
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019

156

Manuscript received November 5, 2019

Manuscript revised November 20, 2019

REST and SOAP Aware for Web Service Composition

Ali Bentaleb1† and Ahmed Ettalbi2††,

IMS Research Team, ADMIR Laboratory, ENSIAS, Rabat-IT Center

 Mohammed V University in Rabat, Morocco

Summary
Web services composition is a prominent feature for systems

using service oriented architecture. Nowadays, most web

services are presented to be consumed either using Soap

especially for legacy system, and Rest for modern architectures.

In our paper, we deal about the challenge of composing these

different ways of serving services and propose a formal model for

automating the composition. Use case is presented to prove the

theoretical approach of our work.

Key words:
Rest, Soap, service Composition.

1. Introduction

Since introduced by Fielding [1, 2], the modern web is an

instance of the Representational State Transfer (REST).

The REST principles are: (1) any information that can be

named is a resource and the resource identifier (URI) is the

unique pointer to this resource. (2) HTTP operations can

be used to manipulate these resources. (3) REST

components communicate by transferring a representation

of the data in different formats as needed by the client. The

REST architecture is becoming more dominant in

nowadays networks due to its flexibility and easy

adaptation with HTTP protocol. Moreover, SOAP (Simple

Object Access Protocol) is becoming the legacy protocol

used for interacting with old systems that rely heavily on

object operations. In our paper, we address the concern of

automating the service composition between REST and

SOAP and also the quality of service when such

composition is occurred. The rest of this paper is organized

as follows: Sect. 2 provides background of the Technology

used. Section 3 presents our motivation and related works.

In Sect. 4 we present the problem and our proposed

solution. We conclude this paper by presenting our further

works.

2. Background

2.1 REST

REST is a web architectural style, the current web is an

instance of this architectural style [1,2]. There are three

main classes of architectural elements: data elements which

represent elements containing data across the web,

connecting elements which represent the API, interfaces

and connectors, and the processing elements which are the

servers and the components. When a link is selected, data

must be sent from one place to another, three possible

scenarios are presented: either to render the data in the

engine and send the rendered image to the client which is

the usual client server architecture; send data and engine to

client and let it do the work (the mobile object style) which

will overload the network and loses the hidden structure;

or send data with metadata and let the client choose based

on metadata, which will allow simple and scalable data

transfer but it will lose hidden info and the sender and

receiver must speak the same language.

REST allows the hybrid of these three possible scenarios:

it consists to send data with metadata and limited to

interfaces which will lower information detection, and the

components communicate by transferring a representation

of the data in different format as needed by the client.

2.2 SOAP

SOAP [4] is a messaging protocol based on XML

(eXtended Markup Language) used to exchange

information in a decentralized environment. SOAP

provides a way to communicate between applications over

HTTP. It is composed from two basic parts: the envelope

which contains information about the message and its

destination, and a data model with its format. The SOAP

message exchange relies heavily on XML and it follows

the following order: the server exposes its WSDL (Web

service description language), then the client gets the

WSDL to understand the data to be sent by which method,

and finally the server receives requests and responds to

them accordingly which means the heavy coupling between

the server and the client.

2.3 Service Composition and Qos Service

composition

The service composition is the action of composing

services in order to get one service that will fulfill client

need. Most services are designed to accomplish one task at

a time while clients are more interested to have elaborated

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019

157

services that solve one of their needs in an overall view

approach. The QoS (Quality of Service) service

composition is the QoS of the composed service [8].

3. Related Work

The problem of service composition has received a lot of

attention. The work in [3] is dealing with automating

composition for REST and SOAP services based on

ontology, however there is too much focus on REST with

neglecting SOAP particularities.

In [11], the need for a description machine understandable

language for composition is prominent; however the

proposed languages like WADL, WSDL2.0 are influenced

by the existing language and describe only input/output

interactions, while REST is about resources and state

transfer between resources.

In [4], a lot of effort has been done to compose services

using existing WSDL, but since SOAP is operation centric

and REST is resource centric, the approach has a lot of

difficulties. The Mashups are data applications that

combine data from different sources, e.g: database sources,

resource set and combine it. Mashups are usually limited to

data combining and thus not dealing with real REST and

SOAP service composition.

In [6], the authors have been through multiple articles

dealing with REST and service composition. They have

talked about Mashups and they have divided them in three

categories:

 - Data-oriented Mashups: convert, transform and combine

similar data elements represented by resources into one

single resource;

- Process-oriented Mashups: integrate with existing

business services new business services;

- Consumer-oriented Mashups: consumer can do its own

customization (eg Yahoo pipes inspired from UNIX pipes).

They have also tackles service discovery and composition.

