
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

216

Manuscript received September 5, 2019
Manuscript revised September 20, 2019

Performance Analysis of Hybrid Genetic Algorithms for the
Generalized Assignment Problem

Zakir Hussain Ahmed

Department of Computer Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU),
P.O. Box No. 5701, Riyadh-11432, Kingdom of Saudi Arabia

Abstract
This paper presents three hybrid algorithms, based on genetic
algorithm (GA), to solve the generalized assignment problem
(GAP) with the objective to minimize the assignment cost under
the limitation of the agent capacity. First sequential constructive
crossover (SCX) is modified for the problem and then showed
competence over one-point crossover (OPX). Our hybrid
algorithms use SCX, exchange mutation and three local search
algorithms. Experimental results on four sets of benchmark
instances from OR-library show the effectiveness of the proposed
hybrid algorithms. The proposed algorithms are then compared
with bee (BEE) and differential evolution (DE-SK) algorithms. In
terms of solution quality as well as computational times, one of
our hybrid genetic algorithm (HGA3) outperformed both BEE as
well as DE-SK.
Key words:
Generalized assignment problem; hybrid genetic algorithm;
sequential constructive crossover; constructive mutation; local
search.

1. Introduction

The generalized assignment problem (GAP) belongs to the
class of NP-hard problems and is considered as one of the
most difficult problems. The problem seeks a minimum cost
(or maximum profit) of assignment of n jobs to m agents
such that each job is assigned to precisely one agent subject
to resource restrictions on the agents. Let us formally define
the problem as follows. Let I = {1, 2, ..., m} be a set of
agents, and let J = {1, 2,, n} be a set of jobs. For any iϵI,
jϵJ, given cost matrix, C=[cij], where cij is the cost of
assigning job j to agent i (or assigning agent i to job j),
resource matrix, R = [rij], where rij is the resource required
by agent i to perform job j, and capacity vector, B = [bi],
where bi is the resource availability (capacity) of agent i.
Also, xij is a 0-1 variable, that is, 1 if agent i performs job j
and 0 otherwise. The mathematical formulation of the
problem is:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 (1)
𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼 = 1,∀𝑗𝑗 ∈ 𝐽𝐽 (2)
∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖𝑗𝑗∈𝐽𝐽 , ∀𝑖𝑖 ∈ 𝐼𝐼 (3)
𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1}, ∀𝑖𝑖 ∈ 𝐼𝐼; ∀𝑗𝑗 ∈ 𝐽𝐽 (4)

Equation (2) ensures that each job is assigned to exactly one
agent and equation (3) ensures that the total resource
requirement of the jobs assigned to an agent does not exceed
the capacity of the agent. The GAP was first introduced by
Ross and Soland (1975), which is shown to be NP-hard.
Many real-life applications can be modeled as a GAP
(Narciso and Lorena, 1999). Various approaches can be
found to solve this problem, some of which were
summarized (Catrysse and Van Wassenhove, 1992). Since,
the problem is NP-hard, it is very difficult to solve, and in
fact, to date no optimal algorithm has been found, which is
able to solve the problem in polynomial time. So, heuristic
algorithms have been used to solve the instances of the
problem. Out of heuristics, genetic algorithms (GAs) are
successfully implemented to this kind of combinatorial
optimization problems (Goldberg, 1989).
Experiencing the novel merits of GA, many researchers
started GA application initially to GAP. Application of a
GA to improve the existing GAP solution was proposed by
Juell et al. (2003). An improved hybrid GA for the GAP to
find minimum cost assignment for a set of jobs to a set of
agents was proposed by Feltl et al. (2004). A path relinking
approach with ejection chains was proposed for the problem,
which is one of the best performing algorithms (Yagiura et
al., 2006). Bees algorithm (BEE) with an ejection chain
neighborhood mechanism was developed for solving the
GAP by Özbakir et al. (2010). A computational study has
been reported and the results are compared with algorithms
from the literature. Eight different improved differential
evolution (DE) algorithms were developed for solving the
problem by Sethanan and Pitakaso (2016). Each algorithm
uses DE with a different combination of local search
techniques.
We are going to use GA for obtaining heuristically optimal
solution to the problem. Selection, crossover and mutation
are three basic operators in GA, of which crossover is the
most important operator. So, numerous crossover operators
have been developed for solving various optimization
problems. However, most of the researchers use one-point
crossover (OPX) operator for the GAP (Chu and Beasley,
1997). In this paper, we modify the sequential constructive
crossover (SCX) (Ahmed, 2010a) operator for the problem.
Then a GA based on SCX is developed for solving the GAP,
which is then compared with GA using OPX for some

