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Summary  
The performance of software defect prediction heavily suffers 

from data-imbalance. In this article, the imbalance problem using 

SMOTE and resampling methods has been solved. The 

performance of software defects prediction with imbalance data 

and without imbalance data has also been studied. Experiments 

with WEKA 3.8.3 have been conducted and the performance of 

different classifiers are calculated using oversampling and 

resampling methods. Further, for statistical analysis paired T-

TEST is used to validate the results. The effectiveness of 

oversampling and resampling methods for different classifiers are 

also checked.  

The results show that after oversampling and resampling, the 

performance of classifiers has significantly increased and the 

winner classifiers are bagging AdaBoost and Random Forest in 

many cases.  
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1. Introduction 

Software defect prediction is a vital issue in the field of 

software engineering research to help the software 

engineers and programmers to improve the quality and 

cost-effectiveness of the software package. As the data is 

increasing the size of software, the complexity is also 

increasing side by side. Software defects are costly thus 

finding the defects before delivering them is vital for an 

organization. Software defect prediction SDP is a field of 

machine learning for predicting. There are defects in 

software or not based on previously available software data. 

Thus, it is a learning problem over software metrics that are 

in numbers to reflect the complexity of software such as 

size and control. The software metrics dataset commonly 

uses Line of Code (LOC), Cyclomatic Complexity Metrics 

(CCM) [1], Halstead Complexity Metrics (HCM) [2] and 

Object-Oriented Metrics (OOM) [3]. For our experiments, 

we use the NASA [10] dataset for software defects 

prediction.  

Many types of research in SDP show that there is a 

correlation between LOC and predicting defects [4,5]. 

Chidambaram and Kemerer[6] also proposed may software 

metrics called (CK) metrics for object oriented system. The 

CK metrics are weighted method per class (WMC), depth 

of inheritance tree (DIT) and many children (NOC) and so 

on. Other object oriented metrics are available in the 

literature [7,8,9]. In SDP, the data of interest is a defective 

class module, as per dataset the defective modules are very 

less, and the non-defective class module is in majority. 

Therefore, we can say that the available dataset for the 

experiment is class-imbalanced. A dataset is called class 

imbalanced if non-interest classes are in majority in 

compare to interest classes [2].   

Since software imperfection forecast has depended on 

software metrics datasets, it cannot be avoided from the 

class- imbalance issue. Class- imbalance influences the 

precision of defects expectation and empowers the 

indicator cannot predict defective modules well. In this 

manner, it is essential for defect expectations to tackle the 

class-imbalance issue. However, the class imbalance 

problem is very common in classification. With the 

development of Data mining techniques, many research 

works have done in this regard to solve the class imbalance 

problem in SDP [11, 12].  

Initially, a few scientists endeavored to utilize cost-touchy 

learning how to take care of the class imbalance issue. Siers 

and Islam [13] proposed a technique utilizing a cost delicate 

choice decision forest and casting a ballot to take care of 

the class-imbalance issue in SDP. Arara and Ayanba [14] 

utilized the cost-delicate neural network to set the expenses 

of misclassifying the positive and negative classes with 

applicable coefficients and improved the performance of 

prediction. Zhou and Liu [15] applied cost-touchy neural 

systems to SDP and they defended which strategies are 

effective in preparing cost-sensitive neural systems and 

presumed that threshold moving was fitting for preparing 

cost-sensitive neural systems. 

Secondly, some researcher uses sampling techniques like 

oversampling, under-sampling and resampling to resolve 

data imbalance problem. Chawla et al. [16] proposed a 

SMOTE algorithm that used original instances of minority 

class to synthesize new samples of a minority class and then 

append them to datasets. 

 

Thirdly, some researcher uses ensemble learning to 

improve or resolve-the-data imbalance problem. Chawla et 

al. [17] tried to combine SMOTE with boosting procedure 
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to improve the accuracy in prediction. Wang et al. [18] 

proposed the AdaBoost.NC, which utilized the error 

correlation data into the loads of preparing information, and 

found that it was superior to standard AdaBoost. Wang [19] 

improved AdaBoost.NC and proposed another variant of 

AdaBoost by changing the parameters during training. 

Laradji et al. [17] endeavored to utilize the average 

probability ensemble (APE) figuring out how to take care 

of class imbalance issues. Khoshgoftaar et al. contemplated 

SMOTEBoost [17] and Random Under-Sampling (RUS) 

Boost [20], analyzed their performance, and demonstrated 

that bagging was superior to boosting for noisy and class-

imbalanced information [21]. Cholmyong Pak,Tian Tian 

Wang and Xiao Hong Su [41] proposed a software defect 

prediction using SMOTE to coup up with data imbalance 

problem by changing different parameters in SMOTE 

algorithm.   

Finally, researchers also use the resampling methods. These 

methods are the process of frequently drawing samples 

from imbalance dataset and refitting a class model on each 

sample to learn more about the fitted model. Resampling 

methods are costly in terms of execution because they 

require repeating the same statistical method on N different 

subset of data. It is a kind of bootstrap, Cordeiro, and Neves 

[23, 24], which use exponential smoothing, and bootstrap 

in time series for forecasting. Now as per the study, the 

research [19] says that data imbalance can improve at the 

data label and algorithm label. However, the algorithm 

depends on data structure and improvement of training data 

is more significant than the selection of classification 

algorithms [22]. Here, we focus on sampling methods 

specially resample and SMOTE. If oversampling happened 

by duplication and oversample data is the same as original 

so we use 10-fold cross-validation [25]. However, SMOTE 

uses the same data to synthesize the new data so we can say 

that it is a better option for training data and improving the 

performance of the algorithm. 

