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Abstract 
This paper presents three hybrid algorithms, based on genetic 
algorithm (GA), to solve the generalized assignment problem 
(GAP) with the objective to minimize the assignment cost under 
the limitation of the agent capacity. First sequential constructive 
crossover (SCX) is modified for the problem and then showed 
competence over one-point crossover (OPX). Our hybrid 
algorithms use SCX, exchange mutation and three local search 
algorithms. Experimental results on four sets of benchmark 
instances from OR-library show the effectiveness of the proposed 
hybrid algorithms. The proposed algorithms are then compared 
with bee (BEE) and differential evolution (DE-SK) algorithms. In 
terms of solution quality as well as computational times, one of 
our hybrid genetic algorithm (HGA3) outperformed both BEE as 
well as DE-SK. 
Key words: 
Generalized assignment problem; hybrid genetic algorithm; 
sequential constructive crossover; constructive mutation; local 
search. 

1. Introduction 

The generalized assignment problem (GAP) belongs to the 
class of NP-hard problems and is considered as one of the 
most difficult problems. The problem seeks a minimum cost 
(or maximum profit) of assignment of n jobs to m agents 
such that each job is assigned to precisely one agent subject 
to resource restrictions on the agents. Let us formally define 
the problem as follows. Let I = {1, 2, ..., m} be a set of 
agents, and let J = {1, 2, ...., n} be a set of jobs. For any iϵI, 
jϵJ, given cost matrix, C=[cij], where cij is the cost of 
assigning job j to agent i (or assigning agent i to job j), 
resource matrix, R = [rij], where rij is the resource required 
by agent i to perform job j, and capacity vector, B = [bi], 
where bi is the resource availability (capacity) of agent i. 
Also, xij is a 0-1 variable, that is, 1 if agent i performs job j 
and 0 otherwise. The mathematical formulation of the 
problem is:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼    (1) 
𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼 = 1,∀𝑗𝑗 ∈ 𝐽𝐽  (2) 
∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖𝑗𝑗∈𝐽𝐽 , ∀𝑖𝑖 ∈ 𝐼𝐼   (3) 
𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1},          ∀𝑖𝑖 ∈ 𝐼𝐼;   ∀𝑗𝑗 ∈ 𝐽𝐽  (4) 

 

Equation (2) ensures that each job is assigned to exactly one 
agent and equation (3) ensures that the total resource 
requirement of the jobs assigned to an agent does not exceed 
the capacity of the agent. The GAP was first introduced by 
Ross and Soland (1975), which is shown to be NP-hard. 
Many real-life applications can be modeled as a GAP 
(Narciso and Lorena, 1999). Various approaches can be 
found to solve this problem, some of which were 
summarized (Catrysse and Van Wassenhove, 1992). Since, 
the problem is NP-hard, it is very difficult to solve, and in 
fact, to date no optimal algorithm has been found, which is 
able to solve the problem in polynomial time. So, heuristic 
algorithms have been used to solve the instances of the 
problem. Out of heuristics, genetic algorithms (GAs) are 
successfully implemented to this kind of combinatorial 
optimization problems (Goldberg, 1989).  
Experiencing the novel merits of GA, many researchers 
started GA application initially to GAP.  Application of a 
GA to improve the existing GAP solution was proposed by 
Juell et al. (2003). An improved hybrid GA for the GAP to 
find minimum cost assignment for a set of jobs to a set of 
agents was proposed by Feltl et al. (2004). A path relinking 
approach with ejection chains was proposed for the problem, 
which is one of the best performing algorithms (Yagiura et 
al., 2006). Bees algorithm (BEE) with an ejection chain 
neighborhood mechanism was developed for solving the 
GAP by Özbakir et al. (2010). A computational study has 
been reported and the results are compared with algorithms 
from the literature. Eight different improved differential 
evolution (DE) algorithms were developed for solving the 
problem by Sethanan and Pitakaso (2016). Each algorithm 
uses DE with a different combination of local search 
techniques.  
We are going to use GA for obtaining heuristically optimal 
solution to the problem. Selection, crossover and mutation 
are three basic operators in GA, of which crossover is the 
most important operator. So, numerous crossover operators 
have been developed for solving various optimization 
problems. However, most of the researchers use one-point 
crossover (OPX) operator for the GAP (Chu and Beasley, 
1997).  In this paper, we modify the sequential constructive 
crossover (SCX) (Ahmed, 2010a) operator for the problem. 
Then a GA based on SCX is developed for solving the GAP, 
which is then compared with GA using OPX for some 
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benchmark instances reported in the literature (Beasley, 
1990). Experimental results show that SCX operator is 
better than OPX. Then our GA is incorporated with three 
local search algorithms to enhance the solution. Finally, a 
comparative study is carried out of our algorithms against 
two state-of-art heuristic algorithms, namely, BEE (Özbakir 
et al., 2010) and DE (Sethanan and Pitakaso, 2016). 

