
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

151

Manuscript received December 5, 2019

Manuscript revised December 20, 2019

Analysis and Design of Parallel Prefix Circuits with Faulty

Nodes

Hatem M. El-Boghdadi
1,2

, Fazal Noor
1
, and Mostafa Mahmoud

1

1Islamic University of Madinah, Faculty of Computer& Information, Saudi Arabia

2Cairo University, Computer Engineering Department, Egypt

Abstract
Parallel prefix circuits are circuits that generate the prefix
computation of a given input. The prefix computation is used
extensively in hardware circuits. Prefix computation has its wide

applications in cryptography, fast adders, etc. Any hardware
circuit that have adders as one of its components could benefit
from such computation. Prefix circuits proposed in literature differ
in their performance, cost and size. Usually most circuits use
operation nodes with fan-in/fan-out of 2. One classification of
prefix circuits is dependent on the width of the circuit: circuits with
width equal to the input, and circuits with width less than the input.
In this paper, we first perform an analysis of two important classes

of parallel prefix circuits. The first class performs well when the
input size is of the same width as the circuit. The second class
performs well when the width of the circuit is greater than the
circuit width. We analyze the two classes in case of existence of
faulty nodes. We estimate the time penalty and the number of idle
nodes when a node in a certain location in the circuit goes faulty.
Then based on the analysis, we propose new designs that can better
handle faulty nodes. Finally, we simulate the circuits on FPGAs to

assess their performance with faulty nodes.

Key words:
parallel prefix circuits, prefix computation, faulty elements.

1. Introduction

The prefix operation is one of the important operations due

to its wide range of applications. Computing the prefix of a

certain set of inputs could be done sequentially or in parallel.

Parallel prefix computation has gained much interest

because the speed it offers for computation as well as the

different techniques available. For an associative operation

*, the prefix of a set of inputs x1, x2, … , xn is y1, y2, … , yn

where yi= x1 * x2 * … * xi .
Prefix computation is very important in many domains.

Applications such as encryption, computing biological

sequences, and many types of adders especially fast adders

are direct applications for prefix computation.

Two main tracks were followed for prefix computation,

namely algorithmic computation and combinational

circuits. The first track uses the known parallel models for

the computation. Models such as parallel random access

machine (PRAM) [1], reconfigurable mesh (R-Mesh) [3],

hypercubes [2], etc. were used to solve the prefix problem.

The other track uses computational and combinational

circuits to solve the prefix problem. The combinational

circuit is a directed acyclic graph (DAG) that has m inputs

and m outputs. This DAG is said to be of width m. The

circuit has several operation nodes and at least one

duplication node. The operation node has two inputs and

one or two outputs and performs the operation * on the two

inputs. The duplication node duplicates the input and does

not perform any operation. The width of the circuit is the

number of inputs it can accept at a time and the size of the
circuit is the number of its operation nodes. The depth of

the circuit is the number of levels in the circuit. Figure 1

shows the operation and duplication nodes.

Figure 2 shows an example of the prefix circuit, L(9) [7].

The input is presented at the top of the circuit and after

several time units (depth of circuit), the circuit generates the

prefix output. Figure 3 shows another prefix circuit, H(9) of

waist 1 (Lt – Lf =1) that can perform well if the input size is

larger than the width of the circuit. In this case, the input is

decomposed into a number of subsets of smaller size. Each

subset is then presented to the circuit in consecutive time
steps and the circuit generates the output in consecutive

time steps as well.

Existing prefix circuits can be categorized under the

following categories: circuits with the same width as the

input size, circuits with width less than the input size,

reconfigurable circuits that have flexible width. In this

paper, we consider the second track and target the analysis

yx

x * y x * y

x

x x

 (a) (b)

Fig. 1 (a) operation node (b) duplication node

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

152

x1 x9x8x7x6x5x4x3x2

Level =1

2

3

4

5

1:2 3:4 5:6 7:8

1:4

1:6

Line 1 2 3 4 5 6 7 8 9

Fig. 2 Example of a prefix circuit, L(9) [7].

1

2

3

4

5

6

7

x1 x9x8x7x6x5x4x3x2

x17x16x15x14x13x12x11x10

x25x24x23x22x21x20x19x18

Lf =

Lt = 4

Fig. 3 Prefix circuit of waist 1 [4].

and design of the first two classes of circuits in the existence

of faulty nodes. Many circuits were proposed in literature

where they differ in performance, size, width and waist.
Previous proposed circuits assume all nodes are active. In

this paper, we consider the existence of faulty nodes in

prefix circuits and investigate their effect. We consider the

circuits that performs well when the input has the same

width as the circuit and circuits that perform well when the

input has higher width than the circuit. In particular, for the

first class we investigate the L-circuit [7] while for the

second class we investigate the H-circuit [4]. For these two

circuits, we first analyze them when there is a faulty node

in one of the lines of the circuit. We show how this node

could affect the operation of the circuit. We estimate the

number of idles operation nodes. We also investigate the
time penalty incurred when using the circuit to compute the

prefix computation. We show that the L-circuits can handle

the existence of faulty nodes better than the H-circuits.

Then, based on the analysis, we propose parallel prefix

circuits that can handle the existence of faulty nodes. For

the proposed designs, we estimate how many extra

operation nodes needed to deal with a faulty node. Up to our

knowledge, this is the first trial to consider analyzing the

performance of prefix circuits that has faulty nodes and

designing prefix circuits that can better handle faulty nodes.

Finally, we simulate the prefix circuits on FPGAs to assess

their performance with faulty nodes. We compute the time

penalty incurred if the circuit has a faulty node.

The next section presents the analysis of the L-circuit [7]
and the H-circuit [4]. Section 3 presents the new proposed

circuits. Section 4 summarizes our results and makes some

concluding remarks.

2. Prefix Circuits with Faulty Nodes

In this section we consider the analysis two classes of

parallel prefix circuits. The first represents circuits that

perform well when the input size is of the same width as the
circuit width. The second class represents the circuits that

perform well when the input size is larger than the input size.

2.1 Analysis of L-circuit with Faulty nodes

In this section we consider a parallel prefix circuit that is

depth-size optimal, L-circuit. It was proved [7] that L-circuit

has the smallest depth of other circuits that are depth-size

optimal if the fan-out is 2. The L-circuit is shown to perform

well when the input size is the same as the width of the

circuit.

Here we analyze the L-circuit in the existence of faulty

nodes and investigate the performance penalty of having a

faulty node.

Let the L(m) be an L- circuit of width m and let d(L) be the

depth of the circuit. If an input x1, x2, . . . , xm; of size m is

presented to the circuit hen after d time steps the circuit

generates the prefix sums of the inputs. Figure 2 shows an

L-circuit of width 9, L(9), of depth of 5 (The circuit has 9

lines and 5 levels.)

We first show that for L(m), the circuit can be used for

prefix computation of size n, n < m. Considering the L-

circuit structure, we find that there are no links connecting

two lines i and j, i < j, and also the node level in line j <

node level of line I, Thus, any line j does not affect the
output of line i, i < j. The output of line i is only affected by

inputs from prior lines and we have the following result.

Lemma 1. Let L(m) be an L-circuit of width m. L(m) can
be used to compute the prefix computation for an input of
width n<m. ∎
Now we consider the existence of faulty nodes in L-circuit.

Let the faulty node be in line i ≤ m. Since the faulty node in

line i contributes to all the outputs in all lines j, i ≤ j ≤ m,

then these outputs will be affected. In other words, all lines

j, i ≤ j ≤ m, cannot be used to produce an output. However,
this has no effect on the outputs produced through all lines

k < i. Thus, the circuit can generate the prefix computation

for inputs of size at most n ≤ i-1. However, the prefix

computation will require d(L) time steps, the depth of the

circuit. Thus, we have the following result.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

153

Lemma 2. Let L(m) be an L-circuit of width m and depth
d(L). If there is a faulty node in line i, then L(m) can be
used to compute the prefix computation for an input of
width h<i using the first h lines in d(L) time steps. ∎
Lemma 2 shows that L(m) with a faulty node still have
the same depth to compute prefix computation for an
input of size h<i and requires d(L) time steps. In an L-
circuit with no faulty nodes, and for input size of size h<i,
the L-circuit would have a depth that is less than the
depth in the case of size of input is m. Now, we
investigate the penalty of using L(m) with a faulty node
at line i in computing the prefix for input of size h<i.
The L(m) circuit is shown to have a depth, d(L)= ⌈ m/2⌉.
If L(m) is used for prefix computation for input of size
h<i, then this implies a penalty of ⌈ m/2⌉-⌈ h/2⌉ time
steps, h<i and consequently we have the following
result.
Corollary 3. Let L(m) be an L-circuit of width m and depth
d(L). If there is a faulty node in line i, then the time penalty
of using L(m) to compute the prefix computation for an

input of width h<i is (⌈
𝑚

2
⌉ − ⌈

ℎ

2
⌉) time steps. ∎

Now we consider the number of idle operation nodes in the

L-circuit if there exists a faulty node in line i. Recall the

structure of the L-circuit, starting the third line, lines

alternates in having either one operation node or two
operation nodes. If there is a faulty node in line i, then all

nodes in line j, i ≤ j ≤ m, are idle nodes. Thus. It is

straightforward to show that the total number of idle nodes,

N, in all lines from line i to line m, (𝑁 = ⌈
3

2
(𝑚 − 𝑖)⌉).

Corollary 4. Let L(m) be an L-circuit of width m and
depth d(L). If there is a faulty node in line i, then the

number of idle nodes N is ⌈
3

2
(𝑚 − 𝑖)⌉ . ∎

Corollary 3 and Corollary 4 show that, if L(m) has a faulty

node in line i, then the penalty of using the circuit to

compute the prefix computation for input of width h<i is

(⌈
𝑚

2
⌉ − ⌈

ℎ

2
⌉) time steps while the number of idle nodes is

⌈
3

2
(𝑚 − 𝑖)⌉.

3.2 Analysis of the H-circuit

In this section we consider the analysis of the H-circuit [4].

The H-circuit is a parallel prefix circuit that performs well

when the input size n is larger than the width of the circuit

m. In this case, the input is divided into subsets and

presented to the circuit in consecutive time steps. The

circuit generates the prefix computation in chunks after d(H)

time steps in consecutive time steps as well. Figure 3 shows

an H-circuit of width 9.
We first show that for H(m), the circuit can be used for

prefix computation of size n, n < m. Similar to the L-circuit,

we find that there are no links connecting two lines i and j,

i < j, and also the node level in line j < node level of line i.

Thus, any line j does not affect the output of line i, i < j. The

output of line i is only affected by inputs from prior lines.

The only exception is the link connecting the output of

operation node at line m and the first duplication node at

line 1. However, this link is used to to handle an input size

of width n > m, where the data is sent from line m back to
line 1.

Consider the existence of faulty nodes in H-circuit. Let the

faulty node be in line i ≤ m. Since the faulty node in line i

affects all the outputs in all lines j, i ≤ j ≤ m, then H cannot

be used to produce an output in line j, i ≤ j ≤ m. Thus, the

circuit can generate the prefix computation for inputs of size

at most n ≤ i-1. However, the computation requires d(H)=2
⌈log (𝑚 − 1)⌉ + 1 [4] time steps. Thus, we have the

following result.

Lemma 6. Let H(m) be an H-circuit of width m and depth
d(H). If there is a faulty node in line i, then H(m) can be
used to compute the prefix computation for an input of
width h<i using the first h lines in d(H)= 2⌈log (𝑚 − 1)⌉ +
1 time steps. ∎
Consequently, we have the following corollary.
Corollary 7. Let H(m) be an H-circuit of width m and
depth d(L). If there is a faulty node in line i, then the time
penalty of using L(m) to compute the prefix computation
for an input of width h<i is (2⌈log (m − 1)⌉ − 2⌈log (h −
1)⌉) time steps. ∎

To estimate the number of idle operation nodes in the H-

circuit in case a faulty node exists in line i, we investigate

the structure of the H-circuit. Recall the structure of the H-

circuit, we find that it uses two binary tree-like structures

(see Figure 3). If there exists a faulty node in line