
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019

202

Manuscript received November 5, 2019

Manuscript revised November 20, 2019

Performance Analysis of Software Defects Prediction using Over-

Sampling (SMOTE) and Resampling

Mohammad Zubair Khan1, Reyadh Alluhaibi2

1,2Department of Computer Science College of Computer Science and Engineering

Taibah University, Madinah Kingdom of Saudi Arabia

Summary
The performance of software defect prediction heavily suffers

from data-imbalance. In this article, the imbalance problem using

SMOTE and resampling methods has been solved. The

performance of software defects prediction with imbalance data

and without imbalance data has also been studied. Experiments

with WEKA 3.8.3 have been conducted and the performance of

different classifiers are calculated using oversampling and

resampling methods. Further, for statistical analysis paired T-

TEST is used to validate the results. The effectiveness of

oversampling and resampling methods for different classifiers are

also checked.

The results show that after oversampling and resampling, the

performance of classifiers has significantly increased and the

winner classifiers are bagging AdaBoost and Random Forest in

many cases.

Keywords:
SDP, Software Defect Prediction, Oversampling, Resampling,

SMOTE, Classifiers, NaiveBase, SVM, AdaBoost, Bagging,

RandomForest.

1. Introduction

Software defect prediction is a vital issue in the field of

software engineering research to help the software

engineers and programmers to improve the quality and

cost-effectiveness of the software package. As the data is

increasing the size of software, the complexity is also

increasing side by side. Software defects are costly thus

finding the defects before delivering them is vital for an

organization. Software defect prediction SDP is a field of

machine learning for predicting. There are defects in

software or not based on previously available software data.

Thus, it is a learning problem over software metrics that are

in numbers to reflect the complexity of software such as

size and control. The software metrics dataset commonly

uses Line of Code (LOC), Cyclomatic Complexity Metrics

(CCM) [1], Halstead Complexity Metrics (HCM) [2] and

Object-Oriented Metrics (OOM) [3]. For our experiments,

we use the NASA [10] dataset for software defects

prediction.

Many types of research in SDP show that there is a

correlation between LOC and predicting defects [4,5].

Chidambaram and Kemerer[6] also proposed may software

metrics called (CK) metrics for object oriented system. The

CK metrics are weighted method per class (WMC), depth

of inheritance tree (DIT) and many children (NOC) and so

on. Other object oriented metrics are available in the

literature [7,8,9]. In SDP, the data of interest is a defective

class module, as per dataset the defective modules are very

less, and the non-defective class module is in majority.

Therefore, we can say that the available dataset for the

experiment is class-imbalanced. A dataset is called class

imbalanced if non-interest classes are in majority in

compare to interest classes [2].

Since software imperfection forecast has depended on

software metrics datasets, it cannot be avoided from the

class- imbalance issue. Class- imbalance influences the

precision of defects expectation and empowers the

indicator cannot predict defective modules well. In this

manner, it is essential for defect expectations to tackle the

class-imbalance issue. However, the class imbalance

problem is very common in classification. With the

development of Data mining techniques, many research

works have done in this regard to solve the class imbalance

problem in SDP [11, 12].

Initially, a few scientists endeavored to utilize cost-touchy

learning how to take care of the class imbalance issue. Siers

and Islam [13] proposed a technique utilizing a cost delicate

choice decision forest and casting a ballot to take care of

the class-imbalance issue in SDP. Arara and Ayanba [14]

utilized the cost-delicate neural network to set the expenses

of misclassifying the positive and negative classes with

applicable coefficients and improved the performance of

prediction. Zhou and Liu [15] applied cost-touchy neural

systems to SDP and they defended which strategies are

effective in preparing cost-sensitive neural systems and

presumed that threshold moving was fitting for preparing

cost-sensitive neural systems.

Secondly, some researcher uses sampling techniques like

oversampling, under-sampling and resampling to resolve

data imbalance problem. Chawla et al. [16] proposed a

SMOTE algorithm that used original instances of minority

class to synthesize new samples of a minority class and then

append them to datasets.

Thirdly, some researcher uses ensemble learning to

improve or resolve-the-data imbalance problem. Chawla et

al. [17] tried to combine SMOTE with boosting procedure

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 203

to improve the accuracy in prediction. Wang et al. [18]

proposed the AdaBoost.NC, which utilized the error

correlation data into the loads of preparing information, and

found that it was superior to standard AdaBoost. Wang [19]

improved AdaBoost.NC and proposed another variant of

AdaBoost by changing the parameters during training.

Laradji et al. [17] endeavored to utilize the average

probability ensemble (APE) figuring out how to take care

of class imbalance issues. Khoshgoftaar et al. contemplated

SMOTEBoost [17] and Random Under-Sampling (RUS)

Boost [20], analyzed their performance, and demonstrated

that bagging was superior to boosting for noisy and class-

imbalanced information [21]. Cholmyong Pak,Tian Tian

Wang and Xiao Hong Su [41] proposed a software defect

prediction using SMOTE to coup up with data imbalance

problem by changing different parameters in SMOTE

algorithm.

Finally, researchers also use the resampling methods. These

methods are the process of frequently drawing samples

from imbalance dataset and refitting a class model on each

sample to learn more about the fitted model. Resampling

methods are costly in terms of execution because they

require repeating the same statistical method on N different

subset of data. It is a kind of bootstrap, Cordeiro, and Neves

[23, 24], which use exponential smoothing, and bootstrap

in time series for forecasting. Now as per the study, the

research [19] says that data imbalance can improve at the

data label and algorithm label. However, the algorithm

depends on data structure and improvement of training data

is more significant than the selection of classification

algorithms [22]. Here, we focus on sampling methods

specially resample and SMOTE. If oversampling happened

by duplication and oversample data is the same as original

so we use 10-fold cross-validation [25]. However, SMOTE

uses the same data to synthesize the new data so we can say

that it is a better option for training data and improving the

performance of the algorithm.

In this article, we learned about certain issues that are

looked in SDP using SMOTE and resampling. We perform

tests for examining how the level of an appended minority

class and the quantity of nearest neighbor, affected the

performance of SDP. We used a paired t-test to analyze the

statistical significance of results. We also propose the

effectiveness of SMOTE and resampling. The Dataset in

this experiment is from the PROMISE (NASA) repository

[10]. We selected commonly used classifiers to compare the

performance where the result shows that oversampling by

SMOTE and resampling was effective in the case of

Random Forest, Bagging, AdaBoost and J48-consolidated.