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 217

benchmark instances reported in the literature (Beasley,
1990). Experimental results show that SCX operator is
better than OPX. Then our GA is incorporated with three
local search algorithms to enhance the solution. Finally, a
comparative study is carried out of our algorithms against
two state-of-art heuristic algorithms, namely, BEE (Özbakir
et al., 2010) and DE (Sethanan and Pitakaso, 2016).

2. Proposed Genetic Algorithm

In GAs, first, solutions are encoded as feasible
chromosomes (or individuals) such that the genetic
operators result in feasible chromosomes. A simple GA
begins by generating set (initial population) of
chromosomes randomly, and then goes through (possibly)
three genetic operators to create new, and optimistically,
better populations as following generations. For the GAP,
to meet this requirement, we use an efficient representation
in which the solution structure is an ordered structure (n-
dimensional vector) of integer numbers. These integer
numbers identify the agents, as assigned to vector elements
denoted by the jobs, as follows.

Job 1 2 3 ……… n-1 n
Agent 3 1 m ……… 2 1

This representation ensures that all the equality constraints
in (2) are automatically satisfied since exactly one agent is
assigned to each job. However, this representation does not
guarantee that the capacity constraints in (3) will be
satisfied. The steps involved in our GA heuristic for the
GAP are as follows:

2.1 Initial Population and Objective Function

We use a simple version of sequential constructive
sampling algorithm for generating a chromosome of size n.
For that, we first construct an alphabet table (Ahmed,
2010b) based on the resource matrix as follows. Alphabet
matrix, A=[a(i,j)], is a matrix of order mXn formed by
positions of elements of the resource matrix, R=[rij]. The
jth column of matrix A consists of the positions of the

elements in the jth column of the matrix R when they are
arranged in the non-decreasing order of their values. If a(p,
j) stands for the pth element in the jth column of A, then a(1,
j) corresponds to the position of smallest element in jth

column of the matrix R. Alphabet table "]),([),,(jjiarjia −

" is the combination of elements of matrix A and their
values. Our algorithm for generating a chromosome may be
summarized as follows:

Step 0: Construct the ‘alphabet table’ based on the given
resource matrix.
Step 1: Consider a ‘legitimate’ random job by
generating random number, p, between 1 and n. Go to
step 2.
Step 2: Go to the pth column of the 'alphabet table', and
assign first agent (say, ‘agent q’) of the column such that
so far total resource required by the ‘agent q’ is less than
the capacity of the agent. If assigning that agent exceeds
the capacity of the agent, then choose the next possible
agent sequentially in that column. If no such agent can
be assigned for that job, delete the present incomplete
chromosome and try to generate another chromosome
from the beginning, else, go to step 3.
Step 3: If agents are assigned for all jobs, then stop, else
go to step 1.

Consider a problem to assign n=15 jobs to m=5 agents with
cost, resource and capacity matrices are given in Table 1,
Table 2 and Table 3 respectively. The alphabet table, based
on the resource matrix, is shown in Table 4. For example,
1-8 in first column stands for 8 unit of resource required by
1st agent to perform 1st job. Suppose, randomly generated
job sequence is {3, 14, 5, 1, 7, 12, 4, 15, 10, 8, 11, 2, 13, 9,
6}, then a chromosome may be constructed as given in
Table 5. Note that the notation R1 means resource used by
agent 1. So, we generate a chromosome as (1, 2, 3, 5, 1, 2,
4, 3, 1, 4, 4, 4, 5, 1, 3), and the complete assignment of the
jobs to the agents is (job↔ agent) {1↔1, 2↔2, 3↔3, 4↔5,
5↔1, 6↔2, 7↔4, 8↔3, 9↔1, 10↔4, 11↔4, 12↔4, 13↔5,
14↔1, 15↔3}. This assignment yields the total assignment
cost of 295 (= 17+ 16+ 16+ 15+ 24+ 16+ 19+ 19+ 19+ 19+
25+ 23+ 19+ 24+ 24) units.