The problem in REST is that the Client has to find the

desired web services prior to composing it with other

services, for SOAP, the UDDI is playing this role, while in

REST you need to look up for URLs. Researchers have

proposed different approaches for finding services. These

approaches are: Programmable web which collects and

categorizes published services, SA-REST (Semantic

annotations of web resources) which handles the semantic

part of the REST composition, and MicroWSMO which is

the micro format based on web service modeling ontology.

The article dealt also with Heterogeneous composition

approaches i.e. combining SOAP with REST, the authors

has proposed the extension of the BPEL (Business Process

Execution Language) to enable composition of both SOAP

and REST using the WSDL2.0 which is based on HTTP

bindings, this approach will help to describe the RESTful

services.

BPEL process can be published as RESTFul WS by

exposing certain parts of its execution state using the

REST primitives (PUT, POST, DELETE, and GET).

BPEL extensions map the resource abstraction and support

the corresponding interaction mechanisms and invocation

patterns: BPEL activity for each REST primitive to invoke

RESTful services, and dynamic resource representation to

expose the execution state of a BPEL process to clients,

then the revision of BPEL constructs to fit with REST

design principles.

The work in [12] presented the standardized interface for

placing a service order with all the parameters needed by a

group of professionals, the work focus on the REST API.

In[5], the authors tackle the security domain with QoS

Aware for REST composition, they were focused about the

decentralized and asynchronous aspect of REST.

In [7], the journal has gathered all the articles treating the

web service composition in a conceptual way.

The work in [9, 10] establishes the guidelines and the

basics of ontology and used it to describe the world in a

very abstracted way, which gives the foundation of

ontology science.

4. Problem Statement

4.1 Definitions for the new notions introduced in the

problem

In order to better understand the problem, we will

introduce concepts and their definition to ease the

understanding of the situation.

ESBplaceOrders

returnOrdersSpecs

getOrdersSpecs

selectOrderSpec

Fig. 1 request-response flow

- The client sends a request orders to a specified URL.

- The URL and the HTTP method are combined to identify

which action to trigger.

- When a URL is triggered with the GET http Method, a

request is submitted to the ESB (Enterprise service Bus).

 - The ESB adds the necessary properties to the message,

and then submits the message to the provider.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019

158

- The provider uses a technical catalog based on the

specification sent for each order then returns the order,

with its characteristic and the supported delivery: in our

work, we are more focused on REST and SOAP.

Since modern clients are using REST architecture, we

suppose that the client will be placing orders using REST

and specifying the order with JSON (JavaScript Object

Notation).

For the sake of simplicity, we suppose that the client has a

functional catalog which associates the desired function

with its mapping to an order expressed in JSON format.

The set of desired functions will be mapped to a JSON

order which contains the sum of all desired order items.

Table 1: order Properties and description.
Item Description
order One or many orders

orderId Unique ID for the order

orderAttributes A set of order attributes, each element has
an attribute name and an attribute value

orderMethod The functional method Name to be
invoked for the order

httpAction The action to be performed
orderMeta A set of order MetaIds

orderMetaId Unique Id for the order MetaID
orderMetaPropertie

s
Properties with name and values for the

QoS of the order

Table2: placeOrders in JSON

{"orders": [{

"order": {

"orderId": "100",

"orderAttribute": [{

"name": "Attribute1",

"value": "value1"

}, {

"name": "Attribute2",

"value": "value2"

}

]

},

"orderMethod": {

"methodId": "method1"

},

"HttpAction": "DELETE"

}, {

"order": {

"orderId": "102",

"orderAttribute": [{

"name": "Attribute12",

"value": "value12"

}, {

"name": "Attribute22",

"value": "value22"

}

]

},

"orderMethod": {

"methodId": "method12"

},

"HttpAction":"POST"

}

],

"id": "1001",

"ordersDate": "19/11/2019 22:22:00"

}

The list of orders is been sent to the ESB, each order is

identified by an orderId and contains attributes and values.

Attributes could be one to many attributes, we specify the

orderMethod that is retrieved from the business catalog

which match the functional need asked by the client, and

we specify the HTTP action to use. The ESB processes the

message and assign an orderId unique to the order and add

the header information’s for routing and retrieving back

the response.

Table3: getOrderSpecs in JSON

{"orders": [{

"order": {

"orderId": "100",

"orderAttribute": [{

"name": "Attribute1",

"value": "value1"

}, {

"name": "Attribute2",

"value": "value2"

}

]

},

"orderMethod": {

"methodId": "method1"

},

"HttpAction": "DELETE",

"HttpID": 701,

"OrderMetaInfo": [{

"estimatedTime": 0.01,

" throughput ": 0.7,

"cost": 0.23,

"availability": 1,

"archi": "REST",

"orderMetaId":"8001"

},

"estimatedTime": 0.012,

"throughput": 0.76,

"cost": 0.23,

"availability": 1,

"archi": "SOAP",

"orderMetaId":"8002"

