the AdaDelta
algorithm [28] by following the learning rate of 0.001 and
the mini-batch size of 32. To alleviate the overfitting
problem, we applied the dropout strategy [33], with a
dropout rate of 0.5 for the Bi-GRU layer and 10−5 for the
coefficient λr of L2 regularization. To evaluate state-of-
the-art performance, we have used accuracy and error rate
as metrics for the sentiment classification task.

7.3 Hyperparameters and Software

Data preprocessing and manipulate have performed in
Python 3.6 and anaconda, required libraries that are used
in this research work such as TensorFlow, Sklearn, Numpy,
Scipy, Pandas and Keras packages. Deep learning GRU
networks and traditional DNNs are executed with
TensorFlow, an open-source software library for
numerically computations using data flows graph.
Performance of all methods was based on pre-defined
assessment measures. Completely simulations were
implemented on Intel Core i7-3770CPU @3.40 GHz,” and
4GB of RAM machine.

Table 2: Hyperparameters used in proposed BN-GRU model
Hyperparameter

s BN-GRU

Mini-batch Size 32
Cell Size 128

Dropout Rate 0.5
Epochs 20-30

Learning Rate 0.001
No.of classes 2,5

8. Empirical Results and Analysis

8.1 Effects of Batch Normalization

In deep neural networks, such as gated recurrent unit, as
the deep network, there will be issues with the covariate
shift, which will minimize the learning efficiency of the
GRU network. The recently proposed batch normalization
algorithm that helps to addresses these issues and solves it
efficiently. We can see the impact of batch normalization
from the convergence speed and extent of the loss function
during the training process in Figure 5.
In addition, Table 3 compares the proposed BN-based
GRU with standard GRU in various details and presents
that the BN-based GRU is better, both on the basis of
speed and accuracy. The decision of architecture
hyperparameters and the utilization of BN techniques are
conceptually based.
The deep neural networks models have too many
parameters (weights and biases), thus it has poor
generalization capability and is easily over-fitted when
handling with high-dimensional data, that is, the “curse of
dimensionality”. Therefore, the GRU model is adopted in
this research paper. The GRU model is comparatively
sparse, so it has benefits in processing texts data. The
research experimental results also present to reduce the
sentence classification loss function, when applied the
batch normalization with GRU architecture. Furthermore,
in order to avoid over-fitting, the BN algorithm was cited
here to increase the GRU performance, and shows that the
introduction of BN was efficient.

Fig. 5 Loss function of GRU and BN-GRU during the training process.

Table 3: The comparison between GRU and BN-GRU

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 184

Details GRU BN-GRU

Training accuracy 0.883
5 0.9164

Testing accuracy 0.794
0 0.8231

Training loss 0.386
5 0.0016

Testing loss 0.721
6 0.4029

Epochs at
convergence 30 25

8.2 Optimization

We executed the implementation of our proposed BN-
GRU model on two “SSTb, IMDB benchmark datasets
with particular parameters. Model training was completed
over the stochastic gradient descent through shuffled mini-
batches. For training and validation, we randomly divided
the complete training examples. The limit of the validation
set is similar to the respective test limit and is balanced in
each class. We trained the proposed model by reducing the
negative log-likelihood or cross-entropy loss. In addition, a
common direction was identified the number of dimensions
in words embedding and result in the performance of gated
units is superior. But the improvement significantly
reduces as they are increases beyond a particular limit [34].
We also observed that maintaining the embedding
dimensions equivalent to the number of gated units
performed well than networks containing units much more
than words embedding dimensions.
In our work, we employed the pre-trained GloVe [22]
method in the word-level embedding layer in sequence to
transfer each word in the sentences for computing a real
value vector representation of a word. We conducted the
experiment on SSTb and IMDB datasets, SSTb consists of
two sentiment categories, (Fine-grained and binary)
consider variance in the number of parameters. We
evaluated the classification performance of the proposed
BN-GRU model with traditional RNNs models, CNN and
SVM. Our model BN-GRU achieved much better
performance in both datasets in the term of accuracy. Table
4 is shown evaluation results (accuracy %) on IMDB and
SSTb datasets. The best result of each dataset shows in
bold. Results marked with * are obtained either by our own
implementation or with the same codes shared by the
original authors. While those without * were re-printed
from the references (i.e.,” [[35], [36], [31], [37], [38],
[39]]).