Table 1: Cost matrix C
Job→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ge

nt
 1 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16

2 23 16 21 16 17 16 19 25 18 21 17 15 25 17 24
3 16 20 16 25 24 16 17 19 19 18 20 16 17 21 24
4 19 19 22 22 20 16 19 17 21 19 25 23 25 25 25
5 18 19 15 15 21 25 16 16 23 15 22 17 19 22 24

Table 2: Resource matrix R
Job→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ge

nt
 1 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24

2 15 7 23 22 11 11 12 10 17 16 7 16 10 18 22
3 21 20 6 22 24 10 24 9 21 14 11 14 11 19 16
4 20 11 8 14 9 5 6 19 19 7 6 6 13 9 18
5 8 13 13 13 10 20 25 16 16 17 10 10 5 12 23

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 218

Table 3: Capacity vector B
Agent 1 2 3 4 5

Capacity 36 34 38 27 33

Table 4: Alphabet table based on resource matrix (R is the resource required)
1-R 2-R 3-R 4-R 5-R 6-R 7-R 8-R 9-R 10-R 11-R 12-R 13-R 14-R 15-R
1- 8 2- 7 3- 6 5-13 1- 8 4- 5 4- 6 3- 9 1- 9 4- 7 4- 6 4- 6 5- 5 1- 8 3-16
5- 8 4-11 4- 8 4-14 4- 9 3-10 1- 8 2-10 5-16 3-14 2- 7 5-10 1-10 4- 9 4-18
2-15 5-13 5-13 2-22 5-10 2-11 2-12 5-16 2-17 2-16 5-10 3-14 2-10 5-12 2-22
4-20 1-15 1-14 3-22 2-11 1-16 3-24 4-19 4-19 1-17 3-11 1-15 3-11 2-18 5-23
3-21 3-20 2-23 1-23 3-24 5-20 5-25 1-25 3-21 5-17 1-25 2-16 4-13 3-19 1-24

Table 5: Construction of a chromosome
Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
hr

om
os

om
e

1-8
R1=
16+8
=24

2-7
R2=7

3-6
R3=6

5-13
R5=13

1-8
R1=
8+8
=16

4-5
R4=
25+5
=29>27
Next
3-10
R3=
31+10
=41>38
Next
2-11
R2=7+11
=18

4-6
R4=6

3-9
R3=
22+9
=31

1-9
R1=
24+9
=33

4-7
R4=
12+7
=19

4-6
R4=
19+6
=25

4-6
R4=
6+6
=12

5-5
R5=
13+5
=18

1-8
R1=8

3-16
R3=
6+16
=22

2.2 Fitness Function and Selection Method

The fitness function is the objective function for our
problem. However, during the GA search there is a
possibility of obtaining infeasible solution that violates the
capacity constraint. So, it must consider not just the
assignment cost, but also the degree of infeasibility of a
solution. Rather than penalize the fitness (or the objective
function) when a solution is infeasible, which is a common
approach in GAs, and associate two values with each
solution. One of these values is called fitness and the other
is called unfitness. Let skj represent the agent assigned to
job j (j= 1, 2,, n) in solution k (k= 1, 2,, N). The fitness
fk, of solution k is equal to its objective function value as
calculated by 𝑓𝑓𝑘𝑘 = ∑ 𝑐𝑐𝑠𝑠𝑘𝑘𝑘𝑘,𝑗𝑗

𝑛𝑛
𝑗𝑗=1 . The unfitness uk of solution

k is a measure of infeasibility (in relative terms) as
calculated by 𝑢𝑢𝑘𝑘 = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗∈𝐽𝐽,𝑠𝑠𝑘𝑘𝑘𝑘=𝑖𝑖 � − 𝑏𝑏𝑖𝑖�𝑛𝑛

𝑖𝑖=1 .
Note here that uk =0 if and only if solution k is feasible. So,
fitness function is 𝑓𝑓𝑘𝑘 = 𝑓𝑓𝑘𝑘 + 𝑢𝑢𝑘𝑘. In our GA, the stochastic
remainder selection method (Deb, 1995) is used for
selection.