The paper organization is as follows: in Section 2, we

describe the background of paired t-test along with the

example, SMOTE and resample. In Section 3 the

commonly used classifiers are discussed, Section 4

conducts the experiment design, whereas Section 5

analyzes of results of WEKA-3.8.3. In the end, conclusion

and future scope are provided.

2. Background

Statistics is vital for analyzing the results; thus, we are using

paired t-tests. “The paired t-test is used to compare two data

means; here two-samples in which-observations-in-one

sample can be paired-with observation in another sample

[26].” For example, before and after observation on the

same subject or a comparison of two algorithms of

measurements or two different treatments where treatments

or measurement applied on the same subject.

2.1 Procedure for paired t-test method [26]

Suppose a sample of n Dataset were given a diagnostic

(algorithm) test before resampling or oversampling

(SMOTE) on a particular module and again perform the test

after resampling and SMOTE. To find out improvement in

the performance of Algorithm results or test scores. The t-

test method works as follows.

Let 𝑥 = 𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑆𝑀𝑂𝑇𝐸 𝑜𝑟 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, and

let 𝑦 = 𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 𝑎𝑓𝑡𝑒𝑟 𝑆𝑀𝑂𝑇𝐸 𝑜𝑟 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

To test the hypothesis of no difference when means of

before and after, we shall proceed as below:

Compute the difference (ⅆ𝑖 = 𝑦𝑖 − 𝑥𝑖) between above two

observations, for all the value of ⅈ, the difference is positive

or negative

Compute the mean difference (𝑑̅)

Compute the standard deviation, S

Compute the standard error of mean difference 𝑆𝐸(𝑑̅) =
𝑠

√𝑛

Compute t-test as |𝑡| =
𝑑̅
𝑆

√𝑛

~𝑡𝑛−1

Where 𝑆2 =
1

𝑛−1
∑(ⅆ𝑖 − 𝑑̅)

2
 and 𝑛 is sample size.

Compute the p-value corresponding to calculated t.

Compare p with the level of significance α (pre-assign

value)

If 𝑝 ≤ α then means differ significantly

Example: let's use the calculated value of accuracy for

algorithm Random Forest before SMOTE =A and after

SMOTE =B

ACCURACY

A B

84.72 83.73

77.24 81.09

82.4 84.29

98.3 98.27

76.44 86.58

93.04 93.81

97.84 96.89

87.58 87.13

90.05 92.06

78.95 82.7

https://www.worldscientific.com/doi/abs/10.1142/S0218194018500237
https://www.worldscientific.com/doi/abs/10.1142/S0218194018500237
https://www.worldscientific.com/doi/abs/10.1142/S0218194018500237

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 204

Solution:

Paired t-test
Paired-Samples-Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 A 86.66 10 8.083 2.556
B 88.66 10 6.156 1.947

Karl Pearson Correlations

Paired_Samples_Correlations

 N Correlation Sig.

Pair 1 A & B 10 .923 .000

From the above table since 𝑝 ≤ α = 0.05, highly Significant

T-Test – Paired_Samples_Test

First post: The pair of factors being tried and the request the

subtraction was completed. (On the off chance that you

have indicated more than one variable pair, this table will

have different columns.)

“Mean: The-average-of-the-difference-between-the-

values-of-variables.

Standard deviation: The standard deviation of the

difference scores.

The standard error means: The standard error (standard-

deviation divided-by-the-square-root-of-the sample-size).

Used-in-computing both-the-test statistic-and-the-upper

and-lower-bounds of the confidence interval.

t: The-test statistic- (denoted t) for-the-paired t-test.

df: The degrees-of-freedom for this test.

Sig. (2-tailed): The-p-value corresponding-to-the given-

test-statistic t-with degrees-of-freedom-df [26]”.

From the above analysis 𝑝 = 0.093 ≤ α = 0.10

There is a significant difference between RF before

SMOTE i.e. A – RF after SMOTE i.e. B at 90% Confidence.

The above result shows that the performance of random

forest after SMOTE is increasing with 90% confidence.

2.2 Performance Metrics for software defect

prediction

Confusion Matrix is commonly utilized in assessing the

classification method. It appears in Table 1. TP is True -

Positive, TN is True - Negative, FP is false - Positive, and

FN is false - Negative. “The bigger TP and TN, the more

precise (accurate) the classifier is. All measurements are

taken from the Confusion Matrix [25]”. In terms of

software defect prediction the TP, TN, FP, and FN define

as

True Positive
(TP)

A faulty software instance classified - as -
defective.

True Negative

(TN)

A non-defective software instance, classified as

clean.

False Positive
(FP)

A non-defective software instance classified - as
- defective

False Negative

(FN)

A defective software instance classified as non-

defective

Table 1: Confusion Matrix

 Predicted:

NO

Predicted: YES Total

Actual: NO TN FP N

Actual: YES FN TP p

Total N’ P’

As per rule the accuracy (it is additionally called the

acknowledgment rate) of a classifier is defined as follows

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (1)

True Positive Rate is also called as sensitivity. This is

defined as follows:

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

False - Positive - Rate is the proportion of clean software.

This is wrongly classified as faulty. The FPR can be defined

as follows:

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3)

F-score is a harmonic mean of precision and recall. This

can be defined as follows

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (4) 𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (5)

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = (2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
𝑅𝑒𝑐𝑎𝑙𝑙) (6)

AUC calculates the area under a ROC – curve. This can be

defined as follows:

𝐴𝑈𝐶 =
1+TPR+FPR

2
 (7)

“G-measure is another measure that also used in software

defects prediction. G-measure is defined as harmonic -

mean of - recall and - specificity. Probability - of - False -

Alarm (PF) is the - ratio - of clean instances wrongly -

classified - defective (FP) among the total clean instances

(FP+TN) [25]”.

𝑃𝐹 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) (8)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 − 𝑃𝐹 = 𝑇𝑁/𝐹𝑃 + 𝑇𝑁 (9)

𝐺 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 +
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (10)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 205

2.3 Types of Classifiers

There are several classifiers available in the literature.

Some are vital for software defect prediction listing in the

Table 2.

Table 2: Type of classifiers use in WEKA for Prediction
No. Name Description Capabilities

1 -J48 “A-Class for producing a pruned or

unpruned C4.5.Java implementation of
C4.5 it’s a kind of Tree [34]”.