2. Proposed Genetic Algorithm 

In GAs, first, solutions are encoded as feasible 
chromosomes (or individuals) such that the genetic 
operators result in feasible chromosomes. A simple GA 
begins by generating set (initial population) of 
chromosomes randomly, and then goes through (possibly) 
three genetic operators to create new, and optimistically, 
better populations as following generations. For the GAP, 
to meet this requirement, we use an efficient representation 
in which the solution structure is an ordered structure (n-
dimensional vector) of integer numbers. These integer 
numbers identify the agents, as assigned to vector elements 
denoted by the jobs, as follows.  
 

Job 1 2 3 ……… n-1 n 
Agent 3 1 m ……… 2 1 

 
This representation ensures that all the equality constraints 
in (2) are automatically satisfied since exactly one agent is 
assigned to each job. However, this representation does not 
guarantee that the capacity constraints in (3) will be 
satisfied. The steps involved in our GA heuristic for the 
GAP are as follows: 

2.1 Initial Population and Objective Function 

We use a simple version of sequential constructive 
sampling algorithm for generating a chromosome of size n. 
For that, we first construct an alphabet table (Ahmed, 
2010b) based on the resource matrix as follows. Alphabet 
matrix, A=[a(i,j)], is a matrix of order mXn formed by 
positions of elements of the resource matrix, R=[rij]. The 
jth column of matrix A consists of the positions of the 

elements in the jth column of the matrix R when they are 
arranged in the non-decreasing order of their values. If a(p, 
j) stands for the pth element in the jth column of A, then a(1, 
j) corresponds to the position of smallest element in jth 

column of the matrix R. Alphabet table      " ]),([ ),,( jjiarjia −

" is the combination of elements of matrix A and their 
values. Our algorithm for generating a chromosome may be 
summarized as follows: 

Step 0: Construct the ‘alphabet table’ based on the given 
resource matrix.  
Step 1: Consider a ‘legitimate’ random job by 
generating random number, p, between 1 and n. Go to 
step 2. 
Step 2: Go to the pth column of the 'alphabet table', and 
assign first agent (say, ‘agent q’) of the column such that 
so far total resource required by the ‘agent q’ is less than 
the capacity of the agent. If assigning that agent exceeds 
the capacity of the agent, then choose the next possible 
agent sequentially in that column. If no such agent can 
be assigned for that job, delete the present incomplete 
chromosome and try to generate another chromosome 
from the beginning, else, go to step 3. 
Step 3: If agents are assigned for all jobs, then stop, else 
go to step 1. 

 
Consider a problem to assign n=15 jobs to m=5 agents with 
cost, resource and capacity matrices are given in Table 1, 
Table 2 and Table 3 respectively.  The alphabet table, based 
on the resource matrix, is shown in Table 4. For example, 
1-8 in first column stands for 8 unit of resource required by 
1st agent to perform 1st job. Suppose, randomly generated 
job sequence is {3, 14, 5, 1, 7, 12, 4, 15, 10, 8, 11, 2, 13, 9, 
6}, then a chromosome may be constructed as given in 
Table 5. Note that the notation R1 means resource used by 
agent 1. So, we generate a chromosome as (1, 2, 3, 5, 1, 2, 
4, 3, 1, 4, 4, 4, 5, 1, 3), and the complete assignment of the 
jobs to the agents is (job↔ agent) {1↔1, 2↔2, 3↔3, 4↔5, 
5↔1, 6↔2, 7↔4, 8↔3, 9↔1, 10↔4, 11↔4, 12↔4, 13↔5, 
14↔1, 15↔3}. This assignment yields the total assignment 
cost of 295 (= 17+ 16+ 16+ 15+ 24+ 16+ 19+ 19+ 19+ 19+ 
25+ 23+ 19+ 24+ 24) units. 

