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Summary 
A study on lightweight public key cryptography is one of the 

important task for cloud computing and IoT environment. 

Recently, with the advance in quantum computing, many people 

in various fields are preparing their information systems to be 

secure for quantum attacks. In this background, we propose and 

analyze two public-key encryption schemes based on AGCD and 

LWE in order to see their possibility as lightweight PKE. We 

apply existing attacks of AGCD and LWE more precisely and 

concretely. Finally, we show how to choose parameters of the 

schemes under the consideration of their decryption correctness 

and security against the proposed attacks. We expect this work 

would be a post stone for designing lightweight public-key 

cryptosystem resistant in quantum world. 

Key words: 
Public-key Encryption, LWE, AGCD, lightweight 

1. Introduction 

Data communication network enlargement with 

improvement of computing power and development of 

cloud computing make ubiquitous world. This enables a 

variety of service through resource limited and wireless 

devices such as RFID, USN. 

However there exist some vulnerabilities for massive data 

transmission. Cryptographic solutions are needed to solve 

the problem, however, almost existing cryptographic 

primitives are hard to apply directly to them. While the 

devices used in a service have only limited computation 

power and the network has limitations on its bandwidth. For 

these reasons, one need lightweight cryptography which is 

applicable in limited computing environment. It is clear 

lightweight cryptography tries to minimize the impact of 

security and privacy protection on the performance and cost 

of devices. On the other hand, there is the risk of breaking 

the security by using minimized cryptographic primitives 

and protocols. Thus finding the right trade-off between 

security and cost is therefore important. 

In this circumstance, one of the main advantages attributed 

to symmetric key cryptography is that it is cheaper to 

implement than public key cryptography. So there have 

been studies about block ciphers, and hash functions. On 

the other hand, lightweight public key cryptography as well 

as symmetric key cryptography have been also studied 

extensively for its usefulness. It has a key management 

advantage, and many functionalities like identity based 

encryption, homomorphic encryption, oblivious transfer, 

anonymous authentication and signatures, etc. 

The studies of lightweight public key cryptography have 

conducted mainly in three ways. The first is an efficient 

implementation of existing primitives that is considered as 

secure, and the next is designing new primitives from new 

mathematical hard problems in non-commutative group, 

lattice, polynomial ring, etc. The last is studying about 

public key encryption schemes that is suitable for low 

bandwidth environment. 

Lattice-based cryptography is gaining more interest due to 

its security against quantum computers, and its worst case 

security guarantee. However, the efficiency problem 

remains. Seen in this light, recent advances in fully 

homomorphic encryption either improves the efficiency of 

previous schemes, or proposes a new scheme with better 

efficiency. In this paper, we propose public-key encryption 

schemes can be seen as public-key version of FHE schemes, 

CS[7] and BGV[19]. We consider the existing lattice based 

attacks more precisely and propose a novel attack strategy 

on these schemes for smaller size of parameters. From that, 

we examine the possibility of such schemes as a lightweight 

public key encryption. 

2. Preliminaries 

We provide a background on the ACD, LWE problem and 

recall the CS, BGV fully homomorphic encryption schemes. 

We also give some basics about lattice and basis reduction 

in order to explain the attacks of the schemes. We will use 

(boldface) lower-case letter 𝐚, 𝐛 or c, d to denote column 

vectors, and upper-case letters 𝐴, 𝐵  for matrices. When 

constructing matrices with vectors, we use (𝑎, ⋯ , 𝑏) for 

horizontal concatenation. The product symbol ⋅  will be 

used for both dot products of two vectors, and for matrix 

product, to be interpreted case by case properly. When 

speaking of the norm of a vector 𝒗 over the residue ring 

ℤ𝑞 of ℤ modulo 𝑞, we mean the shortest norm among the 

equivalence class of 𝒗 ∈ ℤ𝑞
𝑛 in ℤ𝑛. 
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2.1 Lattice 

Lattice is a discrete subgroup of ℝ𝑛 or a free ℤ- module. 

For a set of linearly independent vertors in ℝ𝑛 , say 
{𝒃1, … , 𝒃𝑚}, a lattice 𝐿 is defined as the set of all integer 

combination of 𝒃𝑖’s: 

𝐿 = 𝐿(𝐵) = {𝐵𝑥: 𝐵 = (𝒃1, … , 𝒃𝑚) ∈ ℝ𝑛×𝑚, 𝑥 ∈ ℤ𝑛} 
 

The set of vectors {𝒃1, … , 𝒃𝑚}, B are called a basis, basis 

matrix of L respectively. If n = m, the lattice L is said to be 

a full rank lattice. Just like bases for vector spaces, lattice 

bases are not unique. Two bases matrices 𝐵1  and 𝐵2 

describe the same lattice, if and only if 𝐵2 = 𝐵1𝑈, where 

U is a unimodular matrix, i.e. 𝑑𝑒𝑡(𝑈) = 1, 𝑈 ∈ ℤ𝑛×𝑚. 

