
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019

125

Manuscript received October 5, 2019
Manuscript revised October 20, 2019

Design, Implementation, and Evaluation of a Real-Time Object-
Oriented Database System

Zied Ellouze1,*, Nada Louati2, Mossaad Ben Ayed3,4,*, Rafik Bouaziz5, and Shaya Abdullah Alshaya6

1Preparatory Engineering Institute of Sfax, CES Laboratory, Sfax University
2,5Higher Institute of Computer Science and Multimedia of Sfax, Miracle Laboratory, Sfax University

3,6Faculty of sciences and humanities sciences, Majmaah University, Saudi Arabia
4Computer and Embedded System laboratory, Sfax University, Tunisia

Summary
Recent works on Real-Time (RT) databases are focused on
simulations. These studies present shortcomings not only in
verification but also in comparison with existing core techniques
used for the management of RT databases. Besides, RT database
applications are challenged by the lack of an RT database system
open source to perform a realistic environment. In this paper, a
design based on a open-source object-oriented environment
database system is proposed for the RT database application
development. The proposed system is based on the RTQL (Real-
Time Query Language) which is defined as a high-level RT
object-oriented query language. It supports the expression of
timing constraints on data and it ensures transactions upon the
data. Then, a QoS management approach is performed to reduce
workloads and to detect overload. The proposed attempt is
supported by the use of the feedback control RT scheduling
theory. Our evaluation shows that our approach not only achieves
the desired timeliness of transactions but also maintains high data
freshness compared with other related approaches.
Key words:
Real-Time Database, Object-Oriented Database, Feedback
Control, Data Model, Real-Time Query Language

1. Introduction

RT applications as traffic control, stock trading, and agile
manufacturing require RT databases to execute
transactions within their deadlines based on many
temporal data that represent the current status of the real-
world [1][2]. For example, in a stock trading application, a
stock’s price should be saved in the RT database, but only
considered valid for 30 seconds from when the value was
updated. The stock's price value will be considered
temporally inconsistent if the update does not occur within
30 seconds. Also, there is some information required from
the RT database that will be needed to check if a profit
will be generated by a stock trade. This information has to
be retrieved within a given deadline to decide to start a
stock trade or not. Thus, RT databases aim to support
applications in which the timeliness of processing and
freshness of data are important.

An RT database system ensures all features of
conventional database systems. At the same time, it must
enforce timing requests imposed by applications. As a
conventional database system, an RT database provides
efficient storage, operates as a repository of data, and
performs manipulation and retrieval of data. However, RT
system improves features associated with the conventional
database by adding timing requirements to ensure some
degree of confidence [1]. In conventional database systems,
performance is primarily measured by the average
response time, while in RT databases the primary
performance metric is miss ratio. It is defined by user
transactions that fail their deadlines. Several off-the-shelf
RT databases are available such as EagleSpeed [3],
Polyhedra [4], TimesTen [5], and ExtremeDB [6].
However, these systems use traditional technology of RT
databases and they do not meet the needs of timing and
data freshness. Furthermore, they show low performance
in RT data-intensive applications and they are not open to
the public [7].
Although significant research covered many aspects of RT
database systems design, there has been little work in
transaction specification languages or query languages. A
query language ensures the definition, manipulation, and
control of data in a database system. For a RT database,
the query language manages timed transactions to impose
fresh data and to reflect the real-world status. The most
previous research works in RT object-oriented query
languages do not consider timing constraints on data and
on transactions upon the data. An attempt named RTSQL
based on SQL2 [8], standard specification tries to support
timing for RT databased querying. It has relied on the
relational data model which provides poor support for
complex database applications. On the other hand, the
Object Data Management Group (ODMG) has defined a
standard for object-oriented databases, including an Object
Model, an Object Definition Language (ODL), an Object
Query Language (OQL), and an Object Manipulation
Language (OML). These proposals do not consider RT
requirements. Thus, there is a need to define a RT query
language supporting RT database requirements.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 126

Nowadays, the need for RT data-intensive applications has
increased due to the request of fresh data which gives the
current status instantly. They also have to execute
transactions within their deadlines. However, it seems to
be difficult to have a compromise between processing
timed transactions and using fresh data. This timing
challenge competes for system resources to achieve
transaction timeliness and data freshness requirements.
Furthermore, due to the dynamic data/resource contention,
database workloads vary. To overcome this issue, the
feedback control scheduling method has been recently
applied to systematically manage RT database
performance and trade data freshness for the timeliness of
transactions in the presence of unpredictable workload [9].
Authors in [7] prove that the most existing works on
feedback control of RT database performance are based on
simulations that have limitations in comparing and
verifying existing core techniques for RT database
performance management.
To address these problems, we propose in this paper a RT
object-oriented environment for RT database application
development, denoted RT2O, on top of EyeDB [10].
RT2O has been performed for RT data-intensive
applications to support timed transactions. Contributions
of this paper are as follows:

• Object-oriented design: Object-oriented data
models were developed to deal with complex
objects increasingly in use in today’s computer
applications. Because RT databases require
advanced modeling concepts, an object-oriented
data model represents an excellent candidate for
their realization without requiring fundamental
extensions to the basic data model.

• RT object-oriented query language: we propose a
Real-Time Query Language (RTQL), on top of
ODMG query language [11]. The objective of
RTQL is to present an extension to the ODL,
OQL, and OML languages to accommodate RT
object-oriented databases. To identify the
necessary constructs that should be added to the
languages, we propose a RT Object Model which
is an extension of the ODMG Object Model. The
actual language constructs are developed based
on this model.