In this article, we learned about certain issues that are 

looked in SDP using SMOTE and resampling. We perform 

tests for examining how the level of an appended minority 

class and the quantity of nearest neighbor, affected the 

performance of SDP. We used a paired t-test to analyze the 

statistical significance of results. We also propose the 

effectiveness of SMOTE and resampling. The Dataset in 

this experiment is from the PROMISE (NASA) repository 

[10]. We selected commonly used classifiers to compare the 

performance where the result shows that oversampling by 

SMOTE and resampling was effective in the case of 

Random Forest, Bagging, AdaBoost and J48-consolidated. 

The paper organization is as follows: in Section 2, we 

describe the background of paired t-test along with the 

example, SMOTE and resample. In Section 3 the 

commonly used classifiers are discussed, Section 4 

conducts the experiment design, whereas Section 5 

analyzes of results of WEKA-3.8.3. In the end, conclusion 

and future scope are provided.  

2. Background  

Statistics is vital for analyzing the results; thus, we are using 

paired t-tests. “The paired t-test is used to compare two data 

means; here two-samples in which-observations-in-one 

sample can be paired-with observation in another sample 

[26].” For example, before and after observation on the 

same subject or a comparison of two algorithms of 

measurements or two different treatments where treatments 

or measurement applied on the same subject. 

2.1 Procedure for paired t-test method [26] 

Suppose a sample of n Dataset were given a diagnostic 

(algorithm) test before resampling or oversampling 

(SMOTE) on a particular module and again perform the test 

after resampling and SMOTE. To find out improvement in 

the performance of Algorithm results or test scores. The t-

test method works as follows. 

Let 𝑥 = 𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑆𝑀𝑂𝑇𝐸 𝑜𝑟 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, and 

let 𝑦 = 𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 𝑎𝑓𝑡𝑒𝑟 𝑆𝑀𝑂𝑇𝐸 𝑜𝑟 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 

To test the hypothesis of no difference when means of 

before and after, we shall proceed as below: 

Compute the difference (ⅆ𝑖 = 𝑦𝑖 − 𝑥𝑖) between above two 

observations, for all the value of ⅈ, the difference is positive 

or negative 

Compute the mean difference (𝑑̅) 

Compute the standard deviation, S 

Compute the standard error of mean difference 𝑆𝐸(𝑑̅) =
𝑠

√𝑛
 

Compute t-test as |𝑡| =
𝑑̅
𝑆

√𝑛

~𝑡𝑛−1 

Where 𝑆2 =
1

𝑛−1
∑(ⅆ𝑖 − 𝑑̅)

2
 and 𝑛 is sample size. 

Compute the p-value corresponding to calculated t. 

Compare p with the level of significance α (pre-assign 

value)  

If 𝑝 ≤ α then means differ significantly  

Example: let's use the calculated value of accuracy for 

algorithm Random Forest before SMOTE =A and after 

SMOTE =B 

 
ACCURACY 

A B 

84.72 83.73 

77.24 81.09 

82.4 84.29 

98.3 98.27 

76.44 86.58 

93.04 93.81 

97.84 96.89 

87.58 87.13 

90.05 92.06 

78.95 82.7 

https://www.worldscientific.com/doi/abs/10.1142/S0218194018500237
https://www.worldscientific.com/doi/abs/10.1142/S0218194018500237
https://www.worldscientific.com/doi/abs/10.1142/S0218194018500237
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Solution: 

Paired t-test  
Paired-Samples-Statistics 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 A 86.66 10 8.083 2.556 
B 88.66 10 6.156 1.947 

 

Karl Pearson Correlations  

Paired_Samples_Correlations 

 N Correlation Sig. 

Pair 1 A & B 10 .923 .000 

From the above table since 𝑝 ≤ α = 0.05,  highly Significant  

 

T-Test – Paired_Samples_Test  

 

First post: The pair of factors being tried and the request the 

subtraction was completed. (On the off chance that you 

have indicated more than one variable pair, this table will 

have different columns.) 

“Mean: The-average-of-the-difference-between-the-

values-of-variables. 

Standard deviation: The standard deviation of the 

difference scores. 

The standard error means: The standard error (standard-

deviation divided-by-the-square-root-of-the sample-size). 

Used-in-computing both-the-test statistic-and-the-upper 

and-lower-bounds of the confidence interval. 

t: The-test statistic- (denoted t) for-the-paired t-test. 

df: The degrees-of-freedom for this test. 

Sig. (2-tailed): The-p-value corresponding-to-the given-

test-statistic t-with degrees-of-freedom-df [26]”. 

From the above analysis 𝑝 = 0.093 ≤ α = 0.10  

There is a significant difference between RF before 

SMOTE i.e. A – RF after SMOTE i.e. B at 90% Confidence. 

The above result shows that the performance of random 

forest after SMOTE is increasing with 90% confidence. 

2.2 Performance Metrics for software defect 

prediction 

Confusion Matrix is commonly utilized in assessing the 

classification method. It appears in Table 1. TP is True - 

Positive, TN is True - Negative, FP is false - Positive, and 

FN is false - Negative. “The bigger TP and TN, the more 

precise (accurate) the classifier is. All measurements are 

taken from the Confusion Matrix [25]”. In terms of 

software defect prediction the TP, TN, FP, and FN define 

as  

True Positive 
(TP) 

A faulty software instance classified - as - 
defective. 