One can define the determinant of L as follows, since a 

lattice L is completely determined by a basis matrix B, and 

invariant under the choice of the lattice basis,  

det(𝐿) ≔ √det(𝐵𝑡𝐵). 

 

𝑑𝑒𝑡(𝐿(𝐵))  is equal to the volume of the fundamental 

parallelepiped,  

𝑃(𝐵)  =  {𝐵𝑥 | 𝑥 ∈  ℝ𝑛, ∀𝑖 ∶  0 ≤  𝑥𝑖  ≤ 1} 
 

All base of 𝐿  span the same ℝ-vector subspace of ℝ𝑛 

which we denote by 𝑆𝑝𝑎𝑛(𝐿(𝐵))  or 𝑆𝑝𝑎𝑛(𝐵) . The 

dimension of 𝑆𝑝𝑎𝑛(𝐿) over ℝ is equal to the dimension 

of 𝐿. We say that 𝐿 is a sublattice of a lattice Ω in ℝ𝑛 if 

𝐿 ⊆ Ω and if both have the same dimension. In particular, 

all integral lattice 𝐿(i.e. 𝐿 ∈  ℤ𝑛) is a sublattice of 𝐿 =
Span(𝐿) ⋂ ℤ𝑛 . Usually, 𝐿 is called complete lattice. We 

define the orthogonal lattice to be 𝐿⊥ ≔ Span(𝐿)⊥ ⋂ ℤ𝑛 . 

Thus, 𝐿⊥ is a complete lattice in ℤ𝑛 with dimension 𝑛 −

𝑚 . The already known fact is that (𝐿⊥)⊥ = 𝐿 , and 

det((𝐿⊥)⊥) = det(𝐿⊥) = det(𝐿). The dual lattice 𝐿∗  of a 

lattice 𝐿 is the set of all vectors 𝒚 ∈ ℝ𝑛 such that 𝒚 ⋅ 𝒙 ∈
ℤ for all 𝑥 ∈ 𝐿 . Given a basis matrix 𝐵  of 𝐿 , we can 

compute the basis matrix 𝐵∗  of 𝐿∗  via 𝐵∗ = (𝐵−1)𝑡 . 

Hence 𝑑𝑒𝑡(𝐿∗) = 1/det(𝐿) .The length of the shortest 

vector of a lattice 𝐿(𝐵)  is denoted 𝜆1(𝐿(𝐵)) . More 

generally, the successive minima (i.e. second and following 

shortest vectors, linearly independent from the previous 

minima) are denoted as 𝜆𝑖(𝐿(𝐵))  for 𝑖 =  1, . . . , 𝑚 . 

There exist several bounds and estimations for the length of 

the shortest lattice vector. In particular, Minkowski’s 1st 

theorem says that 

𝜆1(𝐿(𝐵)) ≤ √𝑚(𝑑𝑒𝑡𝐿(𝐵))
1/𝑚

. 

 

For a random lattice, the Gaussian heuristic states that  

𝜆1(𝐿(𝐵)) ≈ √
𝑚

2𝜋𝑒
𝑑𝑒𝑡(𝐿(𝐵))

1/𝑚
. 

 

The Gaussian heuristic only gives an estimation of the 

length of the shortest vector of a lattice. Note that we follow 

the notion of a random lattice in [5]. The lattices are 

following type: 

We recall the Gram-Schmidt orthogonalization in linear 

algebra. This algorithm is closely related with lattice and 

basis reduction. The transformed orthogonal basis is very 

helpful when examining lattices. The Gram-Schmidt 

algorithm makes an orthogonal basis {𝒃1
∗ , … , 𝒃𝑚

∗ } 

iteratively as follows: 

𝑏𝑖
∗ = 𝑏𝑖 − ∑ 𝜇𝑖,𝑗𝑗<𝑖 𝑏𝑗

∗ where 𝜇𝑖,𝑗 =
𝑏𝑖⋅𝑏𝑗

∗

𝑏𝑗
∗⋅𝑏𝑗

∗. 

 

One can easily compute its determinant as 𝑑𝑒𝑡(𝐿(𝐵)) =

∏ ‖𝑏𝑖
∗‖𝑖 . This algorithm is related to the 𝑖 . QR-

decomposition B = Q · R with Q an orthonormal matrix and 

R upper-triangular. The matrix Q can be obtained trivially 

from the Gram-Schmidt orthogonalization by normalizing 

the columns of B. 

The goal of lattice reduction algorithms is to find a good 

basis for a given lattice. A basis is considered good, when 

the basis vectors are almost orthogonal and correspond 

approximately to the successive minima of the lattice.  