“-Class – Binary-class, Missing-class-values, Nominal-class

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-
attributes, Missing-values, Nominal-attributes, Numeric-attributes,

Unary-attributes

-Interfaces -- Draw-able, Partition-Generator, -Sourceable,
Weighted-Instances-Handler.

-Additional

Minimum number of instances: 0[34]”

2 -Random Forest "A-Class for building a forest of

random-trees. It is known as an

ensemble learning method [35]"

“-Class -- Binary-class, Missing-class-values, Nominal-class,

Numeric-class

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-
attributes, Missing-values, Nominal-attributes, Numeric-attributes,

Unary-attributes

-Interfaces: -Drawable, Partition-Generator-Randomizable,
Weighted-Instances-Handler

Additional

Minimum number of instances: 1 [35]”

3. -SMO “Actualizes John Platt's consecutive

negligible improvement algorithm for

preparing a support vector classifier. It
is otherwise called Support Vector

Machine for example SVM [36, 37]”

“-Class – Binary-class, Missing-class-values, Nominal-class

-Attributes -- Binary-attributes, Empty-nominal-attributes, Missing-

values, Nominal-attributes, Numeric-attributes, Unary-attributes
-Interfaces -- Weighted-Instances-Handler

Additional

Minimum number of instances: 1[35]”

4. --Naïve Bayes “A-Class for a Naive Bayes classifier
using estimator classes. It is based on

the Bayes' theorem [38]."

“-Class -- Binary-class, Missing-class-values, Nominal-class
Attributes -- Binary-attributes, Empty-nominal-attributes, Missing-

values, Nominal-attributes, Numeric-attributes, Unary-attributes

Interfaces -- Weighted-Attributes-Handler, Weighted-Instances-
Handler

Additional

Minimum number of instances: 0 [38]”

5. --AdaBoost “A-Class for -boosting a nominal class

classifier using the Adaboost M1

method [18].”

“-Class -- Binary-class, Missing-- values, Nominal-class

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-

attributes, Missing-values, Nominal-attributes, Numeric-attributes,
Unary-attributes

Interfaces -- -Randomizable, -Sourceable, Weighted-Instances-

Handler
Additional

Minimum number of instances: 1 [18]”

6. --Bagging "A-Class for bagging a -classifier to
reduce the discrepancy. It is one of the

ensemble procedures, it uses a

sequence of numerous base classifiers
to generate a better composite

classifier [39].”

“-Class -- Binary-class, Date-class, Missing-class-values, Nominal-
class, Numeric-class

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-

attributes, Missing-values, Nominal-attributes, Numeric-attributes,
Unary-attributes

-Interfaces -- Partition-Generator, -Randomizable, Weighted-

Instances-Handler
Additional

Minimum number of instances: 1 [39]”

7. --Simple

Logistic
regression

“A-Classifier for construction linear

logistic regression -models. It is a -
statistical technique to predict the -

probability of -categorical dependent-

variable [40].”

“-Class -- Binary-class, Missing-class-values, Nominal-class

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-
attributes, Missing-values, Nominal-attributes, Numeric-attributes,

Unary-attributes

Interfaces -- Weighted-Instances-Handler
Additional

Minimum number of instances: 1 [40]”

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 206

3. Sampling Strategies

The sampling method plays an important role in solving

data imbalance problems. Sampling procedures include

oversampling under-sampling and resampling. In the

oversampling method, it randomly selects samples of a

minority class and adds them to the dataset [27]. In the

under-sampling methods, it randomly select the majority

class and remove them from dataset for balance the class.

Both techniques have a problem like in under-sampling if

majority class remove from dataset because it may be lost

the value able information from data, and in under-

sampling methods, it would add many samples of minority

class to the dataset. This leads to overfitting of minority

class [28]. Resampling methods are usually utilized for

class imbalance problem. Their importance over additional

sampling procedures is that they are simply portable. Albeit

such methods can be very simple to implement but tuning

with them adequately is not a simple task. It is not clear

which method is more effective [29, 30]. There are many

versions of oversampling and under-sampling available.

“Seba Susan, Amitesh Kumar says data imbalance problem

can be achieved before classification by a novel three steps

intelligent under-sampling of majority class monitored by

oversampling of a minority class, which is again monitored

by intelligent under-sampling of the minority class [29]”.

That has now turned into the majority class due to

oversampling. Kubat at.el. [31] proposed an uneven

selection under-sampling method, which especially

removes only negative samples and keeps all positive

samples. Andrew Estabrooks et.al.[30] tried to endeavor to

consolidate an under-sampling with an over-sampling for

adjusting imbalanced data. By the combination of under-

sampling and oversampling could not remove their

weaknesses [16]. Pelayo at.et [32] looked at a few sampling

methods and found that at 0.05 of significance level, the

impact of under-sampling was critical, and the impact of

over-sampling was not significant. “SMOTE algorithm is

an only oversampling method which uses original samples

of minority class to append to dataset [16, 17]”. “It is useful

than random oversampling and under-sampling for solving

data imbalance [33]”. The main algorithm SMOTE as

follow:

Algorithm SMOTE (T, N, k) (Source: [17])

𝐼𝑛𝑝𝑢𝑡: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑇; 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑆𝑀𝑂𝑇𝐸𝑁%; 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑎𝑟𝑒𝑠𝑡
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑘

𝑂𝑢𝑡𝑝𝑢𝑡: (
 𝑁

100
) ∗ 𝑇 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(1) 𝑖𝑓 𝑁 < 100

(2) 𝑡ℎ𝑒𝑛 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒 𝑡ℎ𝑒 𝑇 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(3) 𝑇 = (
𝑁

100
) ∗ 𝑇

(4) 𝑁 = 100

(5) 𝑒𝑛𝑑𝑖𝑓

(6) 𝑁 = (𝑖𝑛𝑡)(
𝑁

100
)

 (7) 𝑘 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

(8) 𝑛𝑢𝑚𝑜𝑓𝑎𝑡𝑡𝑟𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

(9) 𝑆𝑎𝑚𝑝𝑙𝑒[][:]𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
 (10)𝑛𝑒𝑤 𝑖𝑛𝑑𝑒𝑥: 𝐾𝑒𝑒𝑝𝑠 𝑎 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑜 0
(11) 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐[][]: 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 (12)𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑇
(13) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑒 (𝑁, 𝑖, 𝑛𝑛𝑎𝑟𝑟𝑎𝑦)
(14) 𝑒𝑛𝑑𝑓𝑜𝑟