True Negative 

(TN)  

A non-defective software instance, classified as 

clean. 

False Positive 
(FP) 

A non-defective software instance classified - as 
- defective 

False Negative 

(FN)  

A defective software instance classified as non-

defective 

Table 1: Confusion Matrix 

 Predicted: 

NO 

Predicted: YES Total 

Actual: NO TN FP N 

Actual: YES FN TP p 

Total N’ P’  

 

As per rule the accuracy (it is additionally called the 

acknowledgment rate) of a classifier is defined as follows 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
              (1) 

  

True Positive Rate is also called as sensitivity. This is 

defined as follows: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

  

False - Positive - Rate is the proportion of clean software. 

This is wrongly classified as faulty. The FPR can be defined 

as follows: 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (3) 

   

F-score is a harmonic mean of precision and recall. This 

can be defined as follows 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)           (4)   𝑅𝑒𝑐𝑎𝑙𝑙 =
  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                (5)                    

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = (2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
𝑅𝑒𝑐𝑎𝑙𝑙)                        (6)  

AUC calculates the area under a ROC – curve. This can be 

defined as follows: 

𝐴𝑈𝐶 =
1+TPR+FPR

2
      (7) 

“G-measure is another measure that also used in software 

defects prediction. G-measure is defined as harmonic - 

mean of - recall and - specificity. Probability - of - False - 

Alarm (PF) is the - ratio - of clean instances wrongly - 

classified - defective (FP) among the total clean instances 

(FP+TN) [25]”.   

𝑃𝐹 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)                       (8)    

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 − 𝑃𝐹 = 𝑇𝑁/𝐹𝑃 + 𝑇𝑁 (9)                      

𝐺 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 +
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  (10)    
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2.3 Types of Classifiers  

There are several classifiers available in the literature. 

Some are vital for software defect prediction listing in the 

Table 2. 

 

Table 2: Type of classifiers use in WEKA for Prediction 
No. Name Description Capabilities 

1 -J48 “A-Class for producing a pruned or 

unpruned C4.5.Java implementation of 
C4.5 it’s a kind of Tree [34]”. 

“-Class – Binary-class, Missing-class-values, Nominal-class 

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-
attributes, Missing-values, Nominal-attributes, Numeric-attributes, 

Unary-attributes 

-Interfaces -- Draw-able, Partition-Generator, -Sourceable, 
Weighted-Instances-Handler. 

-Additional 

Minimum number of instances: 0[34]” 

2 -Random Forest "A-Class for building a forest of 

random-trees. It is known as an 

ensemble learning method [35]" 

“-Class -- Binary-class, Missing-class-values, Nominal-class, 

Numeric-class 

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-
attributes, Missing-values, Nominal-attributes, Numeric-attributes, 

Unary-attributes 

-Interfaces: -Drawable, Partition-Generator-Randomizable, 
Weighted-Instances-Handler 

Additional 

Minimum number of instances: 1 [35]” 

3. -SMO “Actualizes John Platt's consecutive 

negligible improvement algorithm for 

preparing a support vector classifier. It 
is otherwise called Support Vector 

Machine for example SVM [36, 37]” 

“-Class – Binary-class, Missing-class-values, Nominal-class 

-Attributes -- Binary-attributes, Empty-nominal-attributes, Missing-

values, Nominal-attributes, Numeric-attributes, Unary-attributes 
-Interfaces -- Weighted-Instances-Handler 

Additional 

Minimum number of instances: 1[35]” 

4. --Naïve Bayes “A-Class for a Naive Bayes classifier 
using estimator classes. It is based on 

the Bayes' theorem [38]." 

“-Class -- Binary-class, Missing-class-values, Nominal-class 
Attributes -- Binary-attributes, Empty-nominal-attributes, Missing-

values, Nominal-attributes, Numeric-attributes, Unary-attributes 

Interfaces -- Weighted-Attributes-Handler, Weighted-Instances-
Handler 

Additional 

Minimum number of instances: 0 [38]” 

5. --AdaBoost “A-Class for -boosting a nominal class 

classifier using the Adaboost M1 

method [18].” 

“-Class -- Binary-class, Missing-- values, Nominal-class 

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-

attributes, Missing-values, Nominal-attributes, Numeric-attributes, 
Unary-attributes 

Interfaces -- -Randomizable, -Sourceable, Weighted-Instances-

Handler 
Additional 

Minimum number of instances: 1 [18]” 

6.  --Bagging "A-Class for bagging a -classifier to 
reduce the discrepancy. It is one of the 

ensemble procedures, it uses a 

sequence of numerous base classifiers 
to generate a better composite 

classifier [39].” 

“-Class -- Binary-class, Date-class, Missing-class-values, Nominal-
class, Numeric-class 

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-

attributes, Missing-values, Nominal-attributes, Numeric-attributes, 
Unary-attributes 

-Interfaces -- Partition-Generator, -Randomizable, Weighted-

Instances-Handler 
Additional 

Minimum number of instances: 1 [39]” 

7. --Simple 

Logistic 
regression 

“A-Classifier for construction linear 

logistic regression -models. It is a -
statistical technique to predict the -

probability of -categorical dependent-

variable [40].” 