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019

159

}], {

"order": {

"orderId": "102",

"orderAttribute": [{

"name": "Attribute12",

"value": "value12"

}, {

"name": "Attribute22",

"value": "value22"

}

]

},

"orderMethod": {

"methodId": "method12"

},

"HttpAction": "POST",

"HttpID": 702,

"OrderMetaInfo": {

"estimatedTime": 0.02,

"throughput ": 0.4,

"cost": 0.25,

"availability": 1,

"archi": "SOAP",

"orderMetaId":"8001"},

}

],

"id": "1001",

"ordersDate": "19/11/2019 22:23:00",

"ordersStatus": "finished"

}

Once the ESB submits the orders to the provider, the

provider details for each order the set of orderItemMeta

which contains the QoS of the service and a uniqueId for

the orderItemMeta in case it is selected to launch the

execution of the order. Moreover, the response returns the

architecture supported to execute the order. For sake of

simplicity, we are focused on SOAP and REST.

5. Advantage of the Approach

5.1 Benefits on Overall Architecture

The proposed architecture and approach will help the

client be more involved in orderings and choosing what is

more convenient for them.

The introduction of the ESB on the middle of the

architecture will reduce the technical details for the client

and help route, enrich and isolate the client side from the

provider’s side.

More security is provided by introducing the new layer that

will separate the client side from the server side.

5.2 Standardization of the Exchange Messages

The ordering way is toward the standardization of the

ordering which in such case, we need to have the set of the

orders, the id of the orders and their characteristic as

wished by the client. This need captures will then be

translated lately to technical orders with more information.

5.3 Better Visualization of Orders Information

Our proposed solution is to respond in the same order and

fulfill it with more technical details especially for the

orderMetaInfo which will bring more information on

quality of service and the way to deliver it in our case

either by SOAP or REST. Then it will make the path to let

the client decides in case the number of returned

orderMetaInfo is reduced. In case the number is more

significant then we can proceed with the optimization

approaches previously demonstrated [8].

6. Conclusion and Perspective Works

In this work we highlight the advantages of RESTful Web

Services and propose an approach to work with both

SOAP and Restful web services. The approach also

emphasizes the return of quality of service for each service

introduced in the composition. In this way we can refer to

the previous work [8] done on optimizing the composition

of web service with minimal costs and better overall

performance. The approach proposes a standardized

interface in which a client can perform orders, then our

ESB with the consultancy of the providers will return for

each order a set of orderMetaAttributes which they will all

fulfill the same functional tasks but with different QoS. We

can then help the customer choose to optimize the

convenient combination of the orders or he can have his

own choice of composing the orders as preferred. As a

perspective, we want to validate the approach with fewer

hypotheses and using the ontology as a mechanism for

better automating the composition.

References
[1] R. T. Fielding. Architectural Styles and the Design of

Network-based Software Architecture. PhD thesis,

University of California, Irvine, 2000.

[2] R. T. Fielding and R. N. Taylor. Principled design of the

modern web architecture. In ICSE, pages 407–416, 2000.

[3] H. Zhao. Towards Automated RESTful Web Service

Composition. 2009 IEEE International Conference on Web

Services

[4] World Wide Web Consortium (W3C) Working Draft 3:

Web Services Description Language (WSDL) Version 1.2

(2003). http://www.w3.org/TR/wsdl12/

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019

160

[5] C. Supelveda. QoS aware descriptions for RESTful service

composition: security Domain. Springer Science+Business

Media New York 2014.

[6] M. Garriga, C. Mateos. RESTful service composition at a

glance: A survey. Journal of Network and Computer

Applications, 2015.

[7] https://www.sciencedirect.com/topics/computer-

science/service-composition.

[8] A.BENTALEB, A.ETTALBI. Toward Cloud SaaS for web

service composition optimization based on genetic

algorithm.CloudTech 2016, Marrakech, Morocco.

[9] https://www.w3.org/Submission/2004/SUBM-SWRL-

20040521

[10] J. McCarthy. Situations, actions and causal laws. Technical

report, AI Laboratory, Stanford University, 1963.

[11] M. J. Hadley. Web application description language (wadl)

specification. https://wadl.dev.java.net, 2006

[12] Service Ordering Management API REST Specification:

https://www.tmforum.org/resources/specification/tmf641-

service-ordering-api-rest-specification-r18-5-0/, 04/05/2019

https://www.sciencedirect.com/topics/computer-science/service-composition
https://www.sciencedirect.com/topics/computer-science/service-composition
https://www.w3.org/Submission/2004/SUBM-SWRL-20040521
https://www.w3.org/Submission/2004/SUBM-SWRL-20040521
https://www.tmforum.org/resources/specification/tmf641-service-ordering-api-rest-specification-r18-5-0/
https://www.tmforum.org/resources/specification/tmf641-service-ordering-api-rest-specification-r18-5-0/