• Feedback control architecture: In the RT2O, the
metrics for QoS are the freshness of data and the
timeliness of transactions. The RT2O based on a
multi-version of data architecture achieves the
wanted QoS using a feedback control technique.
This feedback not only reduces data access
conflicts between transactions but also decreases
the deadline miss ratio.

• Implementation: Most RT database works are
limited at the simulations phase [12] [13][14] [15]
[16]. Other researches as [17] [7] [18] [19]

attempt to evaluate RT data management
techniques in real database systems. In our case,
the RT2O has been implemented by extending
EyeDB [10], which is an open-source object-
oriented database system. The RT2O does not
require a specific library tied to the operating
system; it requests only on the standard RT
features of POSIX [20].

• Evaluation: The RT2O has been evaluated on a
real case study. The evaluation results
demonstrate that the RT2O provides a proper
amount of resources in a robust manner when the
freshness of data and the timeliness of
transactions are performed.

This paper covered the proposal as follow: the next section
presents the previous studies related to the real-time
databases, section three raises the proposed architecture
and QoS management of the RT2O, the query language is
described in section four, the implementation and the
evaluation are discussed in section five, and the paper is
ended by a conclusion.

2. Related Works

Most RT database studies is focused on simulations [13]
[27] [12] [14]. However, recent studies attempt to
introduce the prototyping of the RT databases for general
purposes. This section is focused on researches that
attempt to implement the RT databases.
Prichard et al. [30] implemented a prototype of a RT
database architecture based on RTSORAC model. This
architecture presents many shortcomings: (1) the model is
too complex, (2) the architecture suffers from
schedulability and timeliness aspect (3) Bounding
execution time is difficult due to the supports of features
such as semantic concurrency control.
DeeDS prototype [31] is an event-triggered RT database
system. This attempt modeled reactive behavior based on
Event-Condition-Action rules. The major limit of the
DeeDS architecture is shown by the lack of time
constraints of data.
An object-oriented and fault-tolerant database
management system named RODAIN [32] is described to
support the real-time. This architecture, based on a main-
memory database, offers priority and criticality criteria. It
ensures scheduling and optimistic concurrency control.
Unfortunately, RODAIN architecture is designed for
telecommunications applications.
The BeeHive [18] RT database is based on object-oriented
databases. Authors propose to incorporate semantic
information regarding RT, security, importance, QoS
requirements, and fault tolerance to constitute an extension
of the conventional object-oriented databases. BeeHive

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 127

system does not support the transaction deadline. It
ensures transaction scheduling based on data deadline but
the execution time would be computer offline for
admission control. In fact, this architecture is limited to
RT data services that transactions and their arrival data
access patterns are known in advances [33].
StarBase [34] is a firm RT database system. The lack of
information related to the transaction workload is the most
limited for this architecture. This prototype runs on top of
RT-Mach, a RT operating system developed at Carnegie
Mellon University.
Chronos [7] based on the relational model is a soft RT
database testbed. This prototype is designed for high-
throughput business applications. Therefore, this attempt
does not provide general-purpose RT databases.
ODEA is an architecture based on object-oriented
language for RT database system [35]. However, this
prototype suffers from the miss of the ODMG standard of
object databases. ODEA is content with simulation and the
model is not evaluated in a real case study.
Most of the systems presented are not available publicly.
One of the challenges supported by our attempt is to
provide an open-source architecture for RT database
system.
Most of the cited researches previously use the relation
model to perform their prototypes. But, the relational
model presents a limitation in the case of complex RT
applications. Besides, discussed previous studies do not
provide some essential features related to the RT databases
as concurrency control, temporal consistency, and
guaranteeing logical consistency. Solutions proposed are
challenged by reduced performance.
Fortunately, the proposed RT2O guarantees the QoS goals
required by the application using a feedback control
architecture even in the presence of dynamically changing
workload. In addition, RT2O system use a very high- level
RT object-oriented query/programming language RTQL.

3. RTO2 Architecture and QoS Management

In this section, RT2O database model, RT2O architecture
and QoS management are discussed.

3.1 RT2O Database Model

RT2O is based on a firm RT object-oriented database
model. In this model, the transaction is aborted if it missed
its deadlines.

3.1.1 Data Model Choice

The term data model refers to the way in which data is
structured by a DBMS (DataBase Management System).
The two most popular data models are the relational model
and the object model. Several research works have been

directed towards using the relational model as a data
model for RT databases [21]. As RT applications are
becoming increasingly sophisticated in their data needs,
the RT database community migrated towards object-
oriented technology to deal with complex database
applications [22]. The proposed approaches offer solutions
to manage concurrency and schedulability issues of RT
databases. However, they do not provide on the one hand
concepts to support quantitative features such as deadline
and period and, on the other hand, qualitative features that
are related to behavior and communication.
The richness of the object-oriented paradigm in terms of
concepts offers an interesting common modeling basis to
adequately specify many design features of RT databases.
In [11], the ODMG has defined an Object Model that
specifies the constructs which are supported by an object-
oriented DBMS. Among other things, this Object Model
specifies the characteristics of objects, how objects can be
named and identified, and how objects can be related to
each other. In the next subsection, we present a RT Object
Model for RT databases which is an extension of the
ODMG Object Model to support the expression of the
time-constrained attribute, time-constrained operations,
and time-constrained classes.