2.3 Sequential Constructive Crossover Operator

Crossover is the most important operator in GAs where one
(or two) offspring chromosome(s) is (are) generated first by
applying to pair of selected parent chromosomes. One can
use one-point or multi-point crossover operator. Among
various crossover operators, the sequential constructive
crossover (SCX) is successfully applied to many

combinatorial optimization problems by Ahmed (2013a,
2013b, 2014a, 2014b, 2018, 2019), Bennaceur and Ahmed
(2017), Al-Omeer and Ahmed (2019). We are going to
modify the SCX, apply on our problem and compare with
one-point crossover (OPX) proposed by Chu and Beasley
(1997). Our modified SCX operator for the GAP is as
follows:

Step 0: Start from 'job 1’ (i.e., current job i =1).
Step 1: Suppose 'agent α' and 'agent β' are assigned in
1st and 2nd parent respectively, then for selecting the
agent for ‘job i’ go to Step 2.
Step 2: If ciα < ciβ, then select 'agent α', otherwise,
'agent β' as the agent for ‘job i’, provided that the
selected agent does not violate the capacity constraint.
If the agent violates the constraint, then search
sequentially all agents according to their cost in
ascending order and consider the first one that does not
violate the constraint. Then concatenate the selected
agent to the partially constructed offspring chromosome.
If the offspring is a complete chromosome, then stop,
otherwise, set i = i + 1, and go to Step 1.

Let us consider a pair of chromosomes P1: (1, 2, 3, 5, 1, 2,
4, 3, 1, 2, 5, 4, 5, 4, 3) and P2: (1, 2, 3, 5, 1, 4, 4, 3, 1, 4, 4,
5, 5, 1, 3) with costs 295 and 289 respectively with respect
to the cost matrix given in Table 1. By applying above SCX
as in Table 6, we obtain the offspring (1, 2, 3, 5, 1, 2, 4, 3,
1, 4, 5, 5, 5, 1, 3) with value 284, which is less than both
parents.
The crossover procedure is followed by a mutation
procedure. We consider exchange mutation with mutation

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 219

probability (Pm) that selects two genes randomly and then
exchanges them. The probability of applying mutation is set
very low, whereas the probability of crossover is set very

high. A simple GA repeatedly applies these (three)
operators until either the population converges or until
reaches the maximum number of generations (iterations).

Table 6: Working of the sequential constructive crossover operator
Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P1 1 2 3 5 1 2 4 3 1 2 5 4 5 4 3
P2 1 2 3 5 1 4 4 3 1 4 4 5 5 1 3
O 1(17)

R1=8
2(16)
R2=7

3(16)
R3=6

5(15)
R5=13

1(24)
R1=
8+8
=16

2(16)
R2=
7+11
=18

4(19)
R4=6

3(19)
R3=
6+9
=15

1(19)
R1=
16+9
=25

4(19)
R4=
6+7
=13

5(22)
R5=
13+10
=23

5(17)
R5=
23+10
=33

5(19)
R5=
33+5
=38
>33
Next
3(17)
R3=
15+11
=26

1(24)
R1=
25+8
=33

3(24)
R3=
15+16
=31

Our GAs may be summarized as follows (Ahmed, 2010a).
Genetic Algorithm ()
{ Initialize population;
 Evaluate the population;
 Generation = 0;
 While termination condition is not satisfied
 { Generation = Generation + 1;
 Select good chromosomes by selection procedure;
 Perform crossover with crossover probability (Pc);
 Perform mutation with mutation probability (Pm);
 Evaluate the population;
 }
}

A GA that incorporates local search is called hybrid GA.
We are considering following two mutation operators with
100% probability as local search methods.

2.4 Local Search

Two local search methods, 3-exchange mutation and
constructive mutation are proposed here. The first one is old
(Ahmed, 2016) and the second one is new. Both are
described below.

2.4.1 3-Exchange Mutation

3-exchange mutation selects three different positions of a
chromosome at random, say, r1, r2 and r3, and exchange the
genes on these positions as follows: P(r1) ↔ P(r2) and then
P(r2) ↔ P(r3), if they are different. If the cost of the mutated
chromosome is bigger than the cost of the parent, we repeat
another four times. If in any repetition mutated chromosome
cost is less than the parent chromosome, we replace the
parent chromosome, otherwise, skip.

