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Summary 
Recently deep learning has proposed several methods used in 
several domains. Among these domains we found its use in the 
texts processing, since they have given relevant results at the 
level of text classification, detection of text similarity and 
translation detection, that’s why we will use these algorithms in 
our study. In this paper we will compare the different algorithms 
used to detect semantics similarity between two given texts. This 
comparison will give us a global vision to contribute a relevant 
system that can detect the different types of similarity proposed 
by a Corpus. In our study we will compare the use of siamese 
lstm which uses word2vec to have a vector representation of 
words and siamese lstm which uses doc2vec for the vector 
representation of sentences to perform the comparison between 
two texts. 
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1. Introduction 

In this paper, we focus on the problem of detecting 
whether two text contain common semantic information, 
to do this a comparison was made between two approaches 
that use the principle of deep learning to detect similarity. 
The basis of our approach is the use of the Pan corpus to 
build in the first place our learning base which will contain 
the different types of plagiarism that will be able to detect 
them in its tests. And then we will use the siamese lstm 
algorithm to compare two documents to perform our 
learning system. 
Lstm on the other hand is great when you have an entire 
sequence of words or sentences. This is because it can 
model and remember the relationships between different 
words and sentences. CNNs can only detect these relations 
but overall they model the sentence as a bag of words and 
lose context information and word ordering. 
In fact, we did a study to get an idea of the representation 
that we need to put in place for our documents so that it is 
understandable in our learning system. Currently they are 
several approaches that transform a document into vectors, 
more precisely, there are many techniques used to carry 
out a vector representation of a document that can offer us 
several tracks for using this principle at the level of the 
detection of the plagiarism between the documents. 

Among these techniques, we find the deep learning which 
is an important component of computational intelligence 
which has the core domain machine learning research in it. 
Concerning text mining applications, deep learning 
methods represent words as a vector of numerical values. 
This new representation contains a major part of syntactic 
as well as semantic rules of the text data in applications 
such as: “similarity detection and text classification,”- 
much larger units such as: “phrases, sentences and 
documents” should be described as a vector. Vector 
representation of text data makes easier to compare words 
and sentences as well as minimizing the need to use 
lexicons [1].  
Among the approaches used for the vector representation 
of a word based on deep learning, the word2vec model, 
proposed by Mikolov and al., is very popular and has 
attracted great attention over the last two years. It has been 
shown that vector representations of words learned by 
word2vec models have a semantic meaning and are useful 
in various tasks of NLP. We also find the doce2vec which 
is inspired by word2vec to have a vector representation of 
a sentence. 
In this paper we propose a plagiarism detection system 
based on the algorithms proposed by deep learning to train 
our system to detect the different types of plagiarism in a 
dataset. The remainder of this paper is organized as 
following: The first section is dedicated to the definition of 
basic concept. Additionally, the second section is about 
defining related work. Concerning the third and fourth 
Sections they are devoted to illustrate deep learning and 
the approach of using it in NLP applications and define an 
overall illustration of our comparison; and the last section 
introduces our future work to be carried out in the 
conclusion. 

2. Related Works 

In NLP tasks such as document classification, x typically 
encodes features like words or characters occurring in the 
text. Bag-of-words approaches, and extensions considering 
n-grams, are arguably the most commonly used 
representations, treating words and/or phrases as unique 
discrete symbols, and weighting their contributions 
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through heuristics such as the Term Frequency multiplied 
by the Inverse Document Frequency (TF-IDF)[2]. 
More recently, noting that bags-of-words often fail in 
capturing similarities between words, methods using 
neural networks to learn distributed vector representations 
of words (i.e., word embeddings) have gained popularity, 
through methods like word2vec [13] or GloVe. Das and 
Smith [3][4] present a probabilistic model for paraphrase 
detection based on syntactic similarity, semantics, and 
hidden loose alignment between syntactic trees of the two 
given sentences. Socher et al. [3][5] present an approach 
based on recursive autoencoders for paraphrase detection. 
Heilman and Smith [3][6] propose a tree edit model for 
paraphrase identification based on syntactic relations 
among words. Wang et al. [3][7] decompose the sentence 
similarity matrix into a similar component matrix and a 
dissimilar component matrix, and train a two-channel 
convolutional neural network to compose these 
components into feature vectors. Xu et al. [3][8] propose a 
latent variable model that jointly infer the correspondence 
between words and sentences. 
In this paper, we focus on using deep learning algorithms 
to develop a robust system for detecting the most difficult 
kind of similarity, and as above we found lot of 
approaches which use the word representation in their 
algorithms for detecting similarity, in our approach we 
will compare the method that use the word representation 
with our method that use a sentence representation. The 
both methods will use the siamse lstm in our training 
phase. 