Table 1: Cost matrix C 
Job→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A
ge

nt
 1 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16 

2 23 16 21 16 17 16 19 25 18 21 17 15 25 17 24 
3 16 20 16 25 24 16 17 19 19 18 20 16 17 21 24 
4 19 19 22 22 20 16 19 17 21 19 25 23 25 25 25 
5 18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 

Table 2: Resource matrix R 
Job→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A
ge

nt
 1 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24 

2 15 7 23 22 11 11 12 10 17 16 7 16 10 18 22 
3 21 20 6 22 24 10 24 9 21 14 11 14 11 19 16 
4 20 11 8 14 9 5 6 19 19 7 6 6 13 9 18 
5 8 13 13 13 10 20 25 16 16 17 10 10 5 12 23 
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Table 3: Capacity vector B 
Agent 1 2 3 4 5 

Capacity 36 34 38 27 33 

Table 4: Alphabet table based on resource matrix (R is the resource required) 
1-R 2-R 3-R 4-R 5-R 6-R 7-R 8-R 9-R 10-R 11-R 12-R 13-R 14-R 15-R 
1- 8 2- 7 3- 6 5-13 1- 8 4- 5 4- 6 3- 9 1- 9 4- 7 4- 6 4- 6 5- 5 1- 8 3-16 
5- 8 4-11 4- 8 4-14 4- 9 3-10 1- 8 2-10 5-16 3-14 2- 7 5-10 1-10 4- 9 4-18 
2-15 5-13 5-13 2-22 5-10 2-11 2-12 5-16 2-17 2-16 5-10 3-14 2-10 5-12 2-22 
4-20 1-15 1-14 3-22 2-11 1-16 3-24 4-19 4-19 1-17 3-11 1-15 3-11 2-18 5-23 
3-21 3-20 2-23 1-23 3-24 5-20 5-25 1-25 3-21 5-17 1-25 2-16 4-13 3-19 1-24 

Table 5: Construction of a chromosome 
Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

C
hr

om
os

om
e 

1-8 
R1= 
16+8 
=24 

2-7 
R2=7 
 

3-6 
R3=6 
 

5-13 
R5=13 
 

1-8 
R1= 
8+8 
=16 

4-5 
R4= 
25+5 
=29>27 
Next 
3-10 
R3= 
31+10 
=41>38 
Next 
2-11 
R2=7+11 
=18 

4-6 
R4=6 

3-9 
R3= 
22+9 
=31 

1-9 
R1= 
24+9 
=33 

4-7 
R4= 
12+7 
=19 

4-6 
R4= 
19+6 
=25 

4-6 
R4= 
6+6 
=12 

5-5 
R5= 
13+5 
=18 

1-8 
R1=8 

3-16 
R3= 
6+16 
=22 

 
2.2 Fitness Function and Selection Method 

The fitness function is the objective function for our 
problem. However, during the GA search there is a 
possibility of obtaining infeasible solution that violates the 
capacity constraint. So, it must consider not just the 
assignment cost, but also the degree of infeasibility of a 
solution. Rather than penalize the fitness (or the objective 
function) when a solution is infeasible, which is a common 
approach in GAs, and associate two values with each 
solution. One of these values is called fitness and the other 
is called unfitness. Let skj represent the agent assigned to 
job j (j= 1, 2, ...., n) in solution k (k= 1, 2, ...., N). The fitness 
fk, of solution k is equal to its objective function value as 
calculated by 𝑓𝑓𝑘𝑘 = ∑ 𝑐𝑐𝑠𝑠𝑘𝑘𝑘𝑘,𝑗𝑗

𝑛𝑛
𝑗𝑗=1 . The unfitness uk of solution 

k is a measure of infeasibility (in relative terms) as 
calculated by 𝑢𝑢𝑘𝑘 = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗∈𝐽𝐽,𝑠𝑠𝑘𝑘𝑘𝑘=𝑖𝑖 � − 𝑏𝑏𝑖𝑖�𝑛𝑛

𝑖𝑖=1 . 
Note here that uk =0 if and only if solution k is feasible. So, 
fitness function is 𝑓𝑓𝑘𝑘 = 𝑓𝑓𝑘𝑘 + 𝑢𝑢𝑘𝑘. In our GA, the stochastic 
remainder selection method (Deb, 1995) is used for 
selection. 