2.4.2 Constructive Mutation

We first construct ‘alphabet table’ based on cost matrix C
provided that the costs in a column are arranged in non-

ascending order. Suppose p=a(1, j) and q= αj, then find the
index t∈J={1,2,…,n} for which D=max{cpt - cqt} is the
maximum. Then replace αt by a(1, t) provided that the
capacity constraints are not violated. However, if the
mutated chromosome cost is less than the parent
chromosome, we replace the parent chromosome, otherwise,
skip. For example, applying on the chromosome P: (1, 2, 4,
5, 1, 2, 4, 3, 1, 3, 5, 5, 5, 1, 3) with cost 291, one may obtain
the offspring (1, 2, 3, 5, 1, 2, 4, 3, 1, 4, 2, 4, 5, 1, 3) with
value 287, which is less than the parent chromosome.

3. Computational Results

For comparing the efficiency of the crossover operators,
simple GAs using OPX (GA-OPX) and SCX (GA-SCX)
have been encoded in Visual C++ and run on a Laptop with
Intel(R) Core(TM) i3-3217 with CPU @ 1.80GHz and
4.00GB RAM under MS Windows 7. In the experiments,
only four sets of benchmark instances (Gapa - Gapd) of size
from 100 to 200, obtained from the OR library (Beasley,
1990) were used. Each set is composed of 6 instances, so,
24 instances in total were used. The experiments were
performed twenty times for each instance. The solution
quality is measured by the percentage of excess (%) of the
obtained solution (SOL) over the best-known solution

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 220

(BKS) reported in the literature, as given by the formula:
Excess (%) = 100*(SOL-BKS)/BKS. It is to be noted that
GAs are controlled by some parameters, namely, population
size, crossover probability, mutation probability, and
termination criterion. However, to have a clear picture of

crossover operators, we set 1.0 (i.e., 100%) as crossover
probability, 0.10 (i.e., 10%) as mutation probability, 100 as
population size, and a maximum of 100*n generations as a
termination criterion.

Table 7: Summary of the results by the crossover operators for some benchmark instances

Instance (m, n) BKS
GA-OPX GA-SCX

Best (%) Avg
(%) Time Best (%) Avg

(%) Time

Gapa-1 (5, 100) 1698 9.95 13.88 2.75 0.00 0.09 1.32
Gapa-2 (5, 200) 3235 11.68 15.88 10.59 0.00 0.00 0.18
Gapa-3 (10, 100) 1360 18.31 24.24 2.87 0.07 0.18 2.82
Gapa-4 (10, 200) 2623 27.95 32.88 10.27 0.08 0.13 4.09
Gapa-5 (20, 100) 1158 27.55 32.38 3.03 0.00 0.27 3.80
Gapa-6 (20, 200) 2339 31.55 41.35 11.25 0.00 0.04 12.74
Gapb-1 (5, 100) 1843 5.37 10.46 2.25 0.54 2.16 3.31
Gapb-2 (5, 200) 3552 18.07 22.28 8.30 0.76 2.27 9.34
Gapb-3 (10, 100) 1407 2.49 4.21 2.33 0.14 1.68 3.84
Gapb-4 (10, 200) 2827 4.88 6.93 10.71 0.67 2.31 11.48
Gapb-5 (20, 100) 1166 8.83 12.14 3.16 0.86 2.24 7.33
Gapb-6 (20, 200) 2339 7.82 9.11 11.29 0.30 1.65 25.12
Gapc-1 (5, 100) 1931 1.35 3.67 2.60 0.83 1.63 3.00
Gapc-2 (5, 200) 3456 3.96 9.89 10.47 1.27 2.58 9.71
Gapc-3 (10, 100) 1402 5.06 10.23 2.84 0.50 1.68 3.30
Gapc-4 (10, 200) 2806 4.78 7.20 10.88 1.00 3.67 7.60
Gapc-5 (20, 100) 1243 11.02 16.15 3.37 0.80 3.10 5.02
Gapc-6 (20, 200) 2391 11.46 13.58 11.58 0.84 2.51 23.52
Gapd-1 (5, 100) 6353 8.03 8.97 1.82 2.09 3.32 4.08
Gapd-2 (5, 200) 12742 7.85 9.44 6.19 2.01 2.93 17.25
Gapd-3 (10, 100) 6348 8.76 9.49 2.34 0.74 2.30 6.99
Gapd-4 (10, 200) 12433 12.63 13.61 9.61 1.00 2.90 26.59
Gapd-5 (20, 100) 6192 10.52 11.40 3.14 1.40 3.27 9.97
Gapd-6 (20, 200) 12245 9.88 10.44 11.13 2.79 5.02 49.80