3. Deep Learning Algorithms Used 

Deep learning models have presented very good 
performance on complex tasks that require deep 
understanding of text like translation, question answering, 
summarization, natural language inference etc. so it 
seemed like an excellent approach but deep learning is 
usually trained on hundreds of thousands or even millions 
of labeled data points. Usually, we need big datasets for 
deep learning to avoid over-fitting. Deep neural networks 
have many parameters thus usually if they don’t have 
enough data, they tend to memorize the training set and 
perform poorly on the test set. To avoid this phenomenon 
without big data we need to use special techniques [10]. 

3.1 Word2vec 

The word2vec model and its application by Mikolov and 
al [11] was the inspiration for a great advancement over 
the last two years. It has been shown that vector 
representations of words learned by word2vec models 
have a semantic meaning and are useful in various tasks of 
NLP. Words that represent synonyms have similar vectors. 
Even more surprising, word vectors accept the laws of 

analogy. For example, consider the analogy "The woman 
is to the queen as the man is to the king" as follow:  

vqueen – vwomen+vman ~vking 
 
Note that there are two main word2vec models: a 
continuous word bag (CBOW) and a skip-gram. In the 
CBOW model, they predict a word in a context (a context 
may look like a sentence). Skip-Gram is the opposite: 
predict the context from an input word. 

3.2 Doc2vec 

The goal of doc2vec is to create a numeric representation 
of a document, regardless of its length. But unlike words, 
documents do not come in logical structures such as words, 
so another method has to be found. The concept that 
Mikilov and Le have used was simple, yet clever: they 
have used the word2vec model, and added another vector 
(Paragraph ID below) [11], like so: 
 

 

Fig. 1  Doc2vec model. 

3.3 LSTM 

We use lstm and not cnn because cnn is a feed forward 
neural network that is generally used for Image 
recognition and object classification.While RNN works on 
the principle of saving the output of a layer and feeding 
this back to the input in order to predict the output of the 
layer. CNN considers only the current input while RNN 
considers the current input and also the previously 
received inputs. It can memorize previous inputs due to its 
internal memory. RNN can handle sequential data while 
CNN cannot. In RNN, the previous states are fed as input 
to the current state of the network. RNN can be used in 
NLP, Time Series Prediction, Machine Translation, etc. 
The Long Short-Term Memory, or LSTM, network is 
perhaps the most successful RNN because it overcomes 
the problems of training a recurrent network and in turn 
has been used on a wide range of applications. We have 
also based on the study carried out at the level of this 
article [12] which illustrates the strong point of using the 
lstm compared to cnn in the treatment of a sequence of 
words. 
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4. Proposed Approaches 

In this section we will propose two approaches; one that 
uses the wor2vec to represent the document words as 
vectors and another that uses doc2vec to transform the 
sentences of the document to vectors. These two 
representations are both used in the same learning phase 
that will take a pair of documents that must represent 
either the word2vec or doc2vec; this phase should learn all 
types of plagiarism offered by the 75% of the pairs of 
documents proposed by the Pan corpus which is a corpus 
for the evaluation of automatic plagiarism detection 
algorithms. 

4.1 Preprocessing Phase 

This part consists of transforming each document of the 
corpus into a list of vectors; the following figure illustrates 
the steps used for each approach: 
 

 

Fig. 2  Preparation phase 

These steps start with a cleaning of the document by 
deleting the special characters as well as the numbers, then 
there will be two processing that will be performed 
separately, the application of the steaming that converts 
each word into their basic dictionary forms for easy 
comparisons and then either apply the word2vec or 
doc2vec to finally have a vector representation of the 
document. 