2.3 Sequential Constructive Crossover Operator  

Crossover is the most important operator in GAs where one 
(or two) offspring chromosome(s) is (are) generated first by 
applying to pair of selected parent chromosomes. One can 
use one-point or multi-point crossover operator. Among 
various crossover operators, the sequential constructive 
crossover (SCX) is successfully applied to many 

combinatorial optimization problems by Ahmed (2013a, 
2013b, 2014a, 2014b, 2018, 2019), Bennaceur and Ahmed 
(2017), Al-Omeer and Ahmed (2019). We are going to 
modify the SCX, apply on our problem and compare with 
one-point crossover (OPX) proposed by Chu and Beasley 
(1997). Our modified SCX operator for the GAP is as 
follows:  

Step 0: Start from 'job 1’ (i.e., current job i =1). 
Step 1: Suppose 'agent α' and 'agent β' are assigned in 
1st and 2nd parent respectively, then for selecting the 
agent for ‘job i’ go to Step 2. 
Step 2: If ciα < ciβ, then select 'agent α', otherwise, 
'agent β' as the agent for ‘job i’, provided that the 
selected agent does not violate the capacity constraint. 
If the agent violates the constraint, then search 
sequentially all agents according to their cost in 
ascending order and consider the first one that does not 
violate the constraint. Then concatenate the selected 
agent to the partially constructed offspring chromosome. 
If the offspring is a complete chromosome, then stop, 
otherwise, set i = i + 1, and go to Step 1. 

 
Let us consider a pair of chromosomes P1: (1, 2, 3, 5, 1, 2, 
4, 3, 1, 2, 5, 4, 5, 4, 3) and P2: (1, 2, 3, 5, 1, 4, 4, 3, 1, 4, 4, 
5, 5, 1, 3) with costs 295 and 289 respectively with respect 
to the cost matrix given in Table 1. By applying above SCX 
as in Table 6, we obtain the offspring (1, 2, 3, 5, 1, 2, 4, 3, 
1, 4, 5, 5, 5, 1, 3) with value 284, which is less than both 
parents. 
The crossover procedure is followed by a mutation 
procedure. We consider exchange mutation with mutation 
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probability (Pm) that selects two genes randomly and then 
exchanges them. The probability of applying mutation is set 
very low, whereas the probability of crossover is set very 

high. A simple GA repeatedly applies these (three) 
operators until either the population converges or until 
reaches the maximum number of generations (iterations). 

Table 6: Working of the sequential constructive crossover operator 
Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
P1 1 2 3 5 1 2 4 3 1 2 5 4 5 4 3 
P2 1 2 3 5 1 4 4 3 1 4 4 5 5 1 3 
O 1(17) 

R1=8 
2(16) 
R2=7 

3(16) 
R3=6 

5(15) 
R5=13 

1(24) 
R1= 
8+8 
=16 

2(16) 
R2= 
7+11 
=18 

4(19) 
R4=6 

3(19) 
R3= 
6+9 
=15 

1(19) 
R1= 
16+9 
=25 

4(19) 
R4= 
6+7 
=13 

5(22) 
R5= 
13+10 
=23 

5(17) 
R5= 
23+10 
=33 

5(19) 
R5= 
33+5 
=38 
>33 
Next 
3(17) 
R3= 
15+11 
=26 

1(24) 
R1= 
25+8 
=33 

3(24) 
R3= 
15+16 
=31 

Our GAs may be summarized as follows (Ahmed, 2010a). 
Genetic Algorithm () 
{ Initialize population; 
 Evaluate the population; 
 Generation = 0; 
 While termination condition is not satisfied 
 { Generation = Generation + 1; 
  Select good chromosomes by selection procedure; 
  Perform crossover with crossover probability (Pc); 
  Perform mutation with mutation probability (Pm); 
  Evaluate the population;   
 } 
} 

A GA that incorporates local search is called hybrid GA. 
We are considering following two mutation operators with 
100% probability as local search methods. 

2.4 Local Search 

Two local search methods, 3-exchange mutation and 
constructive mutation are proposed here. The first one is old 
(Ahmed, 2016) and the second one is new. Both are 
described below. 