Table 4: Comparison accuracy results of proposed model with existing
models

Models
(SSTb-1)

Fine-
grained

(SSTb-2)
Binary IMDB

CNN-non-static [35] 48.0 87.2 81.5
DRNN [36] 49.8 86.6 78.8*

RNTN [31] 45.7 85.4 76.1*
MV-RNN [37],[31] 44.4 82.9 79.0

LSTM [38] 46.4 85.8* 77.4
Bi-LSTM [39] 49.1 87.5 80.2*

GRU 49.5* 87.4* 80.0*
SVM 40.8* 79.4* 76.6*

BN-GRU
(Proposed) 49.9 88.1 82.4

8.3 Comparison an Error rate with traditional RNNs

In this section, we compare and analysis an error rate of
our proposed BN-GRU model with two traditional deep
learning RNNs models GRU and LSTM [20]. We fixed
both the word embedding dimensions and the number of
units in a hidden layer to 128 and execute the model for 26
epochs. We found that BN-GRU model converged faster
than GRU and LSTM to achieved lower error rate even
after many epochs. To make these models comparable, we
implement these models with the identical structural design
shown in Fig 6. The traditional RNNs models were run for
30 to 35 epochs to achsieve the shown accuracy while BN-
GRU was trained in just 24 epochs. Furthermore, we
identified that the proposed BN-GRU model outperformed
all of the other RNNs models by an important margin. We
evaluate our model BN-GRU with traditional RNNs
models on two SSTB, and IMDB datasets. Fig 6 shows the
results that proposed BN-GRU performs better than
standard GRU and LSTM. Our model BN-GRU achieves
much better performance in the term of the error rate than
GRU and LSTM.

Fig. 6 Comparison an error rate (%) with traditional RNNs models

9. Conclusion

Sentiment classification remains common and significant
area of natural language processing. In this paper, we
proposed and improved gated recurrent unit for sentiment
classification. The main idea of our proposed model is
utilize to replace the standard hyperbolic tangent activation
function (tanh) with Leaky Rectified Linear Unit (LReLU)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 185

activation with final softmax output layer to the sentence
classification. Furthermore, we add the batch
normalization technique only feed forward connections
(i.e., , , and) to cover the all informatics
information to minimize the loss function and attaining a
more compact model that is approximately similar
performance but significantly less computationally
expensive. In this way, data can be well trained using the
BN-GRU neural network. Moreover, we trained the GRU
model and optimized it with the batch normalization
method to minimize the influence of the covariate
displacement that exists in the deep neural networks. The
proposed approach of using the GRU-based model was
relatively simple and efficient, and being a recurrent
network its guarantee to both efficiency and significant
accuracy when capturing the useful information from a
massive array of sequential text data. The proposed model
performed better on two experimental datasets included
(SSTb, IMDB) and obtained competitive classification
accuracy while outperforming some other traditional RNNs
models. Furthermore, it will be remarkable to observe
future work on implementing proposed model for further
applications such as information retrieval or machine
translation.

Acknowledgments

The authors wish to thanks the Ministry of Education
Malaysia and University Tun Hussein Onn Malaysia for
conducting these research activities under vote no.1641.

References
[1] D. Tang, F. Wei, B. Qin, N. Yang, T. Liu, and M. Zhou,

“Sentiment Embeddings with Applications to Sentiment
Analysis,” IEEE Trans. Knowl. Data Eng., vol. 28, no.
October, pp. 496–509, 2016.