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑒(𝑁, 𝑖, 𝑛𝑛𝑎𝑟𝑟𝑎𝑦) ⁄⁄ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑎𝑚𝑝𝑙𝑒𝑠.
(15) 𝑤ℎ𝑖𝑙𝑒 𝑁 ≠ 0

(16) 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1 𝑎𝑛𝑑 𝑘 𝑐𝑎𝑙𝑙 𝑖𝑡 𝑛𝑛. 𝑇ℎ𝑖𝑠 𝑠𝑡𝑒𝑝 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑜𝑛𝑒
𝑜𝑓 𝑡ℎ𝑒 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑖

(17) 𝑓𝑜𝑟 𝑎𝑡𝑡𝑟 = 1 𝑡𝑜 𝑛𝑢𝑚𝑎𝑡𝑡𝑟𝑠

(18) 𝑑𝑖𝑓 = 𝑆𝑎𝑚𝑝𝑙𝑒[𝑛𝑛𝑎𝑟𝑟𝑎𝑦[𝑛𝑛]][𝑎𝑡𝑡𝑟] − 𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟]
(19) 𝑔𝑎𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1

(20) 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐[𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥][𝑎𝑡𝑡𝑟] = 𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟] + 𝑔𝑎𝑝 ∗ 𝑑𝑖𝑓

(21) 𝑒𝑛𝑑𝑓𝑜𝑟

(22) 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥 + +

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 207

(23) 𝑁 = 𝑁 − 1

(24) 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒

(25) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 (∗ 𝑒𝑛𝑑 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑒 ∗)

Table 3: Example of production of synthetic samples (SMOTE).

𝑬𝒙𝒂𝒎𝒑𝒍𝒆: 𝐿𝑒𝑡 𝑢𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 (5,7), (2,8), (6,8) 𝑎𝑛𝑑 (6,8)

𝐿𝑒𝑡 (5,7)𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝑘 = 3, 𝑠𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑎𝑟𝑒 (2, 8), (6, 8), (6, 8)

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 (6, 8)𝑖𝑠 𝑜𝑛𝑒 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑟𝑒𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠.
𝑥1 = 5, 𝑦1 = 6 , 𝑦1 − 𝑥1 = 6 − 5 = 1

𝑥2 = 7, 𝑦2 = 8 , 𝑦2 − 𝑥2 = 8 − 7 = 2

𝑆𝑜, 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑓1, 𝑓2) = (5,7) + 𝑟𝑎𝑛𝑑(0 − 2) ∗ (1, 2)

𝑟𝑎𝑛𝑑(0 − 2)𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑟𝑒𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑛 0 𝑎𝑛𝑑 2

4. Experiment Method

4.1 Software defect dataset Repository

The Software defect dataset MATRICS used in this article

listed in Tables 4 and 5. We use the PROMISE Repository

for this purpose.

Table 4: Dataset attributes from the PROMISE repository

Metric

Type

Metric Names -

CM1

-

KC1

-

KC2

-

MC1

-

MC2

-

PC1

-

PC2

-

PC3

-

PC4

-

PC5

McCabe 01. Cyclomatic-Complexity YES YES YES YES YES YES YES YES YES YES

02. Cyclomatic-Density YES YES YES YES YES YES YES YES YES YES

03. Decision Density YES YES YES YES YES YES YES YES YES YES

04. Design Density YES YES YES YES YES YES YES YES YES YES

05. Essential Complexity YES YES YES YES YES YES YES YES YES YES

06. Essential Density YES YES YES YES YES YES YES YES YES YES

07. Global Data Density YES YES YES YES YES YES YES YES YES YES

08. Global Data Complexity YES YES YES YES YES YES YES YES YES YES

09. Maintenance Severity YES YES YES YES YES YES YES YES YES YES

10. Module Design

Complexity

YES YES YES YES YES YES YES YES YES YES

11. Pathological

Complexity

YES YES YES YES YES YES YES YES YES YES

12. Normalized Cyclomatic

Complexity

YES YES YES YES YES YES YES YES YES YES

Raw

Halstead

13. Number of Operators YES YES YES YES YES YES YES YES YES YES

14. Number of Operands YES YES YES YES YES YES YES YES YES YES

15. Number of Unique

Operators

YES YES YES YES YES YES YES YES YES YES

16. Number of Unique

Operands

YES YES YES YES YES YES YES YES YES YES

Derived

Halstead

17. Length (N) YES YES YES YES YES YES YES YES YES YES

18. Volume (V) YES YES YES YES YES YES YES YES YES YES

19. Level (L) YES YES YES YES YES YES YES YES YES YES

20. Difficulty (D) YES YES YES YES YES YES YES YES YES YES

21. Intelligent Content (I) YES YES YES YES YES YES YES YES YES YES

22. Programming Effort (E) YES YES YES YES YES YES YES YES YES YES

23. Error Estimate (B) YES YES YES YES YES YES YES YES YES YES

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 208

24. Programming Time (T) YES YES YES YES YES YES YES YES YES YES

LOC

COUNT

25. LOC Total YES YES YES YES YES YES YES YES YES YES

26. LOC Executable YES YES YES YES YES YES YES YES YES YES

27. LOC Comments YES YES YES YES YES YES YES YES YES YES

28. LOC Code and

Comments

YES YES YES YES YES YES YES YES YES YES

29. LOC Blank YES YES YES YES YES YES YES YES YES YES

30. Number of Lines

(opening to closing bracket)

YES YES YES YES YES YES YES YES YES YES

Misc. 31. Node Count YES YES YES YES YES YES YES YES YES YES

32. Edge Count YES YES YES YES YES YES YES YES YES YES

33. Branch Count YES YES YES YES YES YES YES YES YES YES

34. Condition Count YES YES YES NO YES YES YES YES YES YES

35. Decision Count YES YES YES NO NO YES YES YES YES YES

36. Formal Parameter

Count

YES YES YES NO NO YES YES YES YES YES

37. Modified Condition

Count

YES YES YES NO NO YES YES YES YES YES

38. Multiple Condition

Count

YES YES YES NO NO YES YES YES YES YES

39. Call Pairs YES YES YES NO NO YES YES YES YES YES

40. Percent Comments YES YES YES NO NO YES YES YES YES YES

Error 41. Error Count YES YES YES NO NO YES YES YES YES YES

42. Error Density YES YES YES NO NO YES YES YES YES YES

Table 5: Dataset from the PROMISE repository

No. Dataset Instance
Defective

Instance

Non

defective

Instance

𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝑁𝑜𝑛 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒
 Data Imbalance Rate (%)