2.4.1 3-Exchange Mutation 

3-exchange mutation selects three different positions of a 
chromosome at random, say, r1, r2 and r3, and exchange the 
genes on these positions as follows: P(r1) ↔ P(r2) and then 
P(r2) ↔ P(r3), if they are different. If the cost of the mutated 
chromosome is bigger than the cost of the parent, we repeat 
another four times. If in any repetition mutated chromosome 
cost is less than the parent chromosome, we replace the 
parent chromosome, otherwise, skip. 

2.4.2 Constructive Mutation 

We first construct ‘alphabet table’ based on cost matrix C 
provided that the costs in a column are arranged in non-

ascending order. Suppose p=a(1, j) and q= αj, then find the 
index t∈J={1,2,…,n} for which D=max{cpt - cqt} is the 
maximum. Then replace αt by a(1, t) provided that the 
capacity constraints are not violated. However, if the 
mutated chromosome cost is less than the parent 
chromosome, we replace the parent chromosome, otherwise, 
skip. For example, applying on the chromosome P: (1, 2, 4, 
5, 1, 2, 4, 3, 1, 3, 5, 5, 5, 1, 3) with cost 291, one may obtain 
the offspring (1, 2, 3, 5, 1, 2, 4, 3, 1, 4, 2, 4, 5, 1, 3) with 
value 287, which is less than the parent chromosome. 

3. Computational Results 

For comparing the efficiency of the crossover operators, 
simple GAs using OPX (GA-OPX) and SCX (GA-SCX) 
have been encoded in Visual C++ and run on a Laptop with 
Intel(R) Core(TM) i3-3217 with CPU @ 1.80GHz and 
4.00GB RAM under MS Windows 7. In the experiments, 
only four sets of benchmark instances (Gapa - Gapd) of size 
from 100 to 200, obtained from the OR library (Beasley, 
1990) were used. Each set is composed of 6 instances, so, 
24 instances in total were used. The experiments were 
performed twenty times for each instance. The solution 
quality is measured by the percentage of excess (%) of the 
obtained solution (SOL) over the best-known solution 
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(BKS) reported in the literature, as given by the formula: 
Excess (%) = 100*(SOL-BKS)/BKS. It is to be noted that 
GAs are controlled by some parameters, namely, population 
size, crossover probability, mutation probability, and 
termination criterion. However, to have a clear picture of 

crossover operators, we set 1.0 (i.e., 100%) as crossover 
probability, 0.10 (i.e., 10%) as mutation probability, 100 as 
population size, and a maximum of 100*n generations as a 
termination criterion.  

Table 7: Summary of the results by the crossover operators for some benchmark instances 

Instance (m, n) BKS 
GA-OPX  GA-SCX 

Best (%) Avg 
(%) Time  Best (%) Avg 

(%) Time 

Gapa-1 (5, 100) 1698 9.95 13.88 2.75  0.00 0.09 1.32 
Gapa-2 (5, 200) 3235 11.68 15.88 10.59  0.00 0.00 0.18 
Gapa-3 (10, 100) 1360 18.31 24.24 2.87  0.07 0.18 2.82 
Gapa-4 (10, 200) 2623 27.95 32.88 10.27  0.08 0.13 4.09 
Gapa-5 (20, 100) 1158 27.55 32.38 3.03  0.00 0.27 3.80 
Gapa-6 (20, 200) 2339 31.55 41.35 11.25  0.00 0.04 12.74 
Gapb-1 (5, 100) 1843 5.37 10.46 2.25  0.54 2.16 3.31 
Gapb-2 (5, 200) 3552 18.07 22.28 8.30  0.76 2.27 9.34 
Gapb-3 (10, 100) 1407 2.49 4.21 2.33  0.14 1.68 3.84 
Gapb-4 (10, 200) 2827 4.88 6.93 10.71  0.67 2.31 11.48 
Gapb-5 (20, 100) 1166 8.83 12.14 3.16  0.86 2.24 7.33 
Gapb-6 (20, 200) 2339 7.82 9.11 11.29  0.30 1.65 25.12 
Gapc-1 (5, 100) 1931 1.35 3.67 2.60  0.83 1.63 3.00 
Gapc-2 (5, 200) 3456 3.96 9.89 10.47  1.27 2.58 9.71 
Gapc-3 (10, 100) 1402 5.06 10.23 2.84  0.50 1.68 3.30 
Gapc-4 (10, 200) 2806 4.78 7.20 10.88  1.00 3.67 7.60 
Gapc-5 (20, 100) 1243 11.02 16.15 3.37  0.80 3.10 5.02 
Gapc-6 (20, 200) 2391 11.46 13.58 11.58  0.84 2.51 23.52 
Gapd-1 (5, 100) 6353 8.03 8.97 1.82  2.09 3.32 4.08 
Gapd-2 (5, 200) 12742 7.85 9.44 6.19  2.01 2.93 17.25 
Gapd-3 (10, 100) 6348 8.76 9.49 2.34  0.74 2.30 6.99 
Gapd-4 (10, 200) 12433 12.63 13.61 9.61  1.00 2.90 26.59 
Gapd-5 (20, 100) 6192 10.52 11.40 3.14  1.40 3.27 9.97 
Gapd-6 (20, 200) 12245 9.88 10.44 11.13  2.79 5.02 49.80 