“-Class -- Binary-class, Missing-class-values, Nominal-class 

-Attributes -- Binary-attributes, Date-attributes, Empty-nominal-
attributes, Missing-values, Nominal-attributes, Numeric-attributes, 

Unary-attributes 

Interfaces -- Weighted-Instances-Handler 
Additional 

Minimum number of instances: 1 [40]” 
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3. Sampling Strategies 

The sampling method plays an important role in solving 

data imbalance problems. Sampling procedures include 

oversampling under-sampling and resampling. In the 

oversampling method, it randomly selects samples of a 

minority class and adds them to the dataset [27]. In the 

under-sampling methods, it randomly select the majority 

class and remove them from dataset for balance the class. 

Both techniques have a problem like in under-sampling if 

majority class remove from dataset because it may be lost 

the value able information from data, and in under-

sampling methods, it would add many samples of minority 

class to the dataset. This leads to overfitting of minority 

class [28]. Resampling methods are usually utilized for 

class imbalance problem. Their importance over additional 

sampling procedures is that they are simply portable. Albeit 

such methods can be very simple to implement but tuning 

with them adequately is not a simple task. It is not clear 

which method is more effective [29, 30]. There are many 

versions of oversampling and under-sampling available. 

“Seba Susan, Amitesh Kumar says data imbalance problem 

can be achieved before classification by a novel three steps 

intelligent under-sampling of majority class monitored by 

oversampling of a minority class, which is again monitored 

by intelligent under-sampling of the minority class [29]”. 

That has now turned into the majority class due to 

oversampling. Kubat at.el. [31] proposed an uneven 

selection under-sampling method, which especially 

removes only negative samples and keeps all positive 

samples. Andrew Estabrooks et.al.[30] tried to endeavor to 

consolidate an under-sampling with an over-sampling for 

adjusting imbalanced data. By the combination of under-

sampling and oversampling could not remove their 

weaknesses [16]. Pelayo at.et [32] looked at a few sampling 

methods and found that at 0.05 of significance level, the 

impact of under-sampling was critical, and the impact of 

over-sampling was not significant. “SMOTE algorithm is 

an only oversampling method which uses original samples 

of minority class to append to dataset [16, 17]”. “It is useful 

than random oversampling and under-sampling for solving 

data imbalance [33]”. The main algorithm SMOTE as 

follow:   

 

 
Algorithm SMOTE (T, N, k) (Source: [17])  

𝐼𝑛𝑝𝑢𝑡: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑇;  𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑆𝑀𝑂𝑇𝐸𝑁%;  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑎𝑟𝑒𝑠𝑡  
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑘  

𝑂𝑢𝑡𝑝𝑢𝑡: (
 𝑁

100
) ∗ 𝑇 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

(1) 𝑖𝑓 𝑁 < 100 

(2) 𝑡ℎ𝑒𝑛 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒 𝑡ℎ𝑒 𝑇 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

(3) 𝑇 = (
𝑁

100
) ∗ 𝑇 

(4) 𝑁 = 100 

(5) 𝑒𝑛𝑑𝑖𝑓 

(6) 𝑁 = (𝑖𝑛𝑡)(
𝑁

100
) 

  (7) 𝑘 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠  

(8) 𝑛𝑢𝑚𝑜𝑓𝑎𝑡𝑡𝑟𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 

(9) 𝑆𝑎𝑚𝑝𝑙𝑒[ ][: ]𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠  
           (10)𝑛𝑒𝑤 𝑖𝑛𝑑𝑒𝑥: 𝐾𝑒𝑒𝑝𝑠 𝑎 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐  

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑜 0  
(11) 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐[ ][ ]: 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

  (12)𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑇   
(13) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑒 (𝑁, 𝑖, 𝑛𝑛𝑎𝑟𝑟𝑎𝑦)  
(14) 𝑒𝑛𝑑𝑓𝑜𝑟 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑒(𝑁, 𝑖, 𝑛𝑛𝑎𝑟𝑟𝑎𝑦) ⁄⁄  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑎𝑚𝑝𝑙𝑒𝑠.  
(15) 𝑤ℎ𝑖𝑙𝑒 𝑁 ≠ 0 

(16) 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1 𝑎𝑛𝑑 𝑘 𝑐𝑎𝑙𝑙 𝑖𝑡 𝑛𝑛. 𝑇ℎ𝑖𝑠 𝑠𝑡𝑒𝑝 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑜𝑛𝑒  
𝑜𝑓 𝑡ℎ𝑒 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑖   

(17)  𝑓𝑜𝑟 𝑎𝑡𝑡𝑟 = 1 𝑡𝑜 𝑛𝑢𝑚𝑎𝑡𝑡𝑟𝑠 

(18)   𝑑𝑖𝑓 = 𝑆𝑎𝑚𝑝𝑙𝑒[𝑛𝑛𝑎𝑟𝑟𝑎𝑦[𝑛𝑛]][𝑎𝑡𝑡𝑟] − 𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟] 
(19)   𝑔𝑎𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1  

(20)   𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐[𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥][𝑎𝑡𝑡𝑟] = 𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟] + 𝑔𝑎𝑝 ∗ 𝑑𝑖𝑓 

(21) 𝑒𝑛𝑑𝑓𝑜𝑟  

(22)  𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥 + + 
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(23)  𝑁 = 𝑁 − 1 

(24) 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 

(25) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 (∗ 𝑒𝑛𝑑 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑒 ∗) 

Table 3: Example of production of synthetic samples (SMOTE). 