1. CM1 327 42 285 0.147 12.8440

2. KC1 1177 309 868 0.355 26.2531

3. KC3 216 58 158 0.367 26.8518

4. MC1 2002 86 1916 0.044 04.2957

5. MC2 173 93 80 1.162 53.7572

6. PC1 732 108 624 0.173 14.7540

7. PC2 787 81 706 0.114 10.2922

8. PC3 1095 172 923 0.186 15.7077

9. PC4 1296 202 1094 0.184 15.5864

10. PC5 1748 512 1236 0.414 29.2906

4.2 Experiment Design

In this article, three experiments have been performed on

DATASET, SMOTED-DATASET, and Resampled-

DATASET showed in Figures 4-6. For experiments, we use

WEKA-3.8.3 tools for the given Dataset in Table 5. “In

these experiments, we use the 10-fold cross-validation to

estimate the performance of software defect prediction

[25]”. For all the classifiers, all their parameters are set by

defaults in the WEKA tool. Here we are using 6

classification algorithms like NaiveBase, SVM, J48,

AdaBoost, Bagging and Random Forest on raw Dataset (-

CM1, -KC1, -KC3, -MC1, -MC2, -PC1, -PC2, -PC3, -PC4,

-PC5), SMOTED dataset and Resampled Dataset, as shown

in Figures 1 and 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 209

Fig. 1 Experiment on DATASET

Fig. 2 Experiment on SMOTED-DATASET

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 210

Fig. 3 Experiment2 With Resampling

5. Results Analysis

The experiment results shows in Tables 7-12. Here in the

experiment set the level of significanceα = 5% or 0.05.

The sign “v” represents that p cost is lesser than 0.05, which

means the null hypothesis is rejected. The sign "*"

represents that p cost is not smaller than 0.05, which means

the hypothesis is accepted. In Tables 6-11, we show the

Accuracy and F-measure score of ten datasets.

5.1 A t-test on imbalanced dataset

We can see that NaiveBase, our base for a correlation set

apart as (1) has unique accuracy of 10 datasets on the

problem. This outcome is compared to the other five

algorithms and indicated with a number and mapped in a

legend at the base under the table7 of results.

Note the "*" alongside J48 on PC1 dataset results. This

demonstrates the outcomes are altogether not quite the

same as the NaiveBase results, yet the score is lower. SVM,

J48, AdaBoost, Bagging and Random Forest do not have

any character alongside their outcomes in Table 6,

demonstrating that the outcomes are essentially not quite

the same as NaiveBase. On the off chance that an algorithm

had results bigger than the base algorithm and the

difference was significant, a bit "v" would show up beside

the outcomes.

Therefore, in Table 6, there is 2 victory of SVM over

NaiveBase and 8. However, we cannot say they are

significantly accepted or rejected on p-value 0.05. We also

found that in J48 has one hypothesis of no difference is

rejected on the PC3 dataset and one hypothesis of no

difference is accepted on the PC1 dataset and 8 again

cannot say hypothetically accepted or rejected. In Adaboost

3 victory achieved mean null hypothesis is rejected on

dataset PC3, PC4, PC5, no accepted and 7 places. We again

cannot say that hypothetically accepted or rejected. In

bagging, the algorithm is a winner over NaiveBase at

4places mean null hypothesis is rejected at 0.05 and we

can’t say the hypothesis is accepted or rejected at 6 places.

In Random Forest the algorithm again winner at 3 places

which means a null hypothesis is rejected at 0.05 and we

cannot say whether it is accepted or rejected at 7 places.

Table 6: Accuracy on imbalanced Dataset

ACCURACY

Dataset NB (1) SVM (2) J48Consolidated(3) AdaBoost (4) Bagging (5) RF (6)

-CM1 81.34 87.16 72.84 83.79 85.33 84.72

-KC1 73.4 74.09 67.55 72.89 79.02 77.24

-KC3 82.4 83.74 81.97 84.31 82.86 82.4

-MC1 85.76 98.2 90.61 98.25 98.2 98.3

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 211

-MC2 78.2 76.93 76.34 74.02 77.61 76.44

-PC1 90.16 92.49 82.25* 92.49 92.49v 93.04

-PC2 96.7 97.84 94.02 96.95 97.84V 97.84

-PC3 28.13 88.13v 77.54v 86.85v 87.95 87.58V

-PC4 85.03 89.12v 83.34 86.85v 89.43V 90.05V

-PC5 72.71 72.14 73.74 86.85v 78.77V 78.95V

 (v/ /*) (2/8/0) (1/8/1) (3/7/0) (4/6/0) (3/7/0)

Now in Table 7 of F-measure again NaiveBase is our base

algorithm and we are going to perform a paired T-test one

by one and find the different results. The SVM is tested

with NaiveBase and we found that SVM performs well on

2 places while on 2 places it also loses i.e. hypothesis is

accepted at the value 0.05. The Algorithm NaiveBase now

tested with J48 here we found 4 places null hypothesis is

rejected. A p-value is showing with sign "v" and one

rejection also showing, at 5 places the hypothesis of no

difference that cannot say it is accepted or rejected at 0.05.

Now NaïveBase is compared with AdaBoost, Bagging and

Random Forest respectively tests found that in every 4

places all three algorithms are winner mean the hypothesis

with no difference is rejected and at 6 places can not say

that the hypothesis is accepted or rejected.

. Table 7:F-measure on imbalanced Dataset

F-measure

Dataset NB (1) SVM (2) J48Consolidated(3) AdaBoost (4) Bagging (5) RF (6)

-CM1 0.29 0.4 0.16 0 0 0

-KC1 0.38 0.08 * 0.47 0.43 0.46 0.45

-KC3 0.59 0.57 0.68 0.67 0.55 0.56

-MC1 0.11 0.72v 0.41v 0.75v 0.72v 0.74v

-MC2 0.76 0.74 0.77 0.74 0.75 0.76

-PC1 0.67 0.65 0.56 * 0.72 0.68 0.71

-PC2 0.84 0.88 0.75 0.85 0.88 0.88

-PC3 0.29 0.39 0.52v 0.52v 0.42v 0.45v

-PC4 0.35 0.48v 0.61v 0.63v 0.54v 0.60v

-PC5 0.3 0.12* 0.60v 0.57v 0.55v 0.58v

 (v/ /*) (2/5/2) (4/5/1) (4/6/0) (4/6/0) (4/6/0)

5.2 A T-test on SMOTED dataset

Further, in Table 8, the accuracy results are shown, and in

this experiment using NaiveBase, our base for comparison

to rest 5 algorithms has different accuracy of 10 SMOTED

datasets in the problem. This outcome is compared to the

other five algorithms, indicated with a number, and mapped

in a legend at the base under the Table 8 of results. After

SMOTE the Dataset result of accuracy is improved as we

see there is no acceptance of the null hypothesis and

rejection of the null hypothesis is increases.