Average   11.24 14.58 6.45  0.78 2.00 10.51 

Table 7 shows comparative study of the crossover operators 
for the instances. We report percentage of excess of best 
solution and average solution over BKS of 20 runs. We also 
report average computational time (in seconds) by the 

algorithms. In terms of solution quality, GA-SCX 
outperforms GA-OPX.  However, GA-SCX takes little 
more time than GA-OPX. Overall, GA-SCX is found to the 
best for the tested instances. 

Table 8: Comparative study among our HGAs, BEE and DE-SK 

Instance (m, n) BKS HGA1  HGA2  HGA3   BEE  DE-SK 
Sol. Time(a)  Sol. Time(a)  Sol. Time(a)   Sol. Time(b)  Sol. Time(c) 

Gapa-1 (5, 100) 1698 1698 0.22  1698 0.26  1698 0.28   1698 0.18  1698 0.11 
Gapa-2 (5, 200) 3235 3235 0.05  3235 0.05  3235 0.05   3235 0.95  3235 0.59 
Gapa-3 (10, 100) 1360 1360 0.41  1360 0.41  1360 0.44   1360 0.27  1360 1.02 
Gapa-4 (10, 200) 2623 2623 1.32  2623 1.38  2623 1.46   2623 1.31  2623 0.35 
Gapa-5 (20, 100) 1158 1158 0.30  1158 0.31  1158 0.38   1158 0.41  1158 0.65 
Gapa-6 (20, 200) 2339 2339 1.06  2339 1.12  2339 1.22   2339 1.81  2339 1.21 
Gapb-1 (5, 100) 1843 1843 2.11  1843 2.20  1843 2.21   1843 5.97  1843 30.56 
Gapb-2 (5, 200) 3552 3552 9.03  3552 9.89  3552 10.03   3552 45.99  3552 102.40 
Gapb-3 (10, 100) 1407 1407 3.01  1407 3.55  1407 3.84   1407 0.36  1407 50.89 
Gapb-4 (10, 200) 2827 2827 8.23  2827 9.86  2827 10.23   2827 315.04  2827 212.50 
Gapb-5 (20, 100) 1166 1166 6.11  1166 6.23  1166 6.38   1166 1.12  1166 60.25 
Gapb-6 (20, 200) 2339 2341 12.89  2339 15.12  2339 17.89   2339 28.65  2339 350.50 
Gapc-1 (5, 100) 1931 1931 2.20  1931 3.06  1931 3.20   1931 3.61  1931 35.40 
Gapc-2 (5, 200) 3456 3456 11.14  3456 14.32  3456 15.14   3456 18.09  3456 202.85 
Gapc-3 (10, 100) 1402 1402 2.22  1402 2.45  1402 2.70   1402 5.81  1402 52.98 
Gapc-4 (10, 200) 2806 2806 13.08  2806 13.11  2806 13.81   2806 488.89  2806 280.95 
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Gapc-5 (20, 100) 1243 1243 4.16  1243 5.06  1243 5.19   1243 23.16  1243 101.34 
Gapc-6 (20, 200) 2391 2397* 19.24  2395* 22.36  2391 21.47   2392* 646.18  2391 420.46 
Gapd-1 (5, 100) 6353 6353 8.10  6353 8.91  6353 9.10   6353 916.03  6353 60.89 
Gapd-2 (5, 200) 12742 12744* 25.97  12744* 35.97  12744* 35.97   12744* 122.41  12744* 150.49 
Gapd-3 (10, 100) 6348 6355* 12.03  6355* 13.03  6355* 13.03   6356* 538.29  6355* 104.50 
Gapd-4 (10, 200) 12433 12459* 43.09  12442* 49.78  12442* 51.40   12442* 743.95  12442* 234.54 
Gapd-5 (20, 100) 6192 6196* 12.89  6196* 13.47  6196* 14.70   6221* 1704.46  6196* 209.45 
Gapd-6 (20, 200) 12245 12288* 53.16  12282* 66.33  12276* 61.21   12276* 922.94  12276* 398.67 