3.1.2 RT2O Object Model

This model is based on our object-oriented data model
introduced in [22] and it extends the ODMG Object Model
to suit RT database features. As depicted in figure 1, four
major enhancements to the conventional ODMG Object
Model are proposed, namely, RT attributes, RT methods,
RT classes, and RT objects.
 RT Attributes: Attributes may be classified into two
types: non-RT and RT. A non-RT attribute does not
become outdated due to the passage of time. Whereas, the
current status of the real-world is ensured by the
continuous change of the RT attribute. The validity
duration represents an essential criterion associated with
the RT attribute. Validity duration performs the time
during which the RT attribute’s value is considered valid.
Moreover, the RT attribute is composed of timestamp
which defines the time of the last updated.

a) RT attributes are classified into two categories:
sensor attributes and derived attributes. Sensor
attributes are issued from sensors, whereas
derived attributes, they are calculated from sensor
attributes. By updating methods, RT attributes is
updated periodically. These methods are activated
at fixed intervals of time and when the data item
value modified.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 128

Fig. 1 A RT Object Model

b) RT Operations: The methods defined by objects
are invoked to ensure access to transactions. In
our RT Object Model, each operation execution is
considered as a transaction. Each transaction is
constituted by at least one sub-transactions. In our
RT Object Model, transactions are classed into
types: user transactions and update transactions.
User requests are defined by user transactions.
They arrive non-periodically and they ensure a
read or a write in the case of a non-RT data, and
only read in the case of a RT data. Update
transactions are responsible for updating the
values of RT data in order to reflect the state of
the real-world. They are executed periodically to
update sensor data, or sporadically to update
derived data.

c) RT Classes and RT Objects: In order to deal with
RT data and RT transactions, we introduce the RT
class concept. This latter specifies that instances
of a class will encapsulate RT attributes and RT
methods (i.e., RT transactions). Both RT classes
and instances of these classes are referred to as
RT objects. RT objects are the RT database
entities. They represent dynamic entities of time-
critical systems in the real-world. Each RT object
has some internal state which is protected by the
object abstraction.

To close this section, we provide the IDL (Interface
Definition Language) code, see figure 2, that we have
added to the ODMG Object Model in order to support our
RT Object Model.

Fig. 2 Interface definition language code

3.2 RT2O Architecture

Figure 3 shows the overall architecture of RT2O that
consists of the admission controller, QoS Manager,
Scheduler, deadline controller, freshness controller,
transaction handler, concurrency controller, object
manager, and data manager. RT2O users can configure to
turn on or off these components individually for
performance evaluation purposes. The functions of these
components are as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 129

Fig. 3 RT2O Architecture

• Admission Controller: The RT2O system has a
pool of schedulable resources. When no
schedulable resources are available, the system
may be overloaded. The admission controller is
used to avoid system overload. In fact, when
receiving a new transaction, the admission
controller checks if it can be handled. Otherwise,
the transaction is rejected. The admission
controller performs the necessary tests to
determine if the RT2O system has sufficient
resources to support the requirements of an
incoming transaction (user or update transactions)
without compromising the service guarantees
made to currently active transactions. It admits
the incoming transactions based on system
response times of the completed transactions, i.e.,
committed transaction, and on CPU and IO
utilization of the admitted transactions.

• Scheduler: The scheduler manages the priority of
the transactions’ threads in the transaction thread
pool, i.e., the ready queue. The scheduler
prioritizes the transaction threads in the ready
queue periodically according to their priority. The
priority of a transaction depends on both its
deadline and its type (user or update transaction).
Note that since the updated data are needed by
user transactions, update transactions receive a
higher priority than user transactions. Figure 2
shows three separate queues in the ready queue,
namely, QUP, QUR, and QUNR. QUP is used to
schedule update transactions and it receives the
highest priority, similar to [6]. RT user
transactions are handled in QUR. Non-RT
transactions have the lowest priority. They are
scheduled in QUNR and they are dispatched only
if QUP and QUR are empty. Transactions in each
queue are scheduled in EDF (Earliest Deadline
First) manner.

• Monitor: The monitor calculates various statistics
such as RT performance and global resource
utilization and updates the RT2O state table with
this information. Moreover, it detects overload by
periodically computing the CPU utilization and
the miss percentage and sends them to the QoS
Manager.

• QoS Manager: The QoS manager is used to
compute the required workload adjustment to be
used for admission control. In fact, it compares
the performance reference with the computed
variable sent by the monitor to get the current
performance error. Based on the result, the QoS
manager changes the total estimated requested
load by adapting the quality of data, i.e., adjusting
the Maximum Data Error (MDE). MDE is the
upper bound of the deviation between the current
attribute value in the RT database and the
reported one [23].

• Transaction Handler: The transactions handler
consists of a concurrency controller component.
This component aims to maintain database
consistency and to control the interactions
between concurrent transactions. The RT
transaction concurrency control mechanism
performed by our RT2O system is 2PL-HP (Two
Phase Locking-High Priority).

• Freshness Controller: The freshness controller
checks the freshness of acceded data just before a
transaction is sent to the transaction handler. This
component is used to provide better QoS in RT
databases where several transactions access the
same data items. The data retrieved by committed
transactions are usually fresh at commit time. In
the case of the accessed data is fresh, the
transaction is executed and sent to the transaction
handler. Otherwise, if the acceded data items are
currently stale or will be before the deadline of

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 130

the transaction, the freshness controller blocks the
transaction, i.e., sent to the blocked queue. The
blocked transactions will be moved from the
blocked queue to the ready queue once the
corresponding update transactions that are
responsible for updating the values of acceded
data items have committed. To measure the
freshness of a data item Di, the freshness
controller uses the notion of Absolute Validity
Interval (AVI). As we have mentioned in our data
model, each RT data is characterized by a
timestamp that indicates the latest observation of
the data item in the real-world. Di is considered
fresh if the next equation is verified

 (1)

• Data Manager: The data manager is used to

guarantee the data freshness even in the presence
of conflicts. Most conflicts come from
incompatible access patterns, for example, when
an update transaction wants to modify the value
of a data item that is accessed by a user
transaction. One of these two transactions must
be aborted and restarted according to the used
concurrency control policy (in our work the 2PL-
HP policy). Then the risk that transactions miss
their deadline increases. To alleviate this risk, the
data manager uses a multi-version data technique,
similar to [24]. This technique consists of creating
of data versions when a conflict occurs between
transactions, i.e., read-write conflict. The
maximum number of versions is fixed in advance
by the RT2O administrator according to QoS
requirement level.