[2] K. Kowsari, D. E. Brown, M. Heidarysafa, K. J. Meimandi,
M. S. Gerber, and L. E. Barnes, “HDLTex: Hierarchical
Deep Learning for Text Classification,” 2017 16th IEEE Int.
Conf. Mach. Learn. Appl., no. Octuber, pp. 364–371, 2017.

[3] Q. Abbas, “MADeep-Automatic Microaneurysms Detection
on Retinal Fundus by using region growing and deep neural
networks,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol.
19, no. 1, pp. 161–166, 2019.

[4] V. Sornlertlamvanich and P. Jotikabukkana, Effectiveness
of Social Media Text Classification by Utilizing the Online
News Category, no. August. 2015.

[5] M. Hughes, I. Li, S. Kotoulas, and T. Suzumura, “Medical
Text Classification using Convolutional Neural Networks,”
Stud Heal. Technol Inf., vol. 235, no. May, pp. 246–250,
2017.

[6] B. Pang, L. Lee, H. Rd, and S. Jose, “Thumbs up ?
Sentiment Classification using Machine Learning
Techniques,” proceeding to EMNLP, no. July, pp. 79–86,
2002.

[7] Al-harbi, “A Comparative Study of Feature Selection
Methods for Dialectal Arabic Sentiment Classification
Using Support Vector Machine,” IJCSNS Int. J. Comput.
Sci. Netw. Secur., vol. 19, no. 1, pp. 167–176, 2019.

[8] Y. Bengio, A. Courville, and P. Vincent, “Representation
Learning: A Review and New Perspectives,” no. 1993, pp.
1–30, 2012.

[9] J. Song, S. Qin, and P. Zhang, “Chinese Text Categorization
Based on Deep Belief Networks,” IEEE ICIS 2016, no. June,
pp. 1–5, 2016.

[10] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A
Convolutional Neural Network for Modelling Sentences,”
Proc. 52nd Annu. Meet. Assoc. Comput. Linguist. (Volume
1 Long Pap., pp. 655–665, 2014.

[11] D. Tang, B. Qin, and T. Liu, “Document Modeling with
Gated Recurrent Neural Network for Sentiment
Classification,” Proc. 2015 Conf. Empir. Methods Nat.
Lang. Process., no. September, pp. 1422–1432, 2015.

[12] S. Hochreiter, “Long Short Term Memory,” Neural Comput.,
vol. 9, no. 8, pp. 1–32, 1997.

[13] K. Cho et al., “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation,”
arXiv, no. September, pp. 1–15, 2014.

[14] W. Khan, “Deep recurrent neural networks with word
embeddings for Urdu named entity recognition,” ETRI J.,
vol. 0, no. February, pp. 1–11, 2019.

[15] Kumar, “Self-Attention Enhanced Recurrent Neural
Networks for Sentence Classification,” 2018 IEEE Symp.
Ser. Comput. Intell., pp. 905–911, 2018.

[16] T. Yang, T. Tseng, and C. Chen, “Recurrent Neural
Network-based Language Models with Variation in Net
Topology , Language , and Granularity,” 2016 Int. Conf.
Asian Lang. Process., no. 3, pp. 71–74, 2016.

[17] C. Hansen, C. Hansen, S. Alstrup, and J. G. Simonsen,
“Modelling Sequential Music Track Skips using a Multi-
RNN Approach,” arXiv Prepr. arXiv1903.08408, no. April,
pp. 1–4, 2019.

[18] R. Pascanu, D. Tour, T. Mikolov, and D. Tour, “On the
difficulty of training recurrent neural networks,” Conf.
ICLR, no. 2, pp. 1310–1318, 2013.

[19] K. K. P. Schuster, Mike, “Bidirectional recurrent neural
networks,” IEEE Trans. SIGNAL Process., no. December
1997, pp. 2673–2681, 2016.

[20] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling,” pp. 1–9, 2014.

[21] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A Critical
Review of Recurrent Neural Networks for Sequence
Learning arXiv : 1506 . 00019v4 [cs . LG] 17 Oct 2015,”
pp. 1–38, 2015.