Average Time  10.50   12.43   12.56    272.33   127.65 
No. of Optimal  18/24   18/24   19/24    18/24   19/24 

%age of Optimal  75.00%   75.00%   79.00%    75.00%   79.00% 

(a) Run on Intel(R) Core(TM) i3-3217U with 1.8 GHz CPU 
and 4.00GB RAM 
(b) Run on Intel Pentium CoreDuo PC with 1.6 GHZ CPU 
and 512 MB RAM. 
(c) Computer specification is not reported.  
The solution quality of our proposed GA (i.e., GA-SCX) is 
enhanced by hybridizing with different local searches, and 
then the best solutions are compared to the optimal solution. 
For these comparisons, GA with 3-exchange mutation 
(HGA1), constructive mutation (HGA2) and combined 
constructive 3-exchange mutation (HGA3) local search 
techniques are tested and reported in Table 8. The HGAs 
are compared using two performance measures: (1) solution 
quality, and (2) computational time. Among the HGAs, 
HGA2 is found to be better than HGA1, and HGA3 is the 
best. However, HGA3 takes little more computational times 
than other two HGAs. We also compare our HGAs with 
other heuristics found in the literature, namely, BEE 
(Özbakir et al., 2010), and DE-SK (Sethanan and Pitakaso, 
2016). The computation results are shown in the same Table 
8. From this table, HGA3 and DE-SK yield the optimal cost 
19 out of 24 instances (79.00% optimal); HGA1, HGA2 and 
BEE yield the optimal cost 18 out of 24 instances (75.00% 
optimal). In terms of solution quality, HGA3 and DE-SK 
algorithm are found to be best. Now, in terms of 
computational time, though the algorithms were run on 
different machines, still by looking at the machine 
specification as well as computational time, one can decide 
that HGA1 is the best. Overall, in terms of solution quality 
as well as computational time, our algorithm HGA3 is 
found to the best for the small to medium instances. 

4. Conclusion and Discussion 

In this study, hybrid genetic algorithms were developed to 
optimize the sequence of jobs assigned to agents with the 
minimum assignment costs. For that we have modified the 
sequential constructive crossover (SCX) to propose a 
simple genetic algorithm (GA) for solving the generalized 
assignment problem (GAP). We presented a comparative 
study between SCX and one-point crossover (OPX) for 
some benchmark GAP instances. In terms of quality of the 
solution, SCX is found to be far better than the OPX. The 

GA was used in the combination of two local techniques - 
3-exchange and constructive mutation algorithms. Three 
hybrid GAs are presented and each of them uses GA with a 
different local search technique. From the comparative 
study among the proposed algorithms, we found that GA 
with combined 3-exchange and constructive mutation 
(HGA3) is the best. Moreover, our proposed algorithms 
were used to compare their performance with those of BEE 
(Özbakir et al., 2010), and DE-SK (Sethanan and Pitakaso, 
2016) algorithms as the existing state-of-art heuristics 
found in the literature. The computational results reveal that 
our HGA3 is the best for the small to medium instances. 
This is because the HGA3 is designed to enhance the search 
capability by improving the diversification using the GA’s 
operators and combined constructive and 3-exchange 
mutations can improve the intensification. Though HGA3 
is found to be the best algorithm, however, for some 
instances, it could not find best known solution within 
twenty runs. Hence, incorporating a better local search 
method may further improve the solution quality and hence, 
may obtain best known solutions for the remaining 
instances also, which is under our investigation. 
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