Average 11.24 14.58 6.45 0.78 2.00 10.51

Table 7 shows comparative study of the crossover operators
for the instances. We report percentage of excess of best
solution and average solution over BKS of 20 runs. We also
report average computational time (in seconds) by the

algorithms. In terms of solution quality, GA-SCX
outperforms GA-OPX. However, GA-SCX takes little
more time than GA-OPX. Overall, GA-SCX is found to the
best for the tested instances.

Table 8: Comparative study among our HGAs, BEE and DE-SK

Instance (m, n) BKS HGA1 HGA2 HGA3 BEE DE-SK
Sol. Time(a) Sol. Time(a) Sol. Time(a) Sol. Time(b) Sol. Time(c)

Gapa-1 (5, 100) 1698 1698 0.22 1698 0.26 1698 0.28 1698 0.18 1698 0.11
Gapa-2 (5, 200) 3235 3235 0.05 3235 0.05 3235 0.05 3235 0.95 3235 0.59
Gapa-3 (10, 100) 1360 1360 0.41 1360 0.41 1360 0.44 1360 0.27 1360 1.02
Gapa-4 (10, 200) 2623 2623 1.32 2623 1.38 2623 1.46 2623 1.31 2623 0.35
Gapa-5 (20, 100) 1158 1158 0.30 1158 0.31 1158 0.38 1158 0.41 1158 0.65
Gapa-6 (20, 200) 2339 2339 1.06 2339 1.12 2339 1.22 2339 1.81 2339 1.21
Gapb-1 (5, 100) 1843 1843 2.11 1843 2.20 1843 2.21 1843 5.97 1843 30.56
Gapb-2 (5, 200) 3552 3552 9.03 3552 9.89 3552 10.03 3552 45.99 3552 102.40
Gapb-3 (10, 100) 1407 1407 3.01 1407 3.55 1407 3.84 1407 0.36 1407 50.89
Gapb-4 (10, 200) 2827 2827 8.23 2827 9.86 2827 10.23 2827 315.04 2827 212.50
Gapb-5 (20, 100) 1166 1166 6.11 1166 6.23 1166 6.38 1166 1.12 1166 60.25
Gapb-6 (20, 200) 2339 2341 12.89 2339 15.12 2339 17.89 2339 28.65 2339 350.50
Gapc-1 (5, 100) 1931 1931 2.20 1931 3.06 1931 3.20 1931 3.61 1931 35.40
Gapc-2 (5, 200) 3456 3456 11.14 3456 14.32 3456 15.14 3456 18.09 3456 202.85
Gapc-3 (10, 100) 1402 1402 2.22 1402 2.45 1402 2.70 1402 5.81 1402 52.98
Gapc-4 (10, 200) 2806 2806 13.08 2806 13.11 2806 13.81 2806 488.89 2806 280.95

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 221

Gapc-5 (20, 100) 1243 1243 4.16 1243 5.06 1243 5.19 1243 23.16 1243 101.34
Gapc-6 (20, 200) 2391 2397* 19.24 2395* 22.36 2391 21.47 2392* 646.18 2391 420.46
Gapd-1 (5, 100) 6353 6353 8.10 6353 8.91 6353 9.10 6353 916.03 6353 60.89
Gapd-2 (5, 200) 12742 12744* 25.97 12744* 35.97 12744* 35.97 12744* 122.41 12744* 150.49
Gapd-3 (10, 100) 6348 6355* 12.03 6355* 13.03 6355* 13.03 6356* 538.29 6355* 104.50
Gapd-4 (10, 200) 12433 12459* 43.09 12442* 49.78 12442* 51.40 12442* 743.95 12442* 234.54
Gapd-5 (20, 100) 6192 6196* 12.89 6196* 13.47 6196* 14.70 6221* 1704.46 6196* 209.45
Gapd-6 (20, 200) 12245 12288* 53.16 12282* 66.33 12276* 61.21 12276* 922.94 12276* 398.67

Average Time 10.50 12.43 12.56 272.33 127.65
No. of Optimal 18/24 18/24 19/24 18/24 19/24