As we see that SVM performance is checked with our base

Algorithm i.e. NaïveBase the t-test show that SVM is a

winner at 4 places the sign “v” is appearing on same, mean

the null hypothesis is rejected and also 6 places hypothesis

is accepted or rejected condition appears at p-value 0.05.

The performance of AdaBoost, Bagging and Random

Forest is very much Improved in accuracy they are winners

respectively at 7 places mean null hypothesis is rejected and

each has 3 places which cannot say the hypothesis is

accepted or rejected.

Table 8: Accuracy on SMOTED dataset

ACCURACY

Dataset NB(1) SVM(2) J48Consolidated(3) AdaBoost(4) Bagging(5) RF(6)

-CM1 75.36 76.43 76.71 83.46 v 82.37 83.73 v

-KC1 64.4 65.82 74.36 v 78.13 v 80.69 v 81.09 v

-KC3 76.53 75.46 81.76 84.34 86.08 v 84.29

-MC1 78.54 93.63 v 94.16 v 98.01 v 97.79 v 98.27 v

-MC2 82.62 85.03 80.25 85.42 86.2 86.58

-PC1 86.67 87.02 86.19 91.55 v 92.74 v 93.81 v

-PC2 95.74 96.31 92.98 97.12 96.54 96.89

-PC3 37.17 80.42 v 80.19 v 85.55 v 87.37 v 87.13 v

-PC4 78.17 85.72 v 87.72 v 90.26 v 92.53 v 92.06 v

-PC5 61.24 66.95 v 76.64 v 81.02 v 82.61 v 82.70 v

 (v/ /*) (4/6/0) (5/5/0) (7/3/0) (7/3/0) (7/3/0)

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 212

Further, in Table 9, the experiment is checking the F-

measure of all 6 algorithms and again taking NaiveBase as

our base algorithm. Here we found that SVM performance

is 3 places null hypothesis is rejected and at 2 places

hypothesis of no difference is accepted while 5 places

cannot say that condition appear at p-value on 0.05 or 5 %

level of confidence. if we check the J48 and AdaBoost with

NaiveBase we found that 6 places null hypothesis is

rejected, and 4 places cannot say whether it rejected or

accepted respectively. The F-measure score of Bagging and

Random Forest again winner at 7 places mean the

hypothesis of no difference is rejected and 3the condition is

cannot say the hypothesis is accepted or rejected at p-value

0.05. After SMOTED data, the overall performance of

algorithms is improved.

Table 9: F_measure on SMOTED dataset

F_measure

Dataset NB (1) SVM (2) J48Consolidated(3) AdaBoost (4) Bagging (5) RF (6)

-CM1 0.36 0.12 * 0.56 v 0.59 0.49 0.55

-KC1 0.44 0.39 * 0.68 v 0.73 v 0.75 v 0.76 v

-KC3 0.65 0.6 0.78 0.82 0.82 v 0.80 v

-MC1 0.53 0.73 v 0.83 v 0.93 v 0.92 v 0.94 v

-MC2 0.74 0.73 0.72 0.78 0.77 0.78

-PC1 0.73 0.67 0.75 0.83 v 0.84 v 0.86 v

-PC2 0.88 0.89 0.83 0.92 0.9 0.91

-PC3 0.45 0.51 0.67 v 0.72 v 0.74 v 0.74 v

-PC4 0.45 0.67 v 0.80 v 0.82 v 0.86 v 0.85 v

-PC5 0.34 0.65 v 0.74 v 0.79 v 0.80 v 0.81 v

 (v/ /*) (3/5/2) (6/4/0) (6/4/0) (7/3/0) (7/3/0)

5.3 T-test on Resampled Dataset

Here in the final experiment, using resampling on the raw

dataset, and making NaiveBase, our base for comparison to

rest 5 algorithms have different accuracy scores and F-

measure score shown in Tables 11 and 12 respectively.

After resampling the dataset there is no accepted of null

hypothesis on all compared algorithms if we check SVM

with base Algorithm NaiveBase we found that at 7 places

the null hypothesis is rejected while at 3 places the

hypothesis is cannot say it is accepted or rejected

hypothesis. Table [10] shows that AdaBoost, Bagging and

Random Forest performance is increasing and, on all

datasets, they are the winner, here in all three algorithms

the hypothesis of no difference is rejected and no accepted

or cannot say condition does not appear. We found that the

algorithms AdaBoost, Bagging and Random Forest is

performing well in nature mean null hypothesis is rejected

on all datasets as victory shows in Table 10.

Table 10: Accuracy on Resampled Dataset

ACCURACY

Dataset NB (1) SVM(2) J48Consolidated(3) AdaBoost(4) Bagging(5) RF (6)

-CM1 82.85 86.55 80.42 94.82 v 93.86 v 94.49 v

-KC1 71.54 74.60 v 76.55 v 89.88 v 89.97 v 90.56 v

-KC3 81.54 86.67 v 94.42 v 97.23 v 97.25 v 97.71 v

-MC1 92.06 98.15 v 91.76 99.35 v 99.00 v 99.35 v

-MC2 75.13 79.8 84.44 90.29 v 87.91 v 90.26 v

-PC1 90.15 92.89 v 89.06 96.72 v 96.17 v 97.13 v

-PC2 78.52 97.71 v 94.79 v 99.49 v 99.11 v 99.49 v

-PC3 34.91 87.67 v 85.11 v 93.34 v 93.25 v 94.16 v

-PC4 84.72 89.28 v 87.66 95.22 v 95.06 v 95.06 v

-PC5 71.68 71.57 84.04 v 89.88 v 90.22 v 90.91 v

- (v/ /*) (7/3/0) (5/5/0) (10/0/0) (10/0/0) (10/0/0)

Further experiment checks the F-measure score shown in

Table 11 we found that SVM has 3 places null hypothesis

is accepted and 2 places null hypothesis is rejected rest of

the algorithms like AdaBoost, Bagging and Random forest

performance is excellent on resample data. All 3 algorithms

are rejecting the hypothesis of no difference at 5%, on all

ten datasets.

