
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019

26

Manuscript received October 5, 2019
Manuscript revised October 20, 2019

Comparison of Deep Learning Methods Used to Detect the
Similarity Between Two Texts

El Mostafa HAMBI and Faouzia Benabbou

University of Hassan 2, Faculty of Sciences Ben M’sik, Casablanca, Morocco

Summary
Recently deep learning has proposed several methods used in
several domains. Among these domains we found its use in the
texts processing, since they have given relevant results at the
level of text classification, detection of text similarity and
translation detection, that’s why we will use these algorithms in
our study. In this paper we will compare the different algorithms
used to detect semantics similarity between two given texts. This
comparison will give us a global vision to contribute a relevant
system that can detect the different types of similarity proposed
by a Corpus. In our study we will compare the use of siamese
lstm which uses word2vec to have a vector representation of
words and siamese lstm which uses doc2vec for the vector
representation of sentences to perform the comparison between
two texts.
Key words:
Deep Learning, Preprocessing; Doc2vev; Word2vec; neural
network; Long short-term memory (LSTM); Convolutional
neural network (Cnn); Siamese neural network.

1. Introduction

In this paper, we focus on the problem of detecting
whether two text contain common semantic information,
to do this a comparison was made between two approaches
that use the principle of deep learning to detect similarity.
The basis of our approach is the use of the Pan corpus to
build in the first place our learning base which will contain
the different types of plagiarism that will be able to detect
them in its tests. And then we will use the siamese lstm
algorithm to compare two documents to perform our
learning system.
Lstm on the other hand is great when you have an entire
sequence of words or sentences. This is because it can
model and remember the relationships between different
words and sentences. CNNs can only detect these relations
but overall they model the sentence as a bag of words and
lose context information and word ordering.
In fact, we did a study to get an idea of the representation
that we need to put in place for our documents so that it is
understandable in our learning system. Currently they are
several approaches that transform a document into vectors,
more precisely, there are many techniques used to carry
out a vector representation of a document that can offer us
several tracks for using this principle at the level of the
detection of the plagiarism between the documents.

Among these techniques, we find the deep learning which
is an important component of computational intelligence
which has the core domain machine learning research in it.
Concerning text mining applications, deep learning
methods represent words as a vector of numerical values.
This new representation contains a major part of syntactic
as well as semantic rules of the text data in applications
such as: “similarity detection and text classification,”-
much larger units such as: “phrases, sentences and
documents” should be described as a vector. Vector
representation of text data makes easier to compare words
and sentences as well as minimizing the need to use
lexicons [1].
Among the approaches used for the vector representation
of a word based on deep learning, the word2vec model,
proposed by Mikolov and al., is very popular and has
attracted great attention over the last two years. It has been
shown that vector representations of words learned by
word2vec models have a semantic meaning and are useful
in various tasks of NLP. We also find the doce2vec which
is inspired by word2vec to have a vector representation of
a sentence.
In this paper we propose a plagiarism detection system
based on the algorithms proposed by deep learning to train
our system to detect the different types of plagiarism in a
dataset. The remainder of this paper is organized as
following: The first section is dedicated to the definition of
basic concept. Additionally, the second section is about
defining related work. Concerning the third and fourth
Sections they are devoted to illustrate deep learning and
the approach of using it in NLP applications and define an
overall illustration of our comparison; and the last section
introduces our future work to be carried out in the
conclusion.

2. Related Works

In NLP tasks such as document classification, x typically
encodes features like words or characters occurring in the
text. Bag-of-words approaches, and extensions considering
n-grams, are arguably the most commonly used
representations, treating words and/or phrases as unique
discrete symbols, and weighting their contributions

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 27

through heuristics such as the Term Frequency multiplied
by the Inverse Document Frequency (TF-IDF)[2].
More recently, noting that bags-of-words often fail in
capturing similarities between words, methods using
neural networks to learn distributed vector representations
of words (i.e., word embeddings) have gained popularity,
through methods like word2vec [13] or GloVe. Das and
Smith [3][4] present a probabilistic model for paraphrase
detection based on syntactic similarity, semantics, and
hidden loose alignment between syntactic trees of the two
given sentences. Socher et al. [3][5] present an approach
based on recursive autoencoders for paraphrase detection.
Heilman and Smith [3][6] propose a tree edit model for
paraphrase identification based on syntactic relations
among words. Wang et al. [3][7] decompose the sentence
similarity matrix into a similar component matrix and a
dissimilar component matrix, and train a two-channel
convolutional neural network to compose these
components into feature vectors. Xu et al. [3][8] propose a
latent variable model that jointly infer the correspondence
between words and sentences.
In this paper, we focus on using deep learning algorithms
to develop a robust system for detecting the most difficult
kind of similarity, and as above we found lot of
approaches which use the word representation in their
algorithms for detecting similarity, in our approach we
will compare the method that use the word representation
with our method that use a sentence representation. The
both methods will use the siamse lstm in our training
phase.