%age of Optimal 75.00% 75.00% 79.00% 75.00% 79.00%

(a) Run on Intel(R) Core(TM) i3-3217U with 1.8 GHz CPU
and 4.00GB RAM
(b) Run on Intel Pentium CoreDuo PC with 1.6 GHZ CPU
and 512 MB RAM.
(c) Computer specification is not reported.
The solution quality of our proposed GA (i.e., GA-SCX) is
enhanced by hybridizing with different local searches, and
then the best solutions are compared to the optimal solution.
For these comparisons, GA with 3-exchange mutation
(HGA1), constructive mutation (HGA2) and combined
constructive 3-exchange mutation (HGA3) local search
techniques are tested and reported in Table 8. The HGAs
are compared using two performance measures: (1) solution
quality, and (2) computational time. Among the HGAs,
HGA2 is found to be better than HGA1, and HGA3 is the
best. However, HGA3 takes little more computational times
than other two HGAs. We also compare our HGAs with
other heuristics found in the literature, namely, BEE
(Özbakir et al., 2010), and DE-SK (Sethanan and Pitakaso,
2016). The computation results are shown in the same Table
8. From this table, HGA3 and DE-SK yield the optimal cost
19 out of 24 instances (79.00% optimal); HGA1, HGA2 and
BEE yield the optimal cost 18 out of 24 instances (75.00%
optimal). In terms of solution quality, HGA3 and DE-SK
algorithm are found to be best. Now, in terms of
computational time, though the algorithms were run on
different machines, still by looking at the machine
specification as well as computational time, one can decide
that HGA1 is the best. Overall, in terms of solution quality
as well as computational time, our algorithm HGA3 is
found to the best for the small to medium instances.

4. Conclusion and Discussion

In this study, hybrid genetic algorithms were developed to
optimize the sequence of jobs assigned to agents with the
minimum assignment costs. For that we have modified the
sequential constructive crossover (SCX) to propose a
simple genetic algorithm (GA) for solving the generalized
assignment problem (GAP). We presented a comparative
study between SCX and one-point crossover (OPX) for
some benchmark GAP instances. In terms of quality of the
solution, SCX is found to be far better than the OPX. The

GA was used in the combination of two local techniques -
3-exchange and constructive mutation algorithms. Three
hybrid GAs are presented and each of them uses GA with a
different local search technique. From the comparative
study among the proposed algorithms, we found that GA
with combined 3-exchange and constructive mutation
(HGA3) is the best. Moreover, our proposed algorithms
were used to compare their performance with those of BEE
(Özbakir et al., 2010), and DE-SK (Sethanan and Pitakaso,
2016) algorithms as the existing state-of-art heuristics
found in the literature. The computational results reveal that
our HGA3 is the best for the small to medium instances.
This is because the HGA3 is designed to enhance the search
capability by improving the diversification using the GA’s
operators and combined constructive and 3-exchange
mutations can improve the intensification. Though HGA3
is found to be the best algorithm, however, for some
instances, it could not find best known solution within
twenty runs. Hence, incorporating a better local search
method may further improve the solution quality and hence,
may obtain best known solutions for the remaining
instances also, which is under our investigation.

Acknowledgements

This research was supported by the Deanery of Academic
Research, Al Imam Mohammad Ibn Saud Islamic
University, Saudi Arabia vide Grant No. 350902. The
author thanks the Deanery for the financial support. The
author also thanks the anonymous honourable reviewers for
their constructive comments and suggestions.

References
[1] Ahmed ZH. (2010a). Genetic algorithm for the traveling

salesman problem using sequential constructive crossover
operator, International Journal of Biometrics &
Bioinformatics, 3, 96-105.

[2] Ahmed ZH. (2010b). A lexisearch algorithm for the
bottleneck traveling salesman problem, Int Journal of
Computer Science & Security, 3, 569-577.

[3] Ahmed ZH. (2013a). A hybrid genetic algorithm for the
bottleneck traveling salesman problem, ACM Transactions
on Embedded Computing Systems, 12, Art. No. 9.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 222

[4] Ahmed Z H. (2013b). An experimental study of a hybrid
genetic algorithm for the maximum travelling salesman
problem, Mathematical Sciences, 7, 1-7.