𝑬𝒙𝒂𝒎𝒑𝒍𝒆: 𝐿𝑒𝑡 𝑢𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 (5,7), (2,8), (6,8) 𝑎𝑛𝑑 (6,8) 

𝐿𝑒𝑡 (5,7)𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝑘 = 3, 𝑠𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑎𝑟𝑒 (2, 8), (6, 8), (6, 8) 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 (6, 8)𝑖𝑠 𝑜𝑛𝑒 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑟𝑒𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠. 
𝑥1 = 5, 𝑦1 = 6 , 𝑦1 − 𝑥1 = 6 − 5 = 1 

𝑥2 = 7, 𝑦2 = 8 , 𝑦2 − 𝑥2 = 8 − 7 = 2 

𝑆𝑜, 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑓1, 𝑓2) = (5,7) + 𝑟𝑎𝑛𝑑(0 − 2) ∗ (1, 2) 

𝑟𝑎𝑛𝑑(0 − 2)𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑟𝑒𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑛 0 𝑎𝑛𝑑 2 

4. Experiment Method 

4.1 Software defect dataset Repository 

The Software defect dataset MATRICS used in this article 

listed in Tables 4 and 5. We use the PROMISE Repository 

for this purpose. 

 

Table 4: Dataset attributes from the PROMISE repository 

Metric 

Type 

Metric Names -

CM1 

-

KC1 

-

KC2 

-

MC1 

-

MC2 

-

PC1 

-

PC2 

-

PC3 

-

PC4 

-

PC5 

McCabe 01. Cyclomatic-Complexity YES YES YES YES YES YES YES YES YES YES 

02. Cyclomatic-Density YES YES YES YES YES YES YES YES YES YES 

03. Decision Density YES YES YES YES YES YES YES YES YES YES 

04. Design Density YES YES YES YES YES YES YES YES YES YES 

05. Essential Complexity YES YES YES YES YES YES YES YES YES YES 

06. Essential Density YES YES YES YES YES YES YES YES YES YES 

07. Global Data Density YES YES YES YES YES YES YES YES YES YES 

08. Global Data Complexity YES YES YES YES YES YES YES YES YES YES 

09. Maintenance Severity YES YES YES YES YES YES YES YES YES YES 

10. Module Design 

Complexity 

YES YES YES YES YES YES YES YES YES YES 

11. Pathological 

Complexity 

YES YES YES YES YES YES YES YES YES YES 

12. Normalized Cyclomatic 

Complexity 

YES YES YES YES YES YES YES YES YES YES 

Raw 

Halstead 

13. Number of Operators YES YES YES YES YES YES YES YES YES YES 

14. Number of Operands YES YES YES YES YES YES YES YES YES YES 

15. Number of Unique 

Operators 

YES YES YES YES YES YES YES YES YES YES 

16. Number of Unique 

Operands 

YES YES YES YES YES YES YES YES YES YES 

Derived 

Halstead 

17. Length (N) YES YES YES YES YES YES YES YES YES YES 

18. Volume (V) YES YES YES YES YES YES YES YES YES YES 

19. Level (L) YES YES YES YES YES YES YES YES YES YES 

20. Difficulty (D) YES YES YES YES YES YES YES YES YES YES 

21. Intelligent Content (I) YES YES YES YES YES YES YES YES YES YES 

22. Programming Effort (E) YES YES YES YES YES YES YES YES YES YES 

23. Error Estimate (B) YES YES YES YES YES YES YES YES YES YES 



IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.11, November 2019 208 

24. Programming Time (T) YES YES YES YES YES YES YES YES YES YES 

LOC 

COUNT 

25. LOC Total YES YES YES YES YES YES YES YES YES YES 

26. LOC Executable YES YES YES YES YES YES YES YES YES YES 

27. LOC Comments YES YES YES YES YES YES YES YES YES YES 

28. LOC Code and 

Comments 

YES YES YES YES YES YES YES YES YES YES 

29. LOC Blank YES YES YES YES YES YES YES YES YES YES 

30. Number of Lines 

(opening to closing bracket) 

YES YES YES YES YES YES YES YES YES YES 

Misc. 31. Node Count YES YES YES YES YES YES YES YES YES YES 

32. Edge Count YES YES YES YES YES YES YES YES YES YES 

33. Branch Count YES YES YES YES YES YES YES YES YES YES 

34. Condition Count YES YES YES NO YES YES YES YES YES YES 

35. Decision Count YES YES YES NO NO YES YES YES YES YES 

36. Formal Parameter 

Count 

YES YES YES NO NO YES YES YES YES YES 

37. Modified Condition 

Count 

YES YES YES NO NO YES YES YES YES YES 

38. Multiple Condition 

Count 

YES YES YES NO NO YES YES YES YES YES 

39. Call Pairs YES YES YES NO NO YES YES YES YES YES 

40. Percent Comments YES YES YES NO NO YES YES YES YES YES 

Error 41. Error Count YES YES YES NO NO YES YES YES YES YES 

42. Error Density YES YES YES NO NO YES YES YES YES YES 

Table 5: Dataset from the PROMISE repository 

No. Dataset Instance 
Defective 

Instance 

Non 

defective 

Instance 

𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝑁𝑜𝑛 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒
 Data Imbalance Rate (%) 