3. Deep Learning Algorithms Used

Deep learning models have presented very good
performance on complex tasks that require deep
understanding of text like translation, question answering,
summarization, natural language inference etc. so it
seemed like an excellent approach but deep learning is
usually trained on hundreds of thousands or even millions
of labeled data points. Usually, we need big datasets for
deep learning to avoid over-fitting. Deep neural networks
have many parameters thus usually if they don’t have
enough data, they tend to memorize the training set and
perform poorly on the test set. To avoid this phenomenon
without big data we need to use special techniques [10].

3.1 Word2vec

The word2vec model and its application by Mikolov and
al [11] was the inspiration for a great advancement over
the last two years. It has been shown that vector
representations of words learned by word2vec models
have a semantic meaning and are useful in various tasks of
NLP. Words that represent synonyms have similar vectors.
Even more surprising, word vectors accept the laws of

analogy. For example, consider the analogy "The woman
is to the queen as the man is to the king" as follow:

vqueen – vwomen+vman ~vking

Note that there are two main word2vec models: a
continuous word bag (CBOW) and a skip-gram. In the
CBOW model, they predict a word in a context (a context
may look like a sentence). Skip-Gram is the opposite:
predict the context from an input word.

3.2 Doc2vec

The goal of doc2vec is to create a numeric representation
of a document, regardless of its length. But unlike words,
documents do not come in logical structures such as words,
so another method has to be found. The concept that
Mikilov and Le have used was simple, yet clever: they
have used the word2vec model, and added another vector
(Paragraph ID below) [11], like so:

Fig. 1 Doc2vec model.

3.3 LSTM

We use lstm and not cnn because cnn is a feed forward
neural network that is generally used for Image
recognition and object classification.While RNN works on
the principle of saving the output of a layer and feeding
this back to the input in order to predict the output of the
layer. CNN considers only the current input while RNN
considers the current input and also the previously
received inputs. It can memorize previous inputs due to its
internal memory. RNN can handle sequential data while
CNN cannot. In RNN, the previous states are fed as input
to the current state of the network. RNN can be used in
NLP, Time Series Prediction, Machine Translation, etc.
The Long Short-Term Memory, or LSTM, network is
perhaps the most successful RNN because it overcomes
the problems of training a recurrent network and in turn
has been used on a wide range of applications. We have
also based on the study carried out at the level of this
article [12] which illustrates the strong point of using the
lstm compared to cnn in the treatment of a sequence of
words.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 28

4. Proposed Approaches

In this section we will propose two approaches; one that
uses the wor2vec to represent the document words as
vectors and another that uses doc2vec to transform the
sentences of the document to vectors. These two
representations are both used in the same learning phase
that will take a pair of documents that must represent
either the word2vec or doc2vec; this phase should learn all
types of plagiarism offered by the 75% of the pairs of
documents proposed by the Pan corpus which is a corpus
for the evaluation of automatic plagiarism detection
algorithms.

4.1 Preprocessing Phase

This part consists of transforming each document of the
corpus into a list of vectors; the following figure illustrates
the steps used for each approach:

Fig. 2 Preparation phase

These steps start with a cleaning of the document by
deleting the special characters as well as the numbers, then
there will be two processing that will be performed
separately, the application of the steaming that converts
each word into their basic dictionary forms for easy
comparisons and then either apply the word2vec or
doc2vec to finally have a vector representation of the
document.

4.2 Training Phase

This phase consists in making our system learn the
different types of plagiarism proposed by the corpus pan,
we use the siamese lstm algorithm which takes as input
two documents which are either represented by the
word2vec or by doc2vec. These two documents are labeled
1 if they are similar 0 if they are not. The following figure
illustrates the learning phase of our system:

Fig. 3 Training phase

5. Validation and Comparison

Regarding the validation we worked with python
framework which offered us several functionalities. nltk
gensim pickle and keras are used to set up our validation.

Fig. 4 Testing phase

The figure above gives an overall view of our approach.
The system take two documents in the input, the first is the
suspect document and the second is the source document
from 25 % of the PAN corpus used for the test. These two
documents will be prepared at the preprocessing phase.
And later, these documents will be represented by a list of
vectors that will subsequently be as a base of a deep
learning system.
This vector list will be provided by either the word2vec
application or doc2vec. Our goal is to have the statistics
needed to detect the most relevant method among these
two vector representations. For each method we calculated
the value of the accuracy and the loss value as illustrated
below:
Found result when using word2vec:

Epoch 000: Loss: 1.145, Accuracy: 28.294%

Epoch 050: Loss: 1.232, Accuracy: 66.021%

Epoch 100: Loss: 0.429, Accuracy: 88.943%

Epoch 150: Loss: 0.293, Accuracy: 90.000%

Epoch 200: Loss: 0.105, Accuracy: 91.602%

Found result when using doc2vec:

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 29

Epoch 000: Loss: 1.948, Accuracy: 10.958%

Epoch 050: Loss: 1.001, Accuracy: 74.394%

Epoch 100: Loss: 0.300, Accuracy: 90.000%

Epoch 150: Loss: 0.103, Accuracy: 96.400%

Epoch 200: Loss: 0.092, Accuracy: 98.291%
The measure of the accuracy across the entire test set using
word2vec method is as follow.
Test set accuracy: 90.271%
Also when we use the doc2vec method we found the result
bellow:
Test set accuracy: 97.934%
The system will detect later the two probabilities of
similarity provided by the application of our approaches.
As shown in the table below we find the results found for
each method used:

Table 1: Result of our test
Couple of
documents

Probability of similarity
when we use Word2vec

Probability of
similarity when we use

Doc2vec
Pair of

documents 1 0.82 0.93
Pair of

documents 2 0.32 0.61
Pair of

documents 3 0.61 0.60
Pair of

documents 4 0.44 0.62
Pair of

documents 5 0.57 0.75
Pair of

documents 6 0.85 0.93
Pair of

documents 7 0.84 0.88
Pair of

documents 8 0.45 0.62
Pair of

documents 9 0.65 0.71
Pair of

documents 10 0.72 0.78

Finally, it is noticed that the results provided by the use of
the doc2vec for the vector representation of a document
are more relevant compared when using word2vec. So we
conclude that the list of sentence vectors that represents a
document correctly and keeps the semantic part that we
will use at the comparison level.

6. Conclusion

In this paper, we have mentioned many different methods
used in detection of plagiarism of ideas that are based on
the Deep Learning principal. This study showed us the
interest of the use of deep learning in the detection of
plagiarism. We have proposed a system for the detection
of plagiarism based on the deep learning method. Its
interest is the extraction of characteristics without losing
the sense of the document. It was possible to detect the
best vector representation of a document through a

validation that was carried out on the PAN corpus. So we
have noticed that the use of doc2vec in our approach is the
best solution. Indeed, we did not use a precise method to
calculate the similarity between the documents by using
for example a computation of distance between the vectors
of the documents but we could detect these measurements
through the result of our neuron network which offers us
probabilities of similarity between the paragraphs of a
couple of analyzed documents thing that offers us the
reliable results. Concerning the future work consists of
consolidate our approach by adding other treatment that
helps us to detect better the plagiarism.

References
[1] Bela Gipp State-of-the-art in detecting academic plagiarism.

International Journal for Educational Integrity. University of
California, Berkeley and University of Magdeburg,
Department of Computer Science.

[2] LUÍS BORGES, BRUNO MARTINS, PÁVEL CALADO.
Combining Similarity Features and Deep Representation
Learning for Stance Detection in the Context of Checking
Fake News. ACM Journal of Data and Information Quality,
Vol. 9, No. 4, Article 39. Publication date: April 201.
Instituto Superior Técnico, Universidade de Lisboa,
Portugal.

[3] Basant Agarwal, Helge Langseth, Massimiliano Ruocco. A
Deep Network Model for Paraphrase Detection in Short
Text Messages. arXiv:1712.02820v1 [cs.IR] 7 Dec 2017.
Dept. of Computer Science, Norwegian University of
Science and Technology, Norway.

[4] D. Das, N. A. Smith, Paraphrase Identification As
Probabilistic Quasi-synchronous Recognition, in:
Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP:
Volume 1, ACL ’09, Association for Computational
Linguistics, Stroudsburg, PA, USA, ISBN 978-1-932432-
45-9, 468–476, 2009.

[5] R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, C. D.
Manning, Dynamic Pooling and Unfolding Recursive
Autoencoders for Paraphrase Detection, in: Proceedings of
the 24th International Conference on Neural Information
Processing Systems, NIPS’11, Curran Associates Inc., USA,
ISBN 978-1-61839-599-3, 801–809, 2011.

[6] M. Heilman, N. A. Smith, Tree Edit Models for
Recognizing Textual Entailments, Paraphrases, and
Answers to Questions, in: Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics,
HLT ’10, Association for Computational Linguistics,
Stroudsburg, PA, USA, ISBN 1-932432-65-5, 1011–1019,
2010jkh

[7] Z. Wang, H. Mi, A. Ittycheriah, Sentence Similarity
Learning by Lexical Decomposition and Composition, in:
Proceedings of the 26th International Conference on
Computational Linguistics, COLING 2016 Technical Papers,
1340–1349, 20.

[8] W. Xu, A. Ritter, C. Callison-Burch, W. Dolan, Y. Ji,
Extracting Lexically Divergent Paraphrases from Twitter,

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 30

Transactions of the Association for Computational
Linguistics 2 (2014) 435–448.

[9] Martin Potthast Benno Stein Andreas Eiselt, Alberto
Barr ́on-Cede ño Paolo Rosso. Overview of the 1st
International Competition on Plagiarism Detection. Stein,
Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 1-9,
2009. Web Technology & Information Systems Group
Bauhaus-Universit ̈ at Weimar, Natural Language
Engineering Lab, ELiRF Universidad Polit ́ecnica de
Valencia.

[10] yonatan hadar. Lessons Learned from Applying Deep
Learning for NLP Without Big Data.

[11] Mikolov, T., Chen, K., Corrado, G., and Dean, J., 2013.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.

[12] Shaojie Bai, J. Zico Kolter, Vladlen Koltun. An Empirical
Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling. arXiv:1803.01271v2
[cs.LG] 19 Apr 2018.