[22] Pennington, R. Socher, and C. D. Manning, “GloVe :
Global Vectors for Word Representation,” Proc. Conf.
Empir. Methods Nat. Lang. Process., no. October, pp.
1532–1543, 2014.

[23] L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning Word Vectors for Sentiment Analysis,”
Proc. 49th Annu. Meet. Assoc. Comput. Linguist. Hum.
Lang. Technol., vol. 1, pp. 142–150, 2011.

[24] M. Bod, “A Guide to Recurrent Neural Networks and
Backpropagation A guide to recurrent neural networks and

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 186

backpropagation,” Dallas Proj. Dept. Comput. Sci., Univ,
no. August, pp. 1–10, 2014.

[25] S. Ioffe and C. Szegedy, “Batch Normalization :
Accelerating Deep Network Training by Reducing Internal
Covariate Shift,” Proc. Int. Conf. Mach. Learn. Lille, Fr., no.
July, pp. 6–11, 2015.

[26] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio,
“Batch Normalized Joint Training for DNN-Based Distant
Speech Recognition,” 2016 IEEE Spok. Lang. Technol.
Work., pp. 28–34, 2016.

[27] T. Cooijmans, N. Ballas, C. Laurent, and A. Courville,
“Recurrent Batch Normalization,” Proc. Int. Conf. Learn.
Represent. Puerto Rico, San Juan, Puerto Rico, USA, no.
Section 3, pp. 1–13, 2017.

[28] D. P. Kingma and J. L. Ba, “A method for stochastic
optimization,” arXiv, no. March, pp. 1–15, 2015.

[29] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM
Fully Convolutional Networks for Time Series
Classification,” IEEE Access, vol. 6, pp. 1662–1669, 2018.

[30] B. Pang and L. Lee, “Seeing stars: Exploiting class
relationships for sentiment categorization with respect to
rating scales,” inProc.43rdAnnu. Meet. Assoc. Comput.
Linguist., vol. 3, no. 1, pp. 115–124, 2005.

[31] R. Socher, A. Perelygin, and J. Wu, “Recursive deep models
for semantic compositionality over a sentiment treebank,”
Proc. …, no. October, pp. 1631–1642, 2013.

[32] H. Lee, “for Modeling Sentences and Documents,” Proc.
15th Annu. Conf. North Am. Chapter Assoc. Comput., no.
June, pp. 1512–1521, 2015.

[33] G. Hinton, “Dropout : A Simple Way to Prevent Neural
Networks from Overfitting,” J. Mach. Learn. Res. 2014, 15,
vol. 15, pp. 1929–1958, 2014.

[34] S. Biswas, E. Chadda, and F. Ahmad, “Sentiment Analysis
with Gated Recurrent Units,” Adv. Comput. Sci. Inf.
Technol., vol. 2, no. 11, pp. 59–63, 2015.

[35] Y. Kim, “Convolutional Neural Networks for Sentence
Classification,” Artif. Intell. Rev., no. 4, pp. 655–665, 2014.

[36] and C. Cardie, “Deep Recursive Neural Networks for
Compositionality in Language,” Adv. neural Inf. Process.
Syst., pp. 2096–2104, 2014.

[37] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng,
“Semantic Compositionality through Recursive Matrix-
Vector Spaces,” Proc. 2012 Jt. Conf. Empir. methods Nat.
Lang. Process. Comput. Nat. Lang. Learn., no. July, pp.
1201–1211, 2012.

[38] Q. Qian and M. Huang, “Linguistically Regularized LSTM
for Sentiment Classification,” arXiv Prepr. arXiv, no.
November, pp. 1–11, 2016.

[39] K. S. Tai, R. Socher, and C. D. Manning, “Improved
Semantic Representations From Tree-Structured Long
Short-Term Memory Networks,” arXiv Prepr. arXiv, no.
May, pp. 1–11, 2015.

	5.6 The Classification Layer
	7.1 Sentiment Analysis Datasets