2.2 Lattice Reduction 

BKZ(Blockwise Korkine-Zolotarev) is a reduction 

algorithm for lattices that outputs BKZ reduced basis. It has 

been introduced by Schnorr and Euchner[2]. It finds 𝒃𝑖
∗ 

with small norm in β dimensional lattice at each round. Note 

that, in terms of Q · R decomposition, the goal of lattice 

reduction is the same with finding small diagonal 

coefficients‖𝒃𝑖
∗‖’s in R. The quality of the basis that is 

achieved by BKZ reduction depends on the block-size β. 

Increasing β means an improvement in the basis quality. 

However, it is known that BKZ algorithm for β > 30 with 

nontrivial dimensions does not terminate in reasonable 

time[11]. The BKZ reduction algorithm can be seen as a 

block-wise version of HKZ reduction. Thus one can see the 

quality of the output basis is between that of LLL and HKZ 

reduction.  

In 2011, Chen and Nguyen proposed a modification of BKZ 

using recent progress on lattice enumeration, called BKZ-

2.0[18], [17]. This state-of-the-art implementation 

incorporates the latest improvements of lattice basis 

reduction[10]. In particular, it use a enumeration technique 

called extreme pruning in [10]. This enables the BKZ-2.0 

algorithm is able to reduce a basis of lattices with much 

higher block sizes in reasonable time. In particular, these 

improvements allow to consider block-size β > 50.  

Chen and Nguyen also proposed an efficient simulation 

algorithm of BKZ-2.0 that can be used in high dimensions 

with large block-sizes β > 50. The simulation algorithm 

takes as input the Gram- Schmidt norms of an LLL-reduced 

basis, a block-size β ∈ {50, . . . , m} and a number N of 

rounds, and outputs a prediction for the Gram-Schmidt 

norms after N rounds of BKZ reduction. This makes it much 
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easier to heuristically explain the behavior of BKZ-2.0 in 

practice and the root Hermite factor even for block sizes 

that we might not be able to run in practice. A sage(python) 

implementation of this simulation algorithm has been made 

available by the authors in [17]. For more details about BKZ, 

and BKZ 2.0, see [18], [17].  

In [5], van de Pol and Smart propose an idea that computes 

the root hermite factor of lattices in 2λ, and [16] improves 

the approach. They use the reduction cost formula of [18], 

[17],  
𝑐𝑜𝑠𝑡(𝑁, 𝛽) ≤ 𝑁 × (𝑚 − 𝛽) × 𝑐𝑜𝑠𝑡(𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝛽)

+ 𝑂(1) 

 

to estimate the cost of BKZ-2.0N,β (in terms of the number 

of nodes visited) on an basis of m- dimensional lattice, and 

to generate secure parameters. Specifically speaking, for a 

given security parameter λ and a dimension m, they derive 

the smallest root Hermite factor δ(m, λ) on an m- 

dimensional lattice achievable using BKZ-2.0 by an 

adversary limited to a computational cost. This means that 

for all β and N, we need to have N × (m − β)× 

cost(Enumeration in dimension β) ≤ 2λ. Thus, for each β 

and using the enumeration costs in [18], [17], one obtains 

an upper bound 𝑁𝑚𝑎𝑥  on the number of BKZ-2.0 rounds 

with block-size β that an adversary bounded as above can 

afford to run. This yields a root Hermite factor δ(m, λ) for 

this specific block-size β. By taking the minimum value 

over all block-sizes, one obtains the minimal root Hermite 

factor β achievable in dimension m for the security 

parameter λ using BKZ-2.0. 

3. Analysis of PKE’s 

3.1 The RLWE-based PKE 

First, we briefly introduce notation for stating the Ring-

LWE-based FHE scheme BGV, and formulate the Ring 

Learning with Errors(RLWE) Problem. Let 𝑑  be a 

positive integer and let Φ𝑑(𝑥) ∈  ℤ[𝑥]  be the 𝑑 −

𝑡ℎ cyclotomic polynomial. Let 𝑅 = ℤ[𝑥]/(Φ𝑑(𝑥)) . The 

elements of 𝑅 are polynomials with integer coefficients of 

degree less than 𝑛 = φ(𝑑) . For any polynomial 𝑎 =
∑ 𝑎𝑖

𝑛
𝑖=0 𝑥𝑖 ∈ ℤ[𝑥] , let ‖𝑎‖∞ = 𝑚𝑎𝑥{|𝑎|: 0 ≤ 𝑖 ≤ 𝑛}  be 

the infinity norm of 𝑎. When multiplying elements of R, 

the norm of the product grows at most with a factor ξ =
𝑠𝑢𝑝{‖𝑎𝑏‖∞/‖𝑎‖∞‖𝑏‖∞: 𝑎, 𝑏 ∈ 𝑅} , the so-called 