4.2 Training Phase 

This phase consists in making our system learn the 
different types of plagiarism proposed by the corpus pan, 
we use the siamese lstm algorithm which takes as input 
two documents which are either represented by the 
word2vec or by doc2vec. These two documents are labeled 
1 if they are similar 0 if they are not. The following figure 
illustrates the learning phase of our system: 
 

 

Fig. 3  Training phase 

5. Validation and Comparison 

Regarding the validation we worked with python 
framework which offered us several functionalities. nltk 
gensim pickle and keras are used to set up our validation. 
 

 

Fig. 4  Testing phase 

The figure above gives an overall view of our approach. 
The system take two documents in the input, the first is the 
suspect document and the second is the source document 
from 25 % of the PAN corpus used for the test. These two 
documents will be prepared at the preprocessing phase. 
And later, these documents will be represented by a list of 
vectors that will subsequently be as a base of a deep 
learning system. 
This vector list will be provided by either the word2vec 
application or doc2vec. Our goal is to have the statistics 
needed to detect the most relevant method among these 
two vector representations. For each method we calculated 
the value of the accuracy and the loss value as illustrated 
below: 
Found result when using word2vec: 
 
Epoch 000: Loss: 1.145, Accuracy: 28.294% 

Epoch 050: Loss: 1.232, Accuracy: 66.021% 

Epoch 100: Loss: 0.429, Accuracy: 88.943% 

Epoch 150: Loss: 0.293, Accuracy: 90.000% 

Epoch 200: Loss: 0.105, Accuracy: 91.602% 
 
Found result when using doc2vec: 
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Epoch 000: Loss: 1.948, Accuracy: 10.958% 

Epoch 050: Loss: 1.001, Accuracy: 74.394% 

Epoch 100: Loss: 0.300, Accuracy: 90.000% 

Epoch 150: Loss: 0.103, Accuracy: 96.400% 

Epoch 200: Loss: 0.092, Accuracy: 98.291% 
The measure of the accuracy across the entire test set using 
word2vec method is as follow. 
Test set accuracy: 90.271% 
Also when we use the doc2vec method we found the result 
bellow: 
Test set accuracy: 97.934% 
The system will detect later the two probabilities of 
similarity provided by the application of our approaches. 
As shown in the table below we find the results found for 
each method used: 

Table 1: Result of our test 
Couple of 
documents 

Probability of similarity 
when we use Word2vec 

Probability of 
similarity when we use 

Doc2vec 
Pair of 

documents 1 0.82 0.93 
Pair of 

documents 2 0.32 0.61 
Pair of 

documents 3 0.61 0.60 
Pair of 

documents 4 0.44 0.62 
Pair of 

documents 5 0.57 0.75 
Pair of 

documents 6 0.85 0.93 
Pair of 

documents 7 0.84 0.88 
Pair of 

documents 8 0.45 0.62 
Pair of 

documents 9 0.65 0.71 
Pair of 

documents 10 0.72 0.78 

 
Finally, it is noticed that the results provided by the use of 
the doc2vec for the vector representation of a document 
are more relevant compared when using word2vec. So we 
conclude that the list of sentence vectors that represents a 
document correctly and keeps the semantic part that we 
will use at the comparison level. 

6. Conclusion 

In this paper, we have mentioned many different methods 
used in detection of plagiarism of ideas that are based on 
the Deep Learning principal. This study showed us the 
interest of the use of deep learning in the detection of 
plagiarism. We have proposed a system for the detection 
of plagiarism based on the deep learning method. Its 
interest is the extraction of characteristics without losing 
the sense of the document. It was possible to detect the 
best vector representation of a document through a 

validation that was carried out on the PAN corpus. So we 
have noticed that the use of doc2vec in our approach is the 
best solution. Indeed, we did not use a precise method to 
calculate the similarity between the documents by using 
for example a computation of distance between the vectors 
of the documents but we could detect these measurements 
through the result of our neuron network which offers us 
probabilities of similarity between the paragraphs of a 
couple of analyzed documents thing that offers us the 
reliable results. Concerning the future work consists of 
consolidate our approach by adding other treatment that 
helps us to detect better the plagiarism. 
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