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Summary 
Building autonomous and intelligent robots has been an elusive 

dream for researchers for some time. Simultaneous Localization 

and Mapping (SLAM) systems have contributed towards 

achieving this goal by making robots better in navigating through 

complex environments. Until now it has only been possible to train 

and teach robots to move around in particular environments using 

a certain set of rules and heuristics. With the sudden surge in 

interest in AI and Machine Learning, a lot of effort has been put in 

into making robots intelligent and for them to automatically learn 

their paths in unknown environments (also referred to as Path 

Planning). This however has been met with mixed results as either 

the solution proposed is not too practical (e.g. requires too much 

training) or has limited success (e.g. works in specific 

environments). In this research, we develop a novel autonomous 

path planning framework using Deep Learning which can learn to 

navigate in unknown environments. The system has been tested on 

state-of-the-art Active Vision Dataset with promising results. 
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1. Introduction 

Simultaneous Localization and Mapping (SLAM) “is the 

computational problem of constructing or updating a map 

of an unknown environment while simultaneously keeping 

track of an agent's location within it” [1]. SLAM solves the 

problem of detecting the location of a moving sensor. This 

is the fundamental ability required by autonomous agents to 

plan actions in the environment. Visual SLAM (vSLAM) 

deals with the SLAM problem with the use of one or more 

cameras providing a constant stream of visual imagery.  

Fig. 1 shows the vSLAM problem. The robot receives a 

sequence of successive (mostly overlapping) images from 

which it generates a 3D map of the environment while 

simultaneously keeping track of its current location in the 

environment.  

 

Fig. 1  The Visual SLAM Problem 

This area has been of particular interest to the Robotics 

Community where Monocular SLAM systems (vSLAM 

systems built using a single camera) have been extensively 

explored due to their low cost and simplicity. Over the years, 

vSLAM has evolved a great deal with slow and inefficient 

systems giving way to efficient and real time solutions. 

ORB-SLAM [2] and SVO-SLAM [3] are two examples of 

such systems where solution to the SLAM problem is 

efficient, quick and robust. These systems use feature 

descriptors to keep track of the scene locations from within 

the image stream. Some of the more prominent features 

used by SLAM systems include FAST, SIFT, SURF and 

ORB, etc., each having their own set of advantages to 

support their use in specific use cases. A lot of research in 

the SLAM community has been focused on making robots 

more autonomous by enabling them to navigate unknown 

environments through the use of path planning. 

Path planning is a known problem in robotics, where it is 

meant to equip the robot with a method to navigate to a 

particular location in a scene/environment. Historically, 

researchers have focused on an algorithmic approach where 

a set of heuristics/rules is used to decide how to navigate the 

robot through the environment. The algorithmic approach 

however, generally fails when the robot is introduced into a 

new environment and requires generation of a new set of 

rules for every unique scenario.  

In this work we propose a method to enable the robot to 

navigate an environment by using a machine learning 

approach to scene understanding. Instead of programming 

via a set of rules, we will take an approach where the robot 
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learns these rules by using a machine learning approach. 

The robot is first shown a set of images and the associated 

set of actions needed to navigate from one scene to another.  

The set of images are taken from a sequence of overlapping 

images (the sort that a robot sees when incrementally 

navigating an environment). These set of labeled images 

and actions are used to train a Convolutional Neural 

Network (CNN) which implicitly understands the image 

contents and infers what actions are required to be taken to 

reach a goal. By providing the robot many examples of what 

moves to make under different situations, it will gain the 

ability to navigate in unknown cases as well. The proposed 

system is demonstrated on example images from the gold 

standard Active Vision Dataset [4] with promising results. 

 A peek into the upcoming sections is as follows: Section 2 

discusses the related work in the field. Section 3 provides 

the details of the proposed system for the path planning 

using learning methods. Section 4 shows the experiments, 

along with their results and discussion. Section 5 concludes 

the paper. 

2. Related Work  

Like many problems in the computational vision domain 

Visual Simultaneous Localization and Mapping (vSLAM) 

does not come as easily to machines as it does to humans. 