expansion factor. For an integer modulus 𝑞 >  0, define 

𝑅𝑞 = 𝑅/𝑞𝑅 . Denote by [ ]𝑞  reduction modulo 𝑞  into 

the interval (−𝑞/2, 𝑞/2]  of an integer or integer 

polynomial (coefficient wise). Let χ𝑘𝑒𝑦 and χ𝑒𝑟𝑟  be two 

discrete, bounded probability distributions on 𝑅 . In 

practical instantiations, the distribution 𝜒𝑒𝑟𝑟 is typically a 

truncated discrete Gaussian distribution that is statistically 

close to a discrete Gaussian. The distribution 𝜒𝑘𝑒𝑦  is 

chosen to be a very narrow distribution, sometimes even 

such that the coefficients of the sampled elements are in the 

set {−1, 0, 1} . We denote the bounds corresponding to 

these distributions by 𝐵𝑘𝑒𝑦  and 𝐵𝑒𝑟𝑟 , respectively. This 

means that |𝑒|∞ < 𝐵𝑒𝑟𝑟  for 𝑒 ← χ𝑒𝑟𝑟  and |𝑠|∞ < 𝐵𝑘𝑒𝑦 

for 𝑠 ← 𝐵𝑘𝑒𝑦 .  Now we can define the Ring-LWE 

distribution on 𝑅𝑞 × 𝑅𝑞  as follows: sample 𝑎 ← 𝑅𝑞 

uniformly at random, 𝑠 ← χ𝑘𝑒𝑦  and 𝑒 ← χ𝑒𝑟𝑟, and output 

(𝑎, [𝑎𝑠 + 𝑒]𝑞). Next, we formulate  a  version  of  the  

Ring-LWE  problem that applies to the schemes BGV 

considered in this paper. 

The Ring-Learning With Errors Problem is the problem to 

distinguish with non-negligible probability between 

independent samples (𝑎𝑖 , [𝑎𝑖𝑠 + 𝑒𝑖]𝑞)  from the Ring-

LWE distribution and the same number of independent 

samples (𝑎𝑖 , 𝑏𝑖)  from the uniform distribution on 𝑅𝑞 ×

𝑅𝑞. 

We consider here a simple version of original scheme which 

has no multiplication and based on ring LWE problem. 

Here, we assume 𝑑 is a power of 2. Thus 𝑛 =  𝑑/2.  

 BGV.ParamsGen(λ): Given the security parameter 

λ, determine 𝑞, 𝑑 =  2𝑛, 𝑁, χ providing security 

λ and decryption correctness. Output (𝑞, 𝑑, 𝑁, χ). 

Note that 𝑞, 𝑑, χ  is the modulus, degree, error 

distribution on 𝑅𝑞  respectively, and the error 

distribution is the same with key distribution. 

 BGV.KeyGen( 𝑞, 𝑑, 𝑁, χ ): Sample 𝑡 ← χ . Then 

𝑠𝑘 = (1, 𝑡)𝑡 ∈ 𝑅𝑞
2 . Sample 𝑏 ← 𝑅𝑞

𝑁 , 𝑒 ← χ𝑁 . 

Compute 𝑢 = 𝑡𝑏 + 2𝑒 = (𝑡𝑏1 + 2𝑒1, ⋯ , 𝑡𝑏𝑁 +
2𝑒𝑁)𝑡 . Then pk = 𝐴 = (𝑢 − 𝑏) . Note that 𝐴 ⋅

𝑠𝑘 = (𝑢 − 𝑏)(1
𝑡
) = 𝑢 − 𝑡𝑏 = 2𝑒. 

 BGV.Encrypt(𝐴, 𝑚): Given a message 𝑚 ∈ {0, 1}, 

sample 𝑟 ← 𝑅2
𝑁  uniformly random, and outputs 

the ciphertext 𝑐 = (𝑚, 0) + 𝐴𝑡𝑟 ∈ 𝑅𝑞
2. 

 BGV.Decrypt(𝑠𝑘, 𝑐 ): Decrypt a ciphertext 𝑐  by 

𝑚 = [[𝑐 ⋅ 𝑠𝑘]𝑞]
2
. 

 

We consider the distinguishing attack against RLWE in 

order to set parameters. In the following, we denote by 

0 <  ϵ <  1 the advantage of adversary to distinguish an 

RLWE instance (𝑎, 𝑏 = 𝑎 ⋅ 𝑠 + 𝑒) ∈ 𝑅𝑞
2  from a uniform 

random instance (𝑎, 𝑢) ∈ 𝑅𝑞
2. For any 𝑎 ∈ 𝑅𝑞, we define 

Λ
𝑞

(𝑎)  by Λ
𝑞

(𝑎) = {𝑦 ∈ 𝑅𝑞: ∃𝑧 ∈ 𝑅, 𝑦 = 𝑎 ⋅ 𝑧 𝑚𝑜𝑑 𝑞} . 