Table 11: F-measure on Resampled Dataset

F-measure

Dataset NB (1) SVM (2) J48Consolidated(3) AdaBoost(4) Bagging(5) RF (6)

-CM1 0.38 0.00 * 0.5 0.79 v 0.73 v 0.73 v

-KC1 0.36 0.10 * 0.61 v 0.80 v 0.78 v 0.81 v

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 213

-KC3 0.57 0.65 0.90 v 0.95 v 0.95 v 0.95 v

-MC1 0.12 0.72 v 0.50 v 0.92 v 0.87 v 0.92 v

-MC2 0.71 0.79 0.85 0.91 v 0.88 v 0.91 v

-PC1 0.67 0.67 0.71 0.88 v 0.85 v 0.89 v

-PC2 0.43 0.86 v 0.79 v 0.97 v 0.95 v 0.97 v

-PC3 0.32 0.35 0.64 v 0.77 v 0.74 v 0.79 v

-PC4 0.38 0.49 0.70 v 0.84 v 0.82 v 0.82 v

-PC5 0.26 0.09 * 0.75 v 0.82 v 0.82 v 0.83 v

 (v/ /*) (2/5/3) (7/3/0) (10/0/0) (10/0/0) (10/0/0)

6. Conclusion

In this article, we studied software defects predictions using

SMOTE and resample methods of different datasets. The

core contribution of this article is to check the performance

of classifiers after SMOTE, resample, and validate the

results using a paired t-test. Further, we check the

evaluation criteria whether SMOTE or resampled is

effective or not. The experiment found that the performance

of AdaBoost, Bagging and Random Forest improved after

SMOTE and resampled dataset in many cases. SMOTE and

resample alone cannot solve the data imbalanced problem.

References:
[1]. T. J. McCabe, A complexity measure, IEEE Trans. Software.

Eng. 2(4) (1976) 308–320.

[2]. M. H. Halstead, Elements of Software Science (Elsevier

Science, 1977).

[3]. S. R. Chidamber and C. F. Kemerer, A metrics suite for

object-oriented design, IEEE Trans. Softw. Eng. 20(6)

(1994) 476–493.

[4]. Zhang, H. An investigation of the relationships between lines

of code and defects. in 2009 IEEE International Conference

on Software Maintenance. 2009.

[5]. Mende, T. and R. Koschke. Revisiting the evaluation of

defect prediction models. in Proceedings of the 5th

International Conference on Predictor Models in Software

Engineering. 2009. ACM.

[6]. Chidamber, S.R., and C.F. Kemerer, A metrics suite for

object-oriented design. IEEE Transactions on software

engineering, 1994. 20(6): p. 476-493.

[7]. Jureczko, M. and D. Spinellis, Using object-oriented design

metrics to predict software defects. Models and Methods of

System Dependability. Oficyna Wydawnicza Politechniki

Wrocławskiej, 2010: p. 69-81.

[8]. Gupta, D.L. and K. Saxena, Software bug prediction using

object-oriented metrics. Sādhanā, 2017. 42(5): p. 655-669.

[9]. Singh, A., R. Bhatia, and A. Singhrova, Taxonomy of

machine learning algorithms in software fault prediction

using object-oriented metrics. Procedia Computer Science,

2018. 132: p. 993-1001.

[10]. http://openscience.us/repo/defect/mccabehalseted/

[11]. H. He and E. A. Garcia, Learning from imbalanced data,

IEEE Trans. Knowl. Data Eng. 21(9) (2009) 1263–1284.

[12]. D. Rodriguez, I. Harraiz and R. Harrison, Preliminary

comparison of techniques for dealing with an imbalance in

software defect prediction, in Int. Conf. Evalua. Assessment

of Softw. Eng. 43 (2014) 1–10.

[13]. M. J. Siers and Md. Z. Islam, Software defect prediction

using a cost-sensitive decision forest and voting, and a

potential solution to the class imbalance problem, Inf. Syst.

51 (2015) 62–71.

[14]. Ö . F. Arara and K. Ayanba, Software defect prediction using

the cost-sensitive neural network, Appl. Soft Comput. 33

(2015) 263–277.

[15]. Z.-H. Zhou and X.-Y. Liu, Training cost-sensitive neural

networks with methods addressing the class imbalance

problem, IEEE Trans. Knowl. Data Eng. 18(1) (2006) 63–77.

[16]. N. V. Chawla, K. W. Bowyer, L. O. Hell, and W. P.

Kegelmeyer, SMOTE: Synthetic minority over-sampling

technique, J. Arti¯. Intell. Res. 16 (2002) 321–357.

[17]. N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer,

SMOTEBoost: Improving prediction of the minority class in

boosting, Knowledge Discovery in Databases: PKDD 2003,

LNAI Vol. 2838, 2003, pp. 107–119.

[18]. S. Wang, H. Chen and X. Yao, Negative correlation learning

for classification ensembles, in Proc. Int. Joint Conf. Neural

Netw., WCCI, 2010, pp. 2893–2900.

[19]. S. Wang and X. Yao, Using class imbalance learning for

software defect prediction, IEEE Trans. Reliabil. 62(2)

(2013) 434–443.

[20]. C. Seirert, T. M. Khoshgoftaar, J. V. Hulse and A.

Napolitano, RUSBoost: A hybrid approach to alleviating

class imbalance, IEEE Trans. Syst. Man, Cybern. Part A,

Syst. Humans 40(1) (2010) 185–197

[21]. T. M. Khoshgoftaar, J. V. Hulse and A. Napolitano,

Comparing boosting and bagging techniques with noisy and

imbalanced data, IEEE Trans. Syst. Man, and Cybern. Part

A, Syst. Humans 41(3) (2011) 552–568.

[22]. T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic and Y.

Jiang, Implications of ceiling erects in defect predictors, in

Int. Workshop on Predictor Models in Software Engineering,

2008, pp. 47–54.

[23]. C. Cordeiro and M.M. Neves, The Bootstrap methodology in

time series forecasting, In “Proceedings of CompStat2006”

(J. Black and A. White, Eds.), Springer Verlag (2006), 1067–

1073.

[24]. C. Cordeiro and M.M. Neves, Bootstrap and exponential

smoothing working together in forecasting time series,

In ”Proceedings in Computational Statistics (COMPSTAT

2008)” (Paula Brito, Editor), Physica-Verlag (2008), 891–

899.