• Deadline Controller: The deadline controller is
used to control transaction validity. It uses two
variables: current time and transaction deadline.
The transaction is aborted when the current time
is greater than the transaction deadline. Otherwise,
the transaction is transferred to the freshness
controller when the verification step is succeeded.

• Object Manager: The object model of RT2O
database model described in Section 2.1.2 would
be supported by adding an object manager
module that provides support for retrieving,
updating, removing, and adding objects in the
RT2O database. All the persistent objects are
created and stored in permanent storage using a
storage manager module. In the beginning, the
RT2O architecture creates a shared main memory
segment and instantiates an object table. The
organization of this main memory is provided by
the objects module. Object manager aims to
ensure fast and predictable access to the object

stored in the main memory.

3.3 QoS Management

This section describes the admission control, overload
detection, and the MDE-based update schemes provided
by RT2O.
RT2O follows the client-server model. Each RT2O
architecture could be considered as a client or as a server.
One or many clients could be connected to one or many
servers. The RT2O system could be loaded when many
user transactions from multiple client threads are executed
concurrently in addition to frequent RT data updates. As a
result, many transactions can be aborted and restarted or
blocked due to data contention. Moreover, computational
resources such as memory space and CPU cycles can be
exhausted.
Kang et al. [7] present a study that offers to detect the
overload and determine the required workload adjustment.
Authors perform the difference between the actual
response time and the desired delay bound to provide the
degree of timing constraint violation. In our work, the
degree of timing constraint violation is computed
according to the average service delay measured in a
sampling period (denoted ta) and the desired delay bound
(denoted td). In this paper, ta is measured for each 40s
period to ensure a sufficient number of transactions
committed within a measurement period. The RT2O is
considered overloaded if ta > td and the degree of overload
at the kth measurement period is:

 (2)

The degree of overload is computed to determine the
workload adjustment requirement.
Actually, workloads change over time. Consequently, the
response time varies from a period to another. The RTO2
performance changes when the admission control and
MDE-based update schemes are performed according to
instantaneousδ values. In order to deal with this issue, the
measurement periods are computed using an exponential
average of δ over various. The value of)(ksδ the kth
measurement period is:

 (3)

where 10 ≤≤α is a disciplined parameter
To reduce the workload when 0)(>ksδ , the RT2O
performs the admission control to incoming transactions.
For instance, if 1.0)(=ksδ , the admission controller
attempts to support the desired delay by reducing the
number of concurrent transactions by 10%.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 131

The notion of MDE dealt in [23] is used to reduce update
workloads under overload. The QoS manager rejects an
update transaction writing to a data item Di having an
error less than or equal to the MDE allowed. However,
when the data error of Di is greater than MDE, the update
transaction is executed.

4. A Real-Time Object-Oriented Query
Language

The ODMG [11] standard is composed of ODL and OQL.
The ODL defines a data manipulation language and object
classes. The OQL defines queries. Therefore, the ODMG
standard ensures a data description language. In this
section, we present enhancements to ODL and OQL to
include RT support. Our data description language, RT-
ODL, is ODL improved by a number of class definitions
and syntactic constructs by adding a time dimension to
types. The aggregation of the proposed RT Object Model
and the OQL language provide the specification of these
classes. Our query language, RT-OQL, presents an
improvement of the OQL.
To highlight the importance of our propositions, we
choose the Online Stock Trading (OST) as the motivating
application to illustrate the use of RT-ODL and RT-OQL.
OST is a data-intensive RT application which monitors the
prices of stocks or other financial instruments (e.g., quotes
and trades) and looks for trading opportunities. It requires
a RT database to process timed-constrained transactions
and maintain the freshness of stock prices. For more
details, refer to [25].
The RT database for the OST case study contains the
following classes: Stocks, Quotes, QuoteHistory,
Portfolios, Accounts, Currencies, and Personal. Table 1
defines the list of attributes of each class.

Table 1: The list of attributes of the OST
Class Attributes
Stocks stockSymbol, fullName, and companyID.

Quotes
name, currentPrice, tradeTime, lowPrice, highPrice,
percentagePriceChange, bidding Price, askingPrice,

tradeVolume, and marketCapitalization.
QuoteHistory the same structure as the Quotes class.

Porfolios accountID, companyID, stockPurchases, and saleOrders.
Accounts userName, and password.

Currencies countryName, currencyName, and exchangeRate

Personal
accountID, lastName, firstName, address, city,state,

country,
phoneNumber, and email.

Company Name, address, city,state, country, phoneNumber, and
email.

4.1 RT-ODL: Syntax and Semantics

The RT-ODL is a specification language used to define the
specification of object types that conform to the RT Object
Model. The RT-ODL provides object schemas portability

across conforming RT object database management
systems.
The RT-ODL is a DDL of RT object types. It defines the
characteristics of types, including their properties and
operations. The RT-ODL does not provide a complete
definition of the methods but only defines signatures of
operations. The RT-ODL is a superset of ODL: it
recognizes the syntax of the ODL but it also provides
additional syntactic constructs to manipulate RT
information. In the following, we present RT-ODL
Extended Backus Naur Form (EBNF) constructs for
specifying RT Classes, RT Attribute, and RT Operation.
Table 2 provides the top-level EBNF for the whole RT-
ODL.