1. CM1 327 42 285 0.147 12.8440 

2. KC1 1177 309 868 0.355 26.2531 

3. KC3 216 58 158 0.367 26.8518 

4. MC1 2002 86 1916 0.044 04.2957 

5. MC2 173 93 80 1.162 53.7572 

6. PC1 732 108 624 0.173 14.7540 

7. PC2 787 81 706 0.114 10.2922 

8. PC3 1095 172 923 0.186 15.7077 

9. PC4 1296 202 1094 0.184 15.5864 

10. PC5 1748 512 1236 0.414 29.2906 

4.2 Experiment Design 

In this article, three experiments have been performed on 

DATASET, SMOTED-DATASET, and Resampled-

DATASET showed in Figures 4-6. For experiments, we use 

WEKA-3.8.3 tools for the given Dataset in Table 5. “In 

these experiments, we use the 10-fold cross-validation to 

estimate the performance of software defect prediction 

[25]”. For all the classifiers, all their parameters are set by 

defaults in the WEKA tool. Here we are using 6 

classification algorithms like NaiveBase, SVM, J48, 

AdaBoost, Bagging and Random Forest on raw Dataset (-

CM1, -KC1, -KC3, -MC1, -MC2, -PC1, -PC2, -PC3, -PC4, 

-PC5), SMOTED dataset and Resampled Dataset, as shown 

in Figures 1 and 3. 
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Fig. 1  Experiment on DATASET 

 

Fig. 2  Experiment on SMOTED-DATASET 
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Fig. 3  Experiment2 With Resampling 

5. Results Analysis  

The experiment results shows in Tables 7-12. Here in the 

experiment set the level of significanceα = 5% or 0.05. 

The sign “v” represents that p cost is lesser than 0.05, which 

means the null hypothesis is rejected. The sign "*" 

represents that p cost is not smaller than 0.05, which means 

the hypothesis is accepted. In Tables 6-11, we show the 

Accuracy and F-measure score of ten datasets.  

5.1 A t-test on imbalanced dataset 

We can see that NaiveBase, our base for a correlation set 

apart as (1) has unique accuracy of 10 datasets on the 

problem. This outcome is compared to the other five 

algorithms and indicated with a number and mapped in a 

legend at the base under the table7 of results. 

Note the "*" alongside J48 on PC1 dataset results. This 

demonstrates the outcomes are altogether not quite the 

same as the NaiveBase results, yet the score is lower. SVM, 

J48, AdaBoost, Bagging and Random Forest do not have 

any character alongside their outcomes in Table 6, 

demonstrating that the outcomes are essentially not quite 

the same as NaiveBase. On the off chance that an algorithm 

had results bigger than the base algorithm and the 

difference was significant, a bit "v" would show up beside 

the outcomes. 

Therefore, in Table 6, there is 2 victory of SVM over 

NaiveBase and 8. However, we cannot say they are 

significantly accepted or rejected on p-value 0.05. We also 

found that in J48 has one hypothesis of no difference is 

rejected on the PC3 dataset and one hypothesis of no 

difference is accepted on the PC1 dataset and 8 again 

cannot say hypothetically accepted or rejected. In Adaboost 

3 victory achieved mean null hypothesis is rejected on 

dataset PC3, PC4, PC5, no accepted and 7 places. We again 

cannot say that hypothetically accepted or rejected. In 

bagging, the algorithm is a winner over NaiveBase at 

4places mean null hypothesis is rejected at 0.05 and we 

can’t say the hypothesis is accepted or rejected at 6 places. 

In Random Forest the algorithm again winner at 3 places 

which means a null hypothesis is rejected at 0.05 and we 

cannot say whether it is accepted or rejected at 7 places.  

Table 6: Accuracy on imbalanced Dataset 

ACCURACY 

Dataset NB (1) SVM (2) J48Consolidated(3) AdaBoost (4) Bagging (5) RF (6) 

-CM1 81.34 87.16 72.84 83.79 85.33 84.72 

-KC1 73.4 74.09 67.55 72.89 79.02 77.24 

-KC3 82.4 83.74 81.97 84.31 82.86 82.4 

-MC1 85.76 98.2 90.61 98.25 98.2 98.3 
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-MC2 78.2 76.93 76.34 74.02 77.61 76.44 

-PC1 90.16 92.49 82.25* 92.49 92.49v 93.04 

-PC2 96.7 97.84 94.02 96.95 97.84V 97.84 

-PC3 28.13 88.13v 77.54v 86.85v 87.95 87.58V 

-PC4 85.03 89.12v 83.34 86.85v 89.43V 90.05V 

-PC5 72.71 72.14 73.74 86.85v 78.77V 78.95V 

 (v/ /*) (2/8/0) (1/8/1) (3/7/0) (4/6/0) (3/7/0) 

 

Now in Table 7 of F-measure again NaiveBase is our base 

algorithm and we are going to perform a paired T-test one 

by one and find the different results. The SVM is tested 

with NaiveBase and we found that SVM performs well on 

2 places while on 2 places it also loses i.e. hypothesis is 

accepted at the value 0.05. The Algorithm NaiveBase now 

tested with J48 here we found 4 places null hypothesis is 

rejected. A p-value is showing with sign "v" and one 

rejection also showing, at 5 places the hypothesis of no 

difference that cannot say it is accepted or rejected at 0.05. 

Now NaïveBase is compared with AdaBoost, Bagging and 

Random Forest respectively tests found that in every 4 

places all three algorithms are winner mean the hypothesis 

with no difference is rejected and at 6 places can not say 

that the hypothesis is accepted or rejected.