[25]. J. Han, M. Kamber, and J. Pei, Data Mining Concepts and

Techniques, 3rd edn. (Morgan Kaufmann, 2012).

[26]. Kent State University Libraries. (2019, March 27). SPSS

tutorials: Independent samples t-test. Retrieved March 25,

2019, from

http://libguides.library.kent.edu/SPSS/IndependentTTest

[27]. H. He and E. A. Garcia, Learning from imbalanced data,

IEEE Trans. Knowl. Data Eng. 21(9) (2009) 1263–1284.

http://openscience.us/repo/defect/mccabehalseted/
http://libguides.library.kent.edu/SPSS/IndependentTTest

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 214

[28]. N. V. Chawla, Data mining for imbalanced datasets: An

overview, Data Mining and Knowledge Discovery

Handbook (Springer Science & Business Media, 2010), pp.

875–886.

[29]. Seba Susan and Amitesh Kumar,-SMOTE-SSO: Three-step

intelligent pruning of majority and minority samples for

learning from imbalanced datasets, Applied Soft Computing,

10.1016/j.asoc.2019.02.028, (2019).

[30]. Andrew Estabrooks, Taeho Jo, Nathalie Japkowicz,- A

Multiple Resampling Method Learning from Imbalanced

Data Sets. Computational Intelligence, Volume 20, Number

1, 2004

[31]. M. Kubat and S. Matwin, Addressing the curse of

imbalanced training sets: One-sided selection, in Proc.

Fourteenth Int. Conf. Machine Learning, 1997, pp. 179–186.

[32]. L. Pelayo and S. Dick, Evaluating stratification alternatives

to improve software defect prediction, IEEE Trans. Reliabil.

61 (2012) 516–525.

[33]. G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, A study

of the behavior of several methods for balancing machine

learning training data, SIGKDD Explore. 6(1) (2004) 20–29.

[34]. J. Ross, Quinlan.C4.5: Programs for Machine Learning

(Morgan Kaufmann, 1993).

[35]. L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.

[36]. S. S. Keerthi, S. K. Shevade, C. Bhattacharyya and K. R. K.

Murthy, Improvements to Platt's SMO algorithm for SVM

classifier design, Neural Comput. 13(3) (2001) 637–649.

[37]. J. Platt, Fast training of support vector machines using

sequential minimal optimization, Advances in Kernel

Methods (Philomel Books, 1999), pp. 185–208.

[38]. G. H. John and P. Langley, Estimating continuous

distributions in Bayesian classifiers, Proc. Eleventh

Conference on Uncertainty in Artificial Intelligence, 1995,

pp. 338–345.

[39]. L. Breiman, Bagging predictors, Mach. Learn. 24(2) (1996)

123–140

[40]. S. Le Cessie and J. C. Van Houwelingen, Ridge estimators in

logistic regression, Appl. Stat. 41(1) (1992) 191–201

[41]. Cholmyong Pak, TianTianWang and Xiao Hong Su An

Empirical Study on Software Defect Prediction Using Over-

Sampling by SMOTE, International Journal of Software

Engineering and Knowledge Engineering Vol. 28, No. 6

(2018) 811–830 #. DOI: 10.1142/S0218194018500237.

Mohammad Zubair Khan got the Ph.D.

degree in Computer Science and

Information Technology from Faculty of

Engineering, M.J.P. Rohilkhand University,

Bareilly India, and the Master of

Technology in Computer Science and

Engineering in 2006 from U.P. Technical

University, Lucknow, India. He is currently

working as Associate Professor in the

Department of Computer Science, College of computer science

and engineering Taibah University. Past he has worked as head

and Associate professor, in the Department of Computer Science

and Engineering, Invertis University, Bareilly India. He has

published more than 40 journals and conference papers.

Mohammad Zubair Khan is a member of Computer Society of

India since 2004. His current research interests are data mining,

big data, parallel and distributed computing, theory of

computations, and computer networks. He has more than 15 years

teaching and research experience

Reyadh Alluhaibi received the B.E degree

from Taibah University in 2005. He

received M.Sc. degree from Tulsa

University in 2009. After working as a

lecturer (from 2009 to 2012) in the Dept. of

Computer Science, Taibah University. He

received the PhD degree from Manchester

University in 2017. After working as an

assistant professor (from 2017) in the Dept.

of Computer Science, Taibah University. His research interest

includes Machine Learning, Natural Language Processing,

Computational Linguistics, Computational Semantics,

Knowledge Representation, and Temporal Logics.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 215

Appendix-I

Figure 4: Random Forest results after SMOTE at different Degree label

Table 12: Random Forest results in WEKA After SMOTE for CM1 dataset

Degree of minority oversampling TP- Rate FP-Rate Precision- -Recall -F-Measure -MCC ROC- Area PRC-Area
100 0.994 0.006 0.994 0.994 0.994 0.989 1 1

200 0.986 0.031 0.986 0.986 0.986 0.966 1 1

300 0.978 0.02 0.979 0.978 0.978 0.956 0.998 0.998

400 0.978 0.02 0.979 0.978 0.978 0.956 0.998 0.998

500 0.963 0.101 0.963 0.963 0.962 0.895 0.995 0.995

Table 13: Random Forest results in WEKA After Resample for CM1 dataset

Sample Size in % TP- Rate FP-Rate -Precision -Recall -F-Measure -MCC ROC- Area PRC-Area

50 0.944 0.49 0.942 0.944 0.935 0.625 0.832 0.936

60 0.973 0.259 0.974 0.973 0.971 0.833 0.813 0.939

70 0.98 0.203 0.981 0.98 0.979 0.873 0.864 0.96

80 0.975 0.261 0.976 0.975 0.973 0.834 0.93 0.975

90 1 1 1 1 1 1 1 1

Figure 5: Random Forest results after Resample at different sample size for CM1 dataset

0

0.2

0.4

0.6

0.8

1

1.2

100 200 300 400 500

Degree of minority oversampling

Random Forest CM1 dataset

TP Rate

FP Rate

Precision

Recall

F-Measure

MCC

ROC Area

PRC Area

0

0.2

0.4

0.6

0.8

1

1.2

50% 60% 70% 80% 90%

Sample Size

Resampling

TP Rate

FP Rate

Precision

Recall

F-Measure

MCC

ROC Area

PRC Area