• RT-ODL RT Class construct: This construct
models the RT Class concept of our RT Object
Model. It defines the abstract state of RT objects
stored in an object database management system.
RT Classes, like conventional classes, are linked
in a single inheritance hierarchy whereby state
and behavior are inherited from an extender class.
RT Classes may define keys and extents over
their instances.

• RT-ODL RT Attribute construct: This construct
models the RT Attribute concept of our RT Object
Model. It corresponds to the RT data stored in a
RT database and it incorporates fields that support
logical constraints and temporal constraints.

• RT-ODL RT Operation construct: This construct
corresponds to the RT Operation concept of our
RT Object Model. RT-ODL is compatible with
ODL for the specification of operations.

Fig. 4 RT-ODL code

To meet the operational deadlines from event to system
response, a RT database may apply different timing
constraints on operations such as absolute timing
constraints (e.g. execution time, earliest start time, latest
allowed finish time) and periodic timing constraints (e.g.
frequency of transaction initiation). In order to specify
such timing constraints on running RT operation, a new

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 132

clause is added to the ODL basic syntax which is timing_
constraint_expr. The next program code, see figure 4, is an
extract from the RT-ODL code of the Quotes class
presented previously at the beginning of this section.

4.2 RT-OQL: Syntax and Semantics

Users need RT query language to specify the semantics
knowledge captured in RT databases and to use it in a
various ways. In this section, we introduce a RT query
language, called RT-OQL, for manipulating RT object-
oriented databases. RT-OQL is an OQL-like language
supporting the basic structure of OQL. This latter, like
SQL, uses a select-from-where structure to write more
complex queries. Because of the strong similarities
between SQL and OQL, the explanations in the following
are dedicated to the specification of timing constraints in
queries. The more interested reader in OQL syntax is
referred to the OQL in [11].
The RT-OQL supports the proposed RT Object Model. It
performs complex objects without privileging the set
construct and the select-from-where clause. RT-OQL
recognizes the syntax of OQL but it also provides
additional syntactic features to specify RT queries. If these
additional syntactic features were not used, then the
semantics of a query in RT-OQL would become the
semantics of this query in OQL. For example, the
following query (figure 5) does not consider the RT
constructs of objects:
Query 1): Give me the current price of the quote named
CAC40.

Fig. 5 query 1 code

Typical OQL queries do not provide any mechanisms for
placing constraints on statements. Timing constraints on
execution are used to define the semantics of what
constitutes the correct execution of a statement with
respect to time. In the following, we discuss how RT-OQL
extends the select-from-where structure with timing
constraints to provide this functionality. In order to
propose those constraints, we have been inspired by the
work proposed in [8].

4.2.1 Specification of Execution Timing Constraints

RT-OQL specifies execution timing constraints by placing
timing constraints on individual statement or block of
statements. This specification uses the following EBNF
clauses (figure 6) :

Fig. 6 EBNF code

The semantics of the timing constraints is explained in
Table 2.
The following (figure 7) are some illustrative examples of
statements specifying timing constraints on execution.
Query 2): Give me the currentPrice, lowPrice, and
highPrice of the quote named CAC40.

Fig. 7 Query 2 code

In this query example, the execution timing constraint on
the statement specifies that it must complete execution
within 30 seconds.
Query 3): Give me the name and the percentage of price
change of quotes where the value of the tradeTime column
is between 10-01-2019 and 20-01-2019.

Fig. 8 Query 3 code

Here, the execution timing constraint on the statement
specifies that the execution of the statement should begin
execution within 10 seconds and it must complete within
30 seconds.
Query 4):

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 133

Fig. 9 Query 4 code

Here, we have a block of statements. The timing
constraints on the compound statements specify that it
must complete within 1 minute. Note that the value of
CURRENT TIMESTAMP will be the same for the three-
timing constraints since they are in the same compound
statement.

4.2.1 Transaction Structural Specification

Programs that use persistent objects are organized into
transactions. Transaction management is an important
functionality in the object database management system
and it is fundamental to ensure data integrity, shareability,
and recovery. Any creation, deletion, modification, and
access of persistent objects must be done within the scope
of a transaction. In our RT Object Model, a RT transaction
may be aperiodic, periodic, or sporadic. It has timing
constraints such as deadlines and periods. To support these
kinds of transactions within an object database
management system, we define two types:
RealTimeTransactionFactory and RealTimeTransaction.
The RealTimeTransactionFactory type is used to create
transactions. The following operations are defined in the
RealTimeTransactionFactory interface, see figure 10:

Fig. 10 RealTimeTransactionFactory interface code

The new operation creates RT transaction objects. The
current operation returns the RT transaction that is
associated with the current thread of control. If there is no
such association, the current operation returns nil. Once a
RealTimeTransaction object is created, it is manipulated
using the RealTimeTransaction interface. The following
operations are defined in the RealTimeTransaction
interface, see figure 11:

Fig. 11 RealTimeTransaction interface code

After a RT transaction object is created, it is initially
closed. An explicit begin operation is required to open a
transaction. The commit operation causes all persistent
objects created or modified during a RT transaction to be
written to the DB and to become accessible to other RT or
non-RT transaction objects running against that DB. The
abort operation causes the RT transaction object to
complete and become closed.