.  Table 7:F-measure on imbalanced Dataset 

F-measure 

Dataset NB (1) SVM (2) J48Consolidated(3) AdaBoost (4) Bagging (5) RF (6) 

-CM1 0.29 0.4 0.16 0 0 0 

-KC1 0.38 0.08 * 0.47 0.43 0.46 0.45 

-KC3 0.59 0.57 0.68 0.67 0.55 0.56 

-MC1 0.11 0.72v 0.41v 0.75v 0.72v 0.74v 

-MC2 0.76 0.74 0.77 0.74 0.75 0.76 

-PC1 0.67 0.65 0.56 * 0.72 0.68 0.71 

-PC2 0.84 0.88 0.75 0.85 0.88 0.88 

-PC3 0.29 0.39 0.52v 0.52v 0.42v 0.45v 

-PC4 0.35 0.48v 0.61v 0.63v 0.54v 0.60v 

-PC5 0.3 0.12* 0.60v 0.57v 0.55v 0.58v 

 (v/ /*) (2/5/2) (4/5/1) (4/6/0) (4/6/0) (4/6/0) 

5.2 A T-test on SMOTED dataset 

Further, in Table 8, the accuracy results are shown, and in 

this experiment using NaiveBase, our base for comparison 

to rest 5 algorithms has different accuracy of 10 SMOTED 

datasets in the problem. This outcome is compared to the 

other five algorithms, indicated with a number, and mapped 

in a legend at the base under the Table 8 of results. After 

SMOTE the Dataset result of accuracy is improved as we 

see there is no acceptance of the null hypothesis and 

rejection of the null hypothesis is increases.  

As we see that SVM performance is checked with our base 

Algorithm i.e. NaïveBase the t-test show that SVM is a 

winner at 4 places the sign “v” is appearing on same, mean 

the null hypothesis is rejected and also 6 places hypothesis 

is accepted or rejected condition appears at p-value 0.05. 

The performance of AdaBoost, Bagging and Random 

Forest is very much Improved in accuracy they are winners 

respectively at 7 places mean null hypothesis is rejected and 

each has 3 places which cannot say the hypothesis is 

accepted or rejected.  

Table 8: Accuracy on SMOTED dataset 

ACCURACY 

Dataset NB(1) SVM(2) J48Consolidated(3) AdaBoost(4) Bagging(5) RF(6) 

-CM1 75.36 76.43 76.71 83.46 v 82.37 83.73 v 

-KC1 64.4 65.82 74.36 v 78.13 v 80.69 v 81.09 v 

-KC3 76.53 75.46 81.76 84.34 86.08 v 84.29 

-MC1 78.54 93.63 v 94.16 v 98.01 v 97.79 v 98.27 v 

-MC2 82.62 85.03 80.25 85.42 86.2 86.58 

-PC1 86.67 87.02 86.19 91.55 v 92.74 v 93.81 v 

-PC2 95.74 96.31 92.98 97.12 96.54 96.89 

-PC3 37.17 80.42 v 80.19 v 85.55 v 87.37 v 87.13 v 

-PC4 78.17 85.72 v 87.72 v 90.26 v 92.53 v 92.06 v 

-PC5 61.24 66.95 v 76.64 v 81.02 v 82.61 v 82.70 v 

 (v/ /*) (4/6/0) (5/5/0) (7/3/0) (7/3/0) (7/3/0) 
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Further, in Table 9, the experiment is checking the F-

measure of all 6 algorithms and again taking NaiveBase as 

our base algorithm. Here we found that SVM performance 

is 3 places null hypothesis is rejected and at 2 places 

hypothesis of no difference is accepted while 5 places 

cannot say that condition appear at p-value on 0.05 or 5 % 

level of confidence. if we check the J48 and AdaBoost with 

NaiveBase we found that 6 places null hypothesis is 

rejected, and 4 places cannot say whether it rejected or 

accepted respectively. The F-measure score of Bagging and 

Random Forest again winner at 7 places mean the 

hypothesis of no difference is rejected and 3the condition is 

cannot say the hypothesis is accepted or rejected at p-value 

0.05. After SMOTED data, the overall performance of 

algorithms is improved.  

Table 9: F_measure on SMOTED dataset 

F_measure 

Dataset NB (1) SVM (2) J48Consolidated(3) AdaBoost (4) Bagging (5) RF (6) 

-CM1 0.36 0.12 * 0.56 v 0.59 0.49 0.55 

-KC1 0.44 0.39 * 0.68 v 0.73 v 0.75 v 0.76 v 

-KC3 0.65 0.6 0.78 0.82 0.82 v 0.80 v 

-MC1 0.53 0.73 v 0.83 v 0.93 v 0.92 v 0.94 v 

-MC2 0.74 0.73 0.72 0.78 0.77 0.78 

-PC1 0.73 0.67 0.75 0.83 v 0.84 v 0.86 v 

-PC2 0.88 0.89 0.83 0.92 0.9 0.91 

-PC3 0.45 0.51 0.67 v 0.72 v 0.74 v 0.74 v 

-PC4 0.45 0.67 v 0.80 v 0.82 v 0.86 v 0.85 v 

-PC5 0.34 0.65 v 0.74 v 0.79 v 0.80 v 0.81 v 

 (v/ /*) (3/5/2) (6/4/0) (6/4/0) (7/3/0) (7/3/0) 

 

5.3 T-test on Resampled Dataset 

Here in the final experiment, using resampling on the raw 

dataset, and making NaiveBase, our base for comparison to 

rest 5 algorithms have different accuracy scores and F-

measure score shown in Tables 11 and 12 respectively. 