[5] Ahmed ZH. (2014a). The ordered clustered travelling
salesman problem: A hybrid genetic algorithm, The Scientific
World Journal, Art ID 258207, 13 pages.
doi:10.1155/2014/258207.

[6] Ahmed ZH. (2014b). A simple genetic algorithm using
sequential constructive crossover for the quadratic
assignment problem, Journal of Scientific & Industrial
Research, 73, 763-766.

[7] Ahmed ZH. (2016). Experimental analysis of crossover and
mutation operators for the quadratic assignment problem,
Annals of Operations Research, 247, 833-851.

[8] Ahmed ZH. (2018). The Minimum Latency Problem: A
Hybrid Genetic Algorithm, IJCSNS International Journal of
Computer Science and Network Security, 18(11), 153-158.

[9] Ahmed ZH. (2019). Algorithms for the Quadratic
Assignment Problem, LAP LAMBERT Academic
Publishing, Mauritius.

[10] Al-Omeer MA & Ahmed ZH. (2019). Comparative study of
crossover operators for the MTSP, 2019 International
Conference on Computer and Information Sciences (ICCIS),
Sakaka, Saudi Arabia, 3-4 April 2019, 1-6.

[11] Beasley JE. (1990). OR-library: distributing test problems by
electronic mail, Journal of the Operational Research Society,
41, 1069–1072.

[12] Bennaceur H & Ahmed ZH. (2017). Frequency Model Based
Crossover Operators for Genetic Algorithms Applied to the
Quadratic Assignment Problem, International Arab Journal
of Information Technology, 14, 138-145.

[13] Deb K. (1995). Optimization for Engineering Design:
Algorithms and Examples, Prentice Hall of India Pvt Ltd,
New Delhi, India.

[14] Catrysse DG & Van Wassenhove LN. (1992). A survey of
algorithms for the Generalized Assignment Problem,
European Journal of Operational Research, 60, 260-272.

[15] Chu PCH & Beasley JE. (1997). A Genetic Algorithm for the
Generalised Assignment Problem, Computers & Operations
Research, 24, 17-23.

[16] Feltl H, Unther G & Raidl R. (2004). An Improved Hybrid
Genetic Algorithm for the Generalised Assignment Problem,
Symposium on Applied Computing, Session: ECO, 990-995.

[17] Goldberg DE. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley, New
York.

[18] Juell P, Perera A & Nygard K. (2003). Application of a
Genetic Algorithm to Improve an Existing Solution for the
General Assignment Problem, Proceedings of the 16th
International Conference on Computer Applications in
Industry and Engineering, Lasvegas.

[19] Narciso MG & Lorena LAN. (1999). Lagrangean/surrogate
Relaxation for Generalized Assignment Problems, European
Journal of Operational Research, 114, 165-177.

[20] Özbakir L, Baykasoǧlu A & Tapkan P. (2010). Bees
algorithm for generalized assignment problem, Applied
Mathematics and Computation, 215, 3782–3795.

[21] Ross GT & Soland RM. (1975). A branch and bound
algorithm for the generalized assignment problem,
Mathematical Programming, 8, 91–103.

[22] Sethanan K & Pitakaso R. (2016). Improved differential
evolution algorithms for solving generalized assignment
problem, Expert Systems with Applications, 45, 450–459.

[23] Yagiura M, Ibaraki T & Glover F. (2006). A path relinking
approach with ejection chains for the generalized assignment
problem, European Journal of Operational Research, 169,
548–569.

Zakir Hussain Ahmed is a Full Professor
in the Department of Computer Science at
Al Imam Mohammad Ibn Saud Islamic
University, Riyadh, Kingdom of Saudi
Arabia. He obtained MSc in Mathematics
(Gold Medalist), Diploma in Computer
Application, MTech in Information
Technology and PhD in Mathematical
Sciences (Artificial

Intelligence/Combinatorial Optimization) from Tezpur University
(Central), Assam, India. Before joining the current position, he
served in Tezpur University, Sikkim Manipal Institute of
Technology, Asansol Engineering College and Jaypee Institute of
Engineering and Technology, India. His research interests include
artificial intelligence, combinatorial optimization, digital image
processing and pattern recognition. He has several publications in
the fields of artificial intelligence, combinatorial optimization and
image processing.