The distinguishing attack consists in finding a small vector 

𝑣 ∈ 𝑞Λ
𝑞

(𝑎)× = (Λ
𝑞

(𝑎))
⊥

. Then, for all 𝑦 ∈Λ
𝑞

(𝑎), 𝑣 ⋅

𝑦 = 0 𝑚𝑜𝑑 𝑞. To distinguish whether a given pair (𝑎, 𝑢) 

was sampled according to the RLWE distribution or the 

uniform distribution, one tests whether the inner product 

𝑣 ⋅ 𝑢  is ‘close’ to 0  modulo 𝑞 . (i.e. whether |𝑣 ⋅ 𝑢| <
𝑞/4) or not. Indeed, when 𝑢 is uniformly distributed in 
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𝑅𝑞, 𝑣 ⋅ 𝑢 is statistically close to the uniform distribution. 

However, when (𝑎, 𝑢)  is an RLWE sample, i.e. there 

exists 𝑠 ∈ 𝑅𝑞  and 𝑒 ← χ𝑒𝑟𝑟  such that 𝑢 =  𝑎 ⋅ 𝑠 +  𝑒 , 

we have 𝑣 ⋅ 𝑢 =  𝑣 ⋅ 𝑒 𝑚𝑜𝑑 𝑞 , which is essentially a 

sample from a Gaussian (reduced modulo 𝑞) with standard 

deviation |𝑣| ⋅ σ𝑒𝑟𝑟 . Now when this parameter is not much 

larger than 𝑞 , 𝑣 ⋅ 𝑒  can be distinguished from uniform 

with advantage exp(−πτ2)  with τ = |𝑣| ⋅ σ𝑒𝑟𝑟/𝑞 . It is 

unknown how to exploit the ring structure of RLWE to 

improve lattice reduction ¥cite{CN11}. Therefore, we 

embed our RLWE instance into an LWE lattice. Next we 

apply the distinguishing attack against LWE and the result 

can be used to distinguish the RLWE instance from uniform. 

Define an LWE matrix 𝐴 ∈ 𝑍𝑞
𝑚×𝑛  associated to a as the 

matrix whose first 𝑛 lines are the coefficient vectors of 𝑥𝑖 

for 𝑖 = 0, … , 𝑛 − 1 and the 𝑚 −  𝑛  last lines are small 

linear combinations of the first 𝑛 lines. Here 𝑚 must be 

larger than 𝑘 ≔
𝑛 log 𝑞

log 𝑞−log 4𝐵−λ/𝑛
from the uniqueness of 

LWE problem. Denote the LWE lattice Λ
𝑞

(𝐴) = {𝑦 ∈

𝑍𝑚: ∃𝑧 ∈ 𝑍𝑛 , 𝑦 = 𝐴𝑧 𝑚𝑜𝑑 𝑞} . Now, we use lattice basis 

reduction in order to find such a short vector 𝑣 ∈

𝑞Λ
𝑞

(𝐴)×. An optimal use of BKZ-2.0 would allow us to 

recover a vector 𝑣 such that |𝑣| = γ(𝑚)𝑚𝑞𝑛/𝑚 because 

det (𝑞Λ
𝑞

(𝐴)×) = 𝑞𝑛. Therefore, to keep the advantage of 

the BKZ-2.0 -adversary small enough, we need to have 

exp(−πτ2) = exp (−π(γ(𝑚)𝑚𝑞𝑛/𝑚σ𝑒𝑟𝑟/𝑞)
2

) ≤  𝜖 , i.e. 

γ(𝑚)𝑚𝑞(𝑛/𝑚)−1σ𝑒𝑟𝑟 > √−𝑙𝑜𝑔(ϵ)/π . Define α =

√−𝑙𝑜𝑔(ϵ)/π. To ensure security for all 𝑚 >  𝑛, we obtain 

the condition log2(𝑞) ≤

min 1𝑚>𝑘
𝑚2 log2(γ(𝑚))+𝑚 log2(σ/α)

𝑚−𝑛
. Let us fix the security 

parameter λ . Following the experiment described in 

Section 3.2, one can recover the minimal root Hermite 

factor γ(𝑚)  for all 𝑚 >  𝑛 . Therefore, given a target 

distinguishing advantage ϵ, a dimension 𝑛 and an error 

distribution χ𝑒𝑟𝑟 , one can derive the maximal possible 

value for log2(𝑞). 