After resampling the dataset there is no accepted of null 

hypothesis on all compared algorithms if we check SVM 

with base Algorithm NaiveBase we found that at 7 places 

the null hypothesis is rejected while at 3 places the 

hypothesis is cannot say it is accepted or rejected 

hypothesis. Table [10] shows that AdaBoost, Bagging and 

Random Forest performance is increasing and, on all 

datasets, they are the winner, here in all three algorithms 

the hypothesis of no difference is rejected and no accepted 

or cannot say condition does not appear. We found that the 

algorithms AdaBoost, Bagging and Random Forest is 

performing well in nature mean null hypothesis is rejected 

on all datasets as victory shows in Table 10. 

Table 10: Accuracy on Resampled Dataset 

ACCURACY 

Dataset NB (1) SVM(2) J48Consolidated(3) AdaBoost(4) Bagging(5) RF (6) 

-CM1 82.85 86.55 80.42 94.82 v 93.86 v 94.49 v 

-KC1 71.54 74.60 v 76.55 v 89.88 v 89.97 v 90.56 v 

-KC3 81.54 86.67 v 94.42 v 97.23 v 97.25 v 97.71 v 

-MC1 92.06 98.15 v 91.76 99.35 v 99.00 v 99.35 v 

-MC2 75.13 79.8 84.44 90.29 v 87.91 v 90.26 v 

-PC1 90.15 92.89 v 89.06 96.72 v 96.17 v 97.13 v 

-PC2 78.52 97.71 v 94.79 v 99.49 v 99.11 v 99.49 v 

-PC3 34.91 87.67 v 85.11 v 93.34 v 93.25 v 94.16 v 

-PC4 84.72 89.28 v 87.66 95.22 v 95.06 v 95.06 v 

-PC5 71.68 71.57 84.04 v 89.88 v 90.22 v 90.91 v 

- (v/ /*) (7/3/0) (5/5/0) (10/0/0) (10/0/0) (10/0/0) 

Further experiment checks the F-measure score shown in 

Table 11 we found that SVM has 3 places null hypothesis 

is accepted and 2 places null hypothesis is rejected rest of 

the algorithms like AdaBoost, Bagging and Random forest 

performance is excellent on resample data. All 3 algorithms 

are rejecting the hypothesis of no difference at 5%, on all 

ten datasets. 

 

Table 11: F-measure on Resampled Dataset 

F-measure 

Dataset NB (1) SVM (2) J48Consolidated(3) AdaBoost(4) Bagging(5) RF (6) 

-CM1 0.38 0.00 * 0.5 0.79 v 0.73 v 0.73 v 

-KC1 0.36 0.10 * 0.61 v 0.80 v 0.78 v 0.81 v 
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-KC3 0.57 0.65 0.90 v 0.95 v 0.95 v 0.95 v 

-MC1 0.12 0.72 v 0.50 v 0.92 v 0.87 v 0.92 v 

-MC2 0.71 0.79 0.85 0.91 v 0.88 v 0.91 v 

-PC1 0.67 0.67 0.71 0.88 v 0.85 v 0.89 v 

-PC2 0.43 0.86 v 0.79 v 0.97 v 0.95 v 0.97 v 

-PC3 0.32 0.35 0.64 v 0.77 v 0.74 v 0.79 v 

-PC4 0.38 0.49 0.70 v 0.84 v 0.82 v 0.82 v 

-PC5 0.26 0.09 * 0.75 v 0.82 v 0.82 v 0.83 v 

 (v/ /*) (2/5/3) (7/3/0) (10/0/0) (10/0/0) (10/0/0) 

6. Conclusion  

In this article, we studied software defects predictions using 

SMOTE and resample methods of different datasets. The 

core contribution of this article is to check the performance 

of classifiers after SMOTE, resample, and validate the 

results using a paired t-test. Further, we check the 

evaluation criteria whether SMOTE or resampled is 

effective or not. The experiment found that the performance 

of AdaBoost, Bagging and Random Forest improved after 

SMOTE and resampled dataset in many cases. SMOTE and 

resample alone cannot solve the data imbalanced problem.  
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Appendix-I 

 

Figure 4: Random Forest results after SMOTE at different Degree label  

Table 12: Random Forest results in WEKA After SMOTE for CM1 dataset 

Degree of minority oversampling TP- Rate FP-Rate Precision- -Recall -F-Measure -MCC ROC- Area PRC-Area   
100 0.994 0.006 0.994 0.994 0.994 0.989 1 1 

200 0.986 0.031 0.986 0.986 0.986 0.966 1 1 

300 0.978 0.02 0.979 0.978 0.978 0.956 0.998 0.998 

400 0.978 0.02 0.979 0.978 0.978 0.956 0.998 0.998 

500 0.963 0.101 0.963 0.963 0.962 0.895 0.995 0.995 

Table 13: Random Forest results in WEKA After Resample for CM1 dataset 

Sample Size in % TP- Rate FP-Rate -Precision -Recall -F-Measure -MCC ROC- Area PRC-Area   

50 0.944 0.49 0.942 0.944 0.935 0.625 0.832 0.936 

60 0.973 0.259 0.974 0.973 0.971 0.833 0.813 0.939 

70 0.98 0.203 0.981 0.98 0.979 0.873 0.864 0.96 

80 0.975 0.261 0.976 0.975 0.973 0.834 0.93 0.975 

90 1 1 1 1 1 1 1 1 

 

 

Figure 5: Random Forest results after Resample at different sample size for CM1 dataset 
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