A seemingly easy problem for humans is a challenging task 

for machines under real world conditions. In an effort to 

make it feasible a wide variety of techniques have been 

proposed to tackle various aspects of vSLAM ranging from 

features based methods to RGB-D based camera 

approaches. A survey of vSLAM methods can be found in 

the work of [5]. General surveys of SLAM methods are to 

be found in [6] and [7]. A more approach centered survey 

focusing on visual aspects is provided by [8]. 

Path planning is a major research area in SLAM systems 

with a goal of making robots more autonomous. Maps built 

by standard SLAM based systems cannot be used to plan 

paths. A potential solution to this problem is proposed in [9] 

using Pose SLAM graph to determine the path between two 

robot configurations with lowest accumulated pose 

uncertainty. A slightly different approach using a belief-

function is presented in [10]. By representing different types 

of uncertainty in evidential grid maps. In addition, the paper 

also proposes optimal navigation and exploration for better 

path planning. Both these approaches are heuristics based 

and have their limitations when new and unknown scenarios 

are encountered in real-world environments. 

Losing localization is an analogous problem to path 

planning in real world vSLAM systems. Robots tend to lose 

localization due to the uncontrolled movement of the 

camera, lack of sufficient matching between current and 

previous images and uncertainties of the environment. 

Visual inertial SLAM system in [11] provides a solution to 

overcome this problem using visual-inertial odometry and 

provides locally consistent trajectory and map estimates, 

while global consistency is achieved using online loop-

closing and non-linear optimization. Binary features have 

been reported to have orders of magnitude better 

performance than the traditional feature descriptors [12]. 

Visual place recognition schemes using a hashing 

mechanism based on these binary features to speed up the 

process have been proposed [12, 13] to recover from 

localization errors and globally relocalizing the robot. In 

[14] advances in key point recognition are used to determine 

the camera pose.  

These re-localization methods for recovering from lost state 

mainly use a previously visited place and compare the 

feature descriptors of the current image with the database of 

stored image descriptors. This process re-localizes the robot 

in the environment and the robot continues with the SLAM 

process.  

Similar to the approaches used in re-localization, wherein 

lost state is recovered using previously visited places, we 

can use previously collected visual information to train a 

machine learning model for predicting next actions of the 

robot in order to achieve better results in path planning. Our 

approach learns the program (Robot movements) from the 

available data (Image sets) by training a Convolutional 

Neural Network that outputs next movement action, 

incrementally moving the robot from one place to another. 

The details are provided in the next section. 

3. The Proposed System  

Convolutional Neural Networks (CNNs) have proven 

themselves to be invaluable resource in scene-

understanding problems due to their capability of 

preserving spatial information. The proposed solution to the 

path planning problem builds upon this concept and uses a 

custom designed CNN to predict what motion to undertake 

to enable a robot to move from one scene to another. Using 

the CNN for this problem is a process involving two steps: 

training and inference. During training the CNN is shown a 

pair of images; the first corresponding to the scene that the 

robot is presently positioned at, and the second where we 

intend the robot to go to. With each pair of images, the CNN 

is also shown a motion label depicting the motion 

undertaken in order to move from the first scene to the 

second. Having been fed a series of such “training samples” 

the CNN adjusts its parameters so that it can later suggest 

the action to undertake in order to move from one scene to 

another. These set of parameters need to be adjusted only 

once and can be saved to disk as a “model” file. This process 

is shown in Fig. 2. 
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Fig. 2  Training 

 

In the inference phase, the model trained in the training step 

is utilized to make a prediction on what action the robot 

must undertake in order to move from the first scene to the 

other. This process is shown in Fig. 3. 

 

 

Fig. 3  Inference 

3.1. System Architecture 

In order to counter the above-mentioned path planning 

problem, we need a dataset of sequential images from an 

example path exploration. We extract these from the Active 

Vision Dataset and feed it to our CNN as described above 

in order to train it. 