5. Implementation and Performance
Evaluation

5.1 Implementation

To implement RT2O in a prototype system, we have
extended the EyeDB object-oriented database management
system [10]. The open, modular design of EyeDB
facilitates extending it with properties to support the
specification and management of RT2O architecture. In
the initial version of EyeDB, a database schema is
specified as a collection of Java classes or as ODL
programs and transactions are specified as Java programs,
or as OQL programs that are compiled to Java programs.
Recall that objects and transactions in the RT2O object
model have additional features beyond those supplied by
Java classes and programs. To handle these additional
properties, we have added the RT extensions proposed by
our RT-ODL AND RT-OQL languages, described
previously in this paper, to the standard EyeDB languages.
Recently, there is a trend in object databases to integrate
the query language with the programming language. This
approach is applied by RT2O programmatic query
interfaces, namely RT-OML (Real-Time Object
Manipulation language). RT-OML is an extension of
ODMG OML language [11] that defines the binding
between the ODMG Object Model (ODL and OML) and

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 134

the Java programming language as defined by the Java
Platform. Our RT-OML language is based on Java Real-
Time Specification (denoted RTSJ) which defines how
Java should behave in a RT computing context [26]. The
complete syntax of the RT-OML is not the scope of this
paper. The following are two illustrative examples of
using RT-OML taken from the OST case study.

Fig. 12 The current price code

This coding program in figure 12 gives the current price of
the quote named CAC40 (similar to Query 2). The
execution timing constraint on the retrieved query
specifies that it must complete execution within 30
seconds.
Let’s constrain our query to those quotes belonging to a
specific company.

Fig. 13 The current price for a specific company code

In order to support the Java RTS Real-Time Specification
[26], our RT2O system uses a RT POSIX-compliant
operating system [20]. By POSIX-compliant RT operating
system, we mean an operating system that supports several
important aspects of POSIX RT extensions, defined in
IEEE Std. 1003.1[20]. Our current release of RT2O
executes on 2.6.32 RT Linux kernel. RT linux contains
many of the RT operating systems features specified in the
IEEE POSIX RT operating systems standard [20].

5.2 Performance Evaluation

In this section, we evaluate the performance of RT2O for
an increasing number of client threads. For RT2O server,
we use a Lenovo laptop that has 4th Generation Intel Core
i7 processor and 8 GB memory with the 2.6.32 RT Linux
kernel. We use two Acer laptops to create up to 2000
client threads. These two laptops have 4 GB memory. The
client and server machines are connected via an Ethernet

switch. Each client machine generates between 500 to
1000 client threads. Therefore, we generate 1000-2000
client threads for performance evaluation.

5.2.1 Performance Metrics

The primary performance metrics used in the experiments
are miss ratio and data freshness.

• Miss Ratio (MR): The transaction miss ratio is
defined as follows:

 (4)

where Nmiss is the number of transactions that have missed
their deadline and Nsucceed is the number of transactions
that succeed.
When admission control is on, MR can be rewritten as
follows:

 (5)

where Nrejected is the number of transactions rejected by the
admission controller.

• Data Freshness (DF): a data item di is considered
fresh if CurrentTime - Timestamp(di) ≤AVI(d i),
where AVI is the absolute validity interval and
timestamp indicates the latest observation of this
data item in the real-world. The database
freshness can also be measured. It is defined as
follows: the ratio between fresh data and all the
data in the database.

5.3 Performance Parameters:

Update transactions periodically update the stock data in
the RT2O server. For example, the next code (figure 14) is
used to update the current price of a specified quote. This
program uses our RT-OML language syntax.

Fig. 14 The Update of the current price code based on RT-OML
language

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 135

In addition to RT data updates, user transactions can read
the RT data to track, evaluate, and manage investments.
For instance, a client can select for a specified quote her
associated current price. The RT-OQL program code of
this request is as follows (figure 15):

Fig. 15 The RT-OQL program code

We have studied and evaluated the behavior of RT2O
according to a set of performance metrics. The
performance evaluation is undertaken by a set of extensive
experiments using the developed stock trading workloads
in RT2O. Table 2, Table 3, and Table 4 summarize
experiments parameters.

Table 2: Attributes of RT data and Transactions
Notation Description
AVI(d) Absolute data validity interval of a RT data item
A(tr) Arrival time of a transaction

DL(tr) Deadline of a transaction
PR(tr) Priority of a transaction
UP(tr) Update period of a transaction

RDL(tr) Relative deadline of a transaction
LAVI Length of absolute data validity interval

Table 3: User and update transactions
Update

transaction
Update

frequency
UP(tr) = 1/2*LAVI of RT data

to be updated
Deadline DL(tr)=A(tr)+UP(tr)

User
transaction Deadline DL(tr)=A(tr)+RDL(tr)

Table 4: Workload parameters

Update
transaction

Number of transactions
types 8

LAVI Varied (0.5s, 1s,
1.5s)

Scheduling policy EDF

User
transaction

Number of transactions
types 4

Transaction length Varied by
transactions

Total number of
transaction requests 500

Scheduling policy EDF

5.4 Summary of Results and Discussion

Given the user and update transaction workload setting, we
compare the performance of (i) a baseline approach
(denoted BASE), (ii) Admission Control (denoted AC),
(iii) MDE-based update policy (denoted MDE-UP), and
(iv) Data Manager (denoted DM) for an increasing number
of clients threads. The BASE approach accepts all
incoming tasks and updates every RT data without using

the admission controller, the data manager, and the MDE-
based update policy.

Fig. 16 Success Rate

Fig. 17 Average Response Time

Figure 16 shows the number of user transactions per
second (utps), i.e., success rate, that complete within the
desired delay bound (in this paper we use 5 s as the desired
response time-bound). Generally, the success rate of DM
is the highest among the four approaches. For 500 client
threads, DM achieves 94.62 utps and BASE 87.12 utps.
When the number of client threads increases, the success
rate of BASE quickly drops. For 2000 clients threads,
BASE achieves only 37.92 utps due to severe overloads,
while DM can achieve 52.86 utps. For 1000 client threads,
MDE-UP achieves a higher success rate than BASE, AC,
and DM. In fact, MDE-UP may always be able to improve
the transaction timeliness. This result coincides with the
QoS work [23] in which temporal data imprecision can
consistently improve RT database performance compared
to baseline approaches.
In Figure 16, AC generally presents the lowest success rate
when the number of clients threads is 1500. Under
overload, however, AC performs well. For 2000 client
threads, its success rate is 42.35 utps, which is close to the
success rate of DM.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 136

This implies that admission control needs to be applied
only under severe overloads. This result contrasts with the
simulation-based QoS work [23] in which admission
control improves the timeliness compared to BASE for
most of the tested workloads. From this result, one can
observe that RT database performance evaluation in a real
system is required.
In Figure 17, DM shows the best average response time.
This is because multi-versions data architecture allows
limiting the deadline miss ratio even in the presence of

unpredictable workloads. Moreover, this technique ensures
the freshness of data accessed by timely transactions. So
data used bey committed transactions are always fresh.
This result coincides with the simulation-based work [24]
in which a multi-version data notion allows to execute
transactions on time using fresh and precise data.
According to the results found, table 4 compares the
proposed architecture and architectures discussed in the
related section. This table summarizes the benefits of the
proposed RT2O database system.

Table 7: Comparison of different RT database prototypes
Prototypes Data model QoS management Operating System RT Query Language Open Source

DeeDS Relational Not Addressed OSE delta Not Addressed No
BeeHive Object Oriented Partially Addressed Not specified Not Addressed No

RTSORAC Object Oriented Partially Addressed Not specified RTSQL No
RODAIN Object Oriented Partially Addressed Not specified Not Addressed No
StarBase Relational Not Addressed RT-Mach Not Addressed No
Chronos Relational Feedback Control Linux Not Addressed Yes
ODEA Object Oriented Feedback Control RT Linux RTNQL No
RT2O Object Oriented Feedback Control RT Linux RTQL Yes

3. Conclusions

RT database can be employed in a number of data-
intensive RT applications such as agile manufacturing,
traffic control, and target tracking. Due to the absence of a
publicly available RT database testbed, it is very hard to
evaluate RT data management techniques in a realistic
environment. To address this problem, we develop a RT
object-oriented environment for RT database application
development, called RT2O. Timing constraints of data and
transactions are considered throughout the design,
development, and evaluation of RT2O. RT2O differs from
previous RT database work in that (i) it relies on a RT
operating system that provides time-based synchronization
and priority-based scheduling, and (ii) it uses a RT query
language that supports RT database requirements. We also
develop a RT database QoS management approach in
RT2O to detect overload detection and adjust the workload.
In the future, we will further enhance our RT database
testbed. We will investigate new techniques for RT
database QoS management.

References
[1] K. Ramamritham, S. H. Son, and L. C. Dipippo, “Real-Time

Databases and Data Services,” Real-Time System, vol. 28,
no. 2, pp. 179–215, 2004.

[2] M. Ben Ayed, S. Elkosantini, S. Alshaya, and M. Abid, "
Suspicious behavior recognition based on face features",
IEEE Access, Vol. 7, 2019.

[3] L. Martin, “EagleSpeed Real-Time Database Manager,”
1998.

[4] P. Plc, “Polyhedra White Papers,” 2002.
[5] Oracle, “Oracle TimesTen In-Memory Database”,

https://www.oracle.com/database/technologies/related/times
ten.html.

[6] Majhi. MC, Behera. AK, Kulshreshtha.
NM, Mahmooduzafar, Kumar. R, Kumar. A, “ExtremeDB:
A Unified Web Repository of Extremophilic Archaea and
Bacteria”, PLOS ONE, Vol. 12(6), 2017.

[7] K.-D. Kang, J. Oh, and S. H. Son, “Chronos: Feedback
Control of a Real Database System Performance,” in RTSS,
2007, pp. 267–276.

[8] J. Prichard and P. Fortier, “Standardizing Real-Time
Databases — RTSQL, in Real-Time Database and
Information Systems: Research Advances", The Springer
International Series in Engineering and Computer Science.
Springer US, vol. 420, pp. 289–310, 1997.

[9] C. Lu, J. Stankovich, G. Tao, and S. Son, “Feedback
Control Real-Time Scheduling: Framework, Modeling and
Algorithms,” Real-Time Systems, vol. 23, no. 1/2, pp. 85–
126, 2002.

[10] M. Vojtech, “Database standard ODMG and
system EyeDB", 18th International Scientific Conference on
Agrarian Perspectives - Strategies for the Future, 2009.

[11] Sampaio, SDM, Paton, NW, Smith, J, Watson, P, "
Measuring and modelling the performance of a
parallel ODMG compliant object database server ",
Concurrency And Computation-Practice & Experience, Vol.
18(1), pp. 63-109, 2006.

[12] R. Abbott and H. Garcia-Molina, “Scheduling real-time
transactions,” SIGMOD Rec., vol. 17(1), pp. 71–81, 1988.

[13] J. R. Haritsa, M. Livny, and M. J. Carey, “Earliest Deadline
Scheduling for Real-Time Database Systems,” Proceedings
Twelfth Real-Time Systems Symposium, 1991, pp. 232–242.

[14] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley,
“Performance Evaluation of Two New Disk Scheduling
Algorithms for Real-Time Systems”, Real-Time Systems,
Vol. 3(3), pp 307–336, 1991.

[15] Y.-y. Xiao, H. Zhang, and F.-y. Wang, “Maintaining
Temporal Consistency in Real-Time Database Systems”,
International conference on Convergence Information
Technology, pp. 1627–1633, 2007.

[16] M. Xiong, R. Sivasankaran, J. Stankovic, K. Ramamritham,
and D. Towsley, "Sceduling transactions with temporal

https://ieeexplore.ieee.org/document/8868150/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=7568037
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=3994956
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=30744545
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=30744545
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=11004608
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=12007413
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=23887070
https://apps-webofknowledge-com.sdl.idm.oclc.org/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=F4rILz6Cik3ZMxP11uH&page=1&doc=1
https://apps-webofknowledge-com.sdl.idm.oclc.org/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=F4rILz6Cik3ZMxP11uH&page=1&doc=1
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=3699151
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=171721
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=9414752
https://apps-webofknowledge-com.sdl.idm.oclc.org/OutboundService.do?SID=F4rILz6Cik3ZMxP11uH&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=323519
https://ieeexplore.ieee.org/xpl/conhome/380/proceeding
https://ieeexplore.ieee.org/xpl/conhome/380/proceeding
https://link.springer.com/journal/11241

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.10, October 2019 137

constraints: Exploiting Data semantics", Real-Time Systems
Symposium, 1996.

[17] B. S. Adelberg, “Strip: a soft real-time main memory
database for open systems,” Ph.D. dissertation, Stanford,
CA, USA, 1997, uMI Order No.GAX97-23315.

[18] J. A. Stankovic, S. H. Son, and J. Liebeherr, “BeeHive:
Global Multimedia Database Support for Dependable, Real-
Time Applications”, Lecture Notes in Computer Science,
1997.

[19] C.-S. Peng, K.-J. Lin, and C. Boettcher, “Real-Time
Database Benchmark Design for Avionics Systems”, Real-
Time Database Systems pp 123-138, 1997.

[20] T. IEEE and T. O. Group, The Open Group Base
Specifications Issue 7, 2008.

[21] K. Ramamritham, “Real-Time Databases”, Distributed and
Parallel Databases, Vol. 1(2), pp. 199–226, 1993.

[22] Z. Ellouze, N. Louati, and R. Bouaziz, “A real-time object-
oriented data model and prototype implementation”, 16th
IEEE International Symposium on
Object/component/service-oriented Real-time distributed
Computing, pp. 1–8, 2013.

[23] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and
Management of QoS in Real-Time Databases Supporting
Imprecise Computations”, IEEE Trans. Computers, vol.
55(3), pp. 304–319, 2006.

[24] E. Bouazizi, C. Duvallet, and B. Sadeg, “Multi-Versions
Data for Improvement of QoS in RTDBS”, 11th IEEE
International Conference on Embedded and Real-Time
Computing Systems and Applications , pp. 293–296, 2005.

[25] K.-D. Kang, P. H. Sin, and J. Oh, “A Real-Time Database
Testbed and Performance Evaluation”, 13th IEEE
International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 319–326, 2007.

[26] J. Gosling and G. Bollella, "The Real-Time Specification for
Java", Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.,2000.

[27] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying
update streams in a soft real-time database system”, ACM
SIGMOD Record, vol. 24(2), pp.245–256, 1995.

[28] J. Huang, J. A. Stankovic, D. Towsley, and K.
Ramamritham, “Experimental Evaluation of Real-Time
Transaction Processing”, Proceedings. Real-Time Systems
Symposium,1989.

[29] A. P. Buchmann, H. Branding, T. Kudrass, and J.
Zimmermann,“REACH: a REal-time, ACtive and
Heterogeneous mediator system”, IEEE Computer Society,
vol. 15, no. 1-4, pp. 44–47, 1992.

[30] J. Prichard, L. DiPippo, J. Packham, and V. Fay-Wolfe,
“RTSORAC: A Real-Time Object-Oriented Database
Model”, International Conference on Database and Expert
Systems Applications, pp. 601–610, 1994.

[31] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M.
Berndtsson, and B. Eftring, “DeeDS towards a distributed
and active real-time database system,” ACM SIGMOD
Record, vol. 25(1), pp. 38–51, 1996.

[32] J. Taina and K. Raatikainen, “RODAIN: a real-time object-
oriented database system for telecommunications”, in CIKM.
ACM, pp.10–14, 1996.

[33] S. Kim, S. H. Son, and J. A. Stankovic, “Performance
Evaluation on a Real-Time Database,” in RTAS, pp. 253–
265, 2002.

[34] Y. K. Kim and S. H. Son, “Developing a Real-Time DB:
The Starbase Experience,” in Real-Time Database Systems,
ser. The Springer International Series in Engineering and
Computer Science. Springer US, vol. 396, pp. 305–324,
1997.

[35] Z. Ellouze, N. Louati, and R. Bouaziz, “A Next Generation
Object- Oriented Environment for Real-Time Database
Application Development", 12th IEEE International
Conference on Trust, Security and Privacy in Computing
and Communications, pp. 1224–1232, 2013.

https://link.springer.com/book/10.1007/978-1-4615-6161-3
https://link.springer.com/book/10.1007/978-1-4615-6161-3
https://ieeexplore.ieee.org/xpl/conhome/6906723/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6906723/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6906723/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6906723/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10343/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10343/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10343/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4296820/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4296820/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4296820/proceeding
https://ieeexplore.ieee.org/xpl/conhome/268/proceeding
https://ieeexplore.ieee.org/xpl/conhome/268/proceeding
https://link.springer.com/conference/dexa
https://link.springer.com/conference/dexa
https://ieeexplore.ieee.org/xpl/conhome/6679587/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6679587/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6679587/proceeding