Let's consider the decryption algorithm to check noise term 

in ciphertext. The message is decrypted by 𝑚 = [[𝑐 ⋅

𝑠𝑘]𝑞]
2

= [𝑚 + 2𝑒 ⋅ 𝑟]2. Thus if ‖2𝑒 ⋅ 𝑟‖∞ is sufficiently 

small then the decrypted message may be correct. More 

precisely, if  ‖2𝑒 ⋅ 𝑟‖∞ < 𝑞/2 , then [𝑚 + 2𝑒 ⋅ 𝑟]𝑞 =

𝑚 + 2𝑒 ⋅ 𝑟 . We know ‖2𝑒 ⋅ 𝑟‖∞ = ‖2 ∑ 𝑒𝑖 𝑟𝑖‖∞ ≤
2𝑁ξ‖𝑒𝑖‖∞‖𝑟𝑖‖∞ ≤ 2𝑁𝑛𝐵χ , since 𝑒𝑖 ← χ, 𝑟𝑖 ← 𝑅2, ξ ≤ 𝑛 . 

Thus we get a constraint about decryption correctness 

which is 2𝑁𝑛𝐵𝑥 <
𝑞

2
. In [19], they propose some choices 

for the value 𝑁 . It suffices 𝑁 > 2 log 𝑞  from [13], or 

(when q is prime) 𝑁 = log(𝑞 ⋅ λω(1))[19]. Here, we take 

𝑁 = 2 log 𝑞. 

In BGV, it is common to fix the value of σ in advance, and 

hence the only parameters one can play with are 𝑞 and 𝑛. 

On one hand we would like 𝑞 to be large so as to allow 

correct decryption, but a large 𝑞  implies low security. 

Therefore we choose 𝑞, 𝑛 as small as possible holding the 

correctness and security. Let χ = 𝐷𝑍𝑛,σ  be the spherical 

discrete gaussian distribution with mean 0  standard 

deviation σ  with probability density function 𝑓(𝑥) =
1

α
𝑒−π|𝑥|2/σ2

 where α = ∑ 𝑒𝑥ϵ𝑍𝑛
−𝜋‖𝑥‖2/𝜎2

. Then all (error) 

samples are 𝐵 -bounded with very high probability for 

𝐵 =  6σ. See for details, [6]. We set σ =  8 as like [16] 

which is come from experimental result. Then the error 

bound 2𝑁𝑛𝐵𝑥 is less than 2(2 log 𝑞)𝑛48 which must be 

less than 
𝑞

2
. Hence, we get 96𝑛 < 𝑞/ log 𝑞 which gives a 

lower bound for 𝑙𝑜𝑔 𝑞 . Finally, we get 𝑛 =
 512, 𝑙𝑜𝑔 𝑞 =  20, σ =  8  for λ =  80  bit security from 

the distinguishing attack(max log q), and decryption 

correctness(min log q). 

3.2 The AGCD-based PKE 

The approximate common divisor problem(AGCD) is to 

find the “approximate” common divisor 𝑝 when elements 

𝑎1 = 𝑝𝑞1 + 𝑟1, … , 𝑎𝑚 = 𝑝𝑞𝑚 + 𝑟𝑚  with “small” errors 𝑟𝑖 

are given. The original formulation of this problem was 

stated by Howgrave-Graham [9], who gave algorithms 

based on continued fractions and lattices for solving the 

case when one receives one exact multiple 𝑎1 = 𝑝𝑞 and 

one “noisy” multiple 𝑎2 = 𝑝𝑞1 + 𝑟1 , and the case when 

one receives two “noisy” approximate multiples 𝑎1 =
𝑝𝑞1 + 𝑟1, 𝑎2 = 𝑝𝑞2 + 𝑟2 . This problem was extended to 

many samples by van Dijk, Gentry, Halevi, and 

Vaikuntanathan [8], who used it as a hardness assumption 

underlying the construction of a fully homomorphic 

encryption scheme DGHV. Since then, similar assumptions 

have been used to construct many fully homomorphic 

encryption schemes as well as candidate multilinear maps. 

The scheme is a variant of the DGHV encryption scheme 

that embeds the plaintext message in the most significant 

bit modulo 𝑝  of an AGCD sample: a ciphertext 𝑐 

corresponding to a plaintext 𝑚 is of the form 𝑐 = 𝑞𝑝 +
⌊𝑝/2⌉𝑚 + 𝑟. we consider here a simple version of original 

scheme which has no multiplication. 

 CS.ParamsGen(λ): Given the security parameter 𝜆, 

determine γ, η, ρ  and 𝑋, χ𝑘𝑒𝑦 , χ𝑒𝑟𝑟  providing 

security λ  and decryption correctness. Output 

(𝑋, χ𝑘𝑒𝑦 , χ𝑒𝑟𝑟 ). Note that γ, η, ρ is the bit-size of 

𝑋 (ciphertext), 𝑝 (secret key), 𝑟 (error or noise) 

respectively. 

 CS.KeyGen(𝑋, χ𝑘𝑒𝑦 , χ𝑒𝑟𝑟): Sample 𝑝 ← χ𝑘𝑒𝑦 . For 

0 ≤ 𝑖 ≤ τ, sample 𝑟𝑖 ← χ𝑒𝑟𝑟 , 𝑞𝑖 ← 𝑍 ∩ [0, 𝑋/𝑝), 

and compute 𝑥𝑖 = 𝑝𝑞𝑖 + 𝑟𝑖 . Relabel so that 𝑥0 is 

the largest, 𝑥1  has an odd ⌊𝑥1/𝑝⌉, and restart if 
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we cannot find such an 𝑥1 . Output (𝑝𝑘, 𝑠𝑘) =

((𝑥0, 𝑥1, … , 𝑥τ), 𝑝). 

 

CS.Encrypt( (𝑥0, 𝑥1, … , 𝑥τ), 𝑚 ): Given a message 𝑚 ∈
{0, 1} , uniformly sample a subset 𝑆 ⊆ {1, 2, … , 𝜏} , and 

output the ciphertext 𝑐 = [∑ 𝑥𝑖𝑖∈𝑆 + ⌊𝑥1/2⌉𝑚]𝑥0
. 

CS.Decrypt(𝑝, 𝑐): Decrypt a ciphertext 𝑐  by 𝑚 = [⌊2𝑐/
𝑝⌉]2. 

We consider the orthogonal lattice attack using Nguyen and 

Stern's Orthogonal Lattice[8]. The goal of the attack is to 

find 𝑝  when 𝑥𝑖 = 𝑝𝑞𝑖 + 𝑟𝑖  for 0 ≤ 𝑖 ≤ 𝑛  (or 𝑥 =
(𝑥0, … , 𝑥𝑛) ) is given. Thus we consider the lattices 

generated by 𝑥 and 𝑞, 𝑟 which denote 𝐿𝑥, and 𝐿𝑞,𝑟. The 

idea of the attack is to reduce 𝐿𝑥
⊥ to recover these 𝑛 −  1 

vectors of 𝐿𝑞,𝑟
⊥ , from which we can recover 𝑟, and hence 

𝑝. A framework of the attack is as follows: 

 

Compute a BKZ reduced basis {𝑏0, ⋯ , 𝑏𝑛−1} of 𝐿𝑥
⊥  from 

𝑥. 

If |𝑏𝑖|  is sufficiently small, {𝑏0, ⋯ , 𝑏𝑛−2} ⊆ 𝐿𝑞,𝑟
⊥ . Thus 

{𝑏0, ⋯ , 𝑏𝑛−2} is a (BKZ reduced) basis of 𝐿𝑞,𝑟
⊥  

Compute a basis {𝑑1, 𝑑2} of (𝐿𝑞,𝑟
⊥ )

⊥
= 𝐿𝑞,𝑟 ⊆ 𝐿𝑞,𝑟  from 

{𝑏0, ⋯ , 𝑏𝑛−2} in step 2. 

Compute Lagrange-Gaussian reduced basis of (𝐿𝑞,𝑟
⊥ )

⊥
. 

If(𝐿𝑞,𝑟) = (𝐿𝑞,𝑟
⊥ )

⊥
= 𝐿𝑞,𝑟  and 𝑟 is the shortest vector in 

𝐿𝑞,𝑟 , we can find 𝑟 , so 𝑝. Otherwise further works are 

needed. 

Note that there exist an algorithm for computing 𝐿⊥ from 

𝐿 . One can refer to an efficient algorithm for that in 

appendix. In step 2, an attacker must take 𝑛 >
γ

η−ρ
. More 

precisely, let's consider the length of the shortest vector 𝑣0 

in 𝐿𝑥
⊥  −  𝐿𝑞,𝑟

⊥ . 

We see that if |𝑏𝑖| < |𝑣0| , then 𝑏𝑖 ∈ 𝐿𝑞,𝑟
⊥  when |𝑣0| >

λ𝑖(𝐿𝑞,𝑟
⊥ ) ≈ ⋯ ≈ λ𝑛−1(𝐿𝑞,𝑟

⊥ ) . On the other hand, 

det(𝐿𝑞,𝑟
⊥ ) |𝑣0| ≥ det(𝐿𝑥

⊥), so 

|𝑣0| ≥
det(𝐿𝑥

⊥)

det(𝐿𝑞,𝑟
⊥ )

=
det(𝐿𝑥)

det(𝐿𝑞,𝑟)
≈

|𝑥|

|𝑞||𝑟|
≈

2𝑟

2𝑟−𝜂2𝜌 = 2𝜂−𝜌. 

 

Heuristically, if 𝑞, 𝑟 were random,  

λ1(𝐿𝑞,𝑟
⊥ ) ≈ ⋯ ≈ λ𝑛−1(𝐿𝑞,𝑟

⊥ ) ≈ √𝑛 − 1det(𝐿𝑞,𝑟
⊥ )

1

𝑛−1 ≈

2
𝑟+𝜌−𝜂

𝑛−1 . 

Finally it suffice 

λ1(𝐿𝑞,𝑟
⊥ ) ≈ ⋯ ≈ λ𝑛−1(𝐿𝑞,𝑟

⊥ ) ≈ 2
𝑟+ρ−η

𝑛−1 < 
|𝑥|

|𝑞|𝑟|
≈ 2η−ρ 

for the constrains, because 

2
𝑟+ρ−η

𝑛−1 < 2η−ρ ⇔
𝑟 + ρ − η

𝑛 − 1
< η − ρ ⇔ 𝑛 >

𝑟

η − ρ
 

Note that attacker can choose arbitrary n. However if 𝑛 is 

large, lattice reduction algorithm may not be able to recover 

the desired short vectors. 

Now, we need |𝑏𝑖| ≥ 2η−ρ  to prevent the attack for all 

𝑛 >
γ

η−ρ
. It suffices |𝑏𝑖| ≥ |𝑏0| = δ(𝑛, λ)𝑛 det(𝐿𝑥

⊥)
1

𝑛 =

δ(𝑛, λ)𝑛2
γ

𝑛 ≥ 2η−ρ for all 𝑛 >
𝛾

𝜂−𝜌
. 

Let 𝑛 >
γ

η−ρ
≥ 𝑜𝑝𝑡. Then for λ =  80, It suffices 

δ(𝑛, λ)𝑛2
γ
𝑛 = 2𝑛 log δ(𝑛,80)2

γ
𝑛 ≥ 2√γ log δ(𝑛,80)

≥ 2√γ log δ(𝑜𝑝𝑡,80) ≥ 2η−ρ 

 

We get √γ log δ (𝑜𝑝𝑡, 80) ≥ η − 𝜌 from above inequality. 

Finally we get following two constrains that are related with 

parameter. 

γ ≥
1

log δ (𝑜𝑝𝑡, 80)

(η − ρ)2

4
, γ ≥ (η − ρ)𝑜𝑝𝑡 

 

All fresh ciphertext c has an inherent noise term, which is 

𝑟 ∈ 𝑍  where 𝑐 𝑚𝑜𝑑 𝑝 = ⌊𝑝/2⌉ + 𝑟 . If |𝑟|  is small 

enough, then decryption works correctly. More precisely, 

¥cite{CS15} shows that this is the case if 𝑙𝑜𝑔(8τ + 2) <
η − 𝜌.  

All of the constrains about parameter for a PKE version of 

CS scheme is following: 

ρ ≥ λ(error exhaustive search) 

-  γ −  η ≥  𝜆(q exhaustive search) 

- γ ≥
1

log δ(𝑜𝑝𝑡,80)

(η−ρ)2

4
, γ ≥ (η − ρ)𝑜𝑝𝑡 (Orthogonal 

Lattice Attack) 

- η − ρ > log(8τ + 2) 

- τ ≥ 𝑟 +  2λ − 2(IND-CPA security) 

First, we find the value 𝑜𝑝𝑡 such that 
1

log δ(𝑜𝑝𝑡,80)

(η−ρ)2

4
≈

(η − ρ)𝑜𝑝𝑡  by using BKZ−$2.0$ simulation algorithm. 

We find thh value 𝑜𝑝𝑡 =  370 . Next, we compute the 

smallest γ, η, τ that satisfies the constraints with ϱ =  λ =
 80, 𝑜𝑝𝑡 =  370. After some calculation, we can set the 

parameters as γ =  5923, η =  96, τ =  6081. 

5. Conclusion 

We propose and analyze a public key encryption version of 

two fully homomorphic encryption schemes BGV and CS 

scheme. We apply the existing lattice based attacks more 

precisely on the schemes, and we set parameters of these 

scheme with considering decryption correctness and IND-

CPA security. When 𝜆 =  80, Our analysis shows that the 

key size and ciphertext size of AGCD based PKE is 

4.29MB and 5,923bit, respectively. On the other hand, the 

key size and ciphertext size of RLWE based PKE is 

1,080bit and 10,260bit, respectively. The ciphertext size of 

CS scheme is less than that of BGV approximately 1/2. On 

the other hand, the public key size of CS scheme is too large 

relatively. Thus it is necessary some optimization for that. 
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Implementation of the schemes with optimization remains 

for estimating their speed.  
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