3.2. CNN Architecture 

Convolutional Neural Networks are a variation of regular 

neural networks especially suited to image recognition and 

understanding tasks [15]. The network represents a 

differentiable function from image pixels to class 

probabilities. 

CNNs are chosen for this problem because Conventional 

Neural Nets don’t scale well to images. If a regular Neural 

Network is used for this problem of path planning we would 

require all the image pixels to be passed through multiple 

fully connected layers, which in-turn would mean having to 

fine tune a large number of weights. In the first layer this 

would mean having a large number of weights 

(image_width x image_height x number_of_channels). In 

the case of a CNN, this number is dramatically reduced 

(number_of feature_maps x filter_size). This is depicted in 

Fig.4. This dramatic reduction in number of weights follows 

from the observation that all the pixels of the image need to 

be operated on in a similar manner and thus can share their 

weights. The computation size is further reduced in 

subsequent layers through the use of a pooling mechanism 

(mostly max-pooling). Another added advantage of CNNs 

is their ability to preserve spatial information, which is 

extremely useful in image related tasks. 

 

 

Fig. 4  A Single layer of a Convolutional Neural Network 

We have reduced the size of each training image at the first 

layer of the convolutional neural network by scaling and 

then randomly cropping a 224 x 224 portion of the image. 

This is followed by batch normalization operation around 

the mean. Random cropping helps in generalizing the neural 

network to unseen possibilities while batch normalization 
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ensures early convergence of the network weights. The 

inference images also need to go through the above set of 

transformations. However, a random crop is not needed and 

it is instead center-cropped to conform to the input 

dimensions. 

The Convolutional Neural Network designed for this 

problem takes as input the correctly cropped and 

transformed images as described earlier. The architecture is 

depicted in Fig. 5. An optimized architecture has been 

decided upon by systematically tuning the hyper parameters. 

The transformed image is passed to a Convolutional Layer 

and subsequent max-pooling layer which produces 64 

feature maps each of dimension 75 x 75. This is followed 

by a sequence of six convolution-only layers which are 

finally max-pooled to arrive at 128 feature maps of 

dimension 19x19. The process is repeated (as depicted in 

Fig. 5). The output from the final convolutional layer is 

flattened to produce a linear vector of size 512. The 

subsequent network is a fully-connected neural network 

which culminates into an output of size 6 representing the 

probabilities of the 6 possible actions to be taken by the 

robot. The actions represented by the outputs are Forward, 

Backward, Strafe-Left, Strafe-Right, Rotate-CCW and 

Rotate-CW. 

The system is trained and tested on state-of-the-art Active 

Vision Dataset [4] details of which are described next. 

3.3. Dataset 

Active Vision Dataset is a dataset of images acquired by a 

real-world robot moving through a variety of indoor 

environments. It is specifically designed for tasks related to 

robot vision. It comprises of 30,000+ images across 15 

distinct environments out of which we use a subset of 

~10,000 images for this research. Images are randomly 

chosen without any bias. The source dataset also contains 

depth information for images and bounding boxes for object 

detection tasks. However, in this research we do not use this 

information as we have focused on the path planning task in 

a monocular SLAM setting. Sample images from the dataset 

are shown in Fig. 6. The annotation files for the dataset 

provide the movement action of the robot as it moves from 

one frame to another. The possible action labels provided 

are Forward, Backward, Strafe-Left, Strafe-Right, Rotate-

CCW and Rotate-CW. In the dataset, extent of movement 

of the robot after taking each action is kept constant. Sample 

annotation structure for the JSON annotation file is shown 

below: 

"000610000010101.jpg":{ 

 "bounding_boxes":[ 

  [1308,500,1331,520,25,5] 

 ], 

 "rotate_ccw":"000610000020101.jpg", 

 "rotate_cw":"000610000120101.jpg", 

 "forward":"000610000130101.jpg", 

 "backward":"", 

 "left":"000610002170101.jpg", 

 "right":"" 

}, 

"000610000020101.jpg":{ 

 "bounding_boxes":[ 

  [570,705,671,796,16,3] 

 ], 

 "rotate_ccw":"000610000030101.jpg", 

 "rotate_cw":"000610000010101.jpg", 

 "forward":"000610001100101.jpg", 

 "backward":"", 

 "left":"", 

 "right":"000610000140101.jpg" 

} 

 

In the annotation sample above, the robot at frame 

“000610000010101.jpg” moves to frame 

“000610000020101.jpg” as it takes the Rotate-CCW action. 
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In the next section we discuss the usage of the Active Vision 

Dataset in our experimental setting for use in our Path 

Planning problem along with the results and discussion. 

 

 

Fig. 6  Sample Images from different scenes of the Active Vision Dataset 

4. Experiments, Results and Discussion 

4.1 Experiments 

As mentioned earlier, the annotation files for the Active 

Vision Dataset provide the relative position of the robot as 

it moves from one frame to another. Using these annotation 

files, we extract a pair of images with an associated robot 

movement action that depicts the action as the robot moves 

between the pair of images. The pair of images are then 

converted into grayscale and fused into a single multi-

channel image. In the training phase these dual-channel 

images are fed into the network along with their action 

labels. The images thus produced are split into training and 

validation sets with a ratio of 80-20. These inputs are fed 

into the network in batches of 16 images until the weights 

converge to acceptable loss value for the validation set. The 

learning rate for the network is to 0.00001. 

An unseen test set comprising of around 2000 images is 

used for measuring the performance of the proposed 

architecture. In the inference phase, dual-channel images 

are generated from image pairs of the test set in a manner 

similar to the one used in the training phase. The pair of 

images depict starting and end way-point in a robot’s 

proposed path. Ground truth values of movement actions 

from the annotation files are used for calculating the 

system’s performance in the inference phase. 

4.2 Results and Discussion 

Training/Validation was conducted on ~50,000 dual-

channel images generated from the Active Vision Dataset 

as explained earlier. Although the source data contains only 

~10,000 images, the image pairs generated for each action 

label are much higher because a single image is related to 

many other images through different actions. The training 

loss and accuracy graphs over 10 epochs of training are 

presented in Figs. 7 and 8 respectively: 

 

 

Fig. 7  Training Loss Plot 

 

Fig. 8  Training Accuracy Plot 

The above plots clearly show that the validation accuracy is 

steadily increasing and the loss is respectively decreasing 

over successive epochs. This depicts the efficacy of the 

proposed method and validates it to be well-suited to the 

problem at hand. 

Performance results from testing the system on the test set 

of ~2000 images from unseen environments is presented 

below in the form of a confusion matrix (Fig. 9). As 

highlighted earlier in training dataset results, although the 

source data contains only ~2,000 images, the image pairs 

generated for each action label are much higher (approx. 

15,000 image pairs).  
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Fig. 9  Confusion Matrix 

It is clear from Fig. 9, that the majority of the results fall in 

the diagonal entries, which indicates that the proposed 

method correctly predicts the action to undertake for 

planning the robot’s path between two frames. The results 

also show that most cases of misclassification arise from 

confusion between the Left and CCW movement and Right 

and the CW movement. This is expected since Left and 

CCW Motion produce similar changes in the images 

captured by the robot. The same is true for Right and 

Clockwise actions.  

The overall test result metrics (Precision, Recall, Accuracy 

and F1-Score) are tabulated below: 

Table 1: Test Results 

S. No. Metric Value 

1. Precision 90.41 

2. Recall 90.14 

3. Accuracy 90.40 

4. F1-Score 90.21 

 

The final test accuracy is reported to be 90.40. Precision, 

recall and F1-Score are all similarly high. It can be deduced 

that increasing the number of training images pairs will 

further increase the accuracy and should result in reducing 

the misclassifications between similar action pairs.  

5. Conclusion  

Path planning for robots has generally been tackled using 

heuristic rule based approaches. In this work we have 

demonstrated how proven deep learning techniques can be 

used to improve path planning for autonomous robots. 

Results indicate that the technique can prove to be a viable 

alternative and can even lead to improvement in path 

planning.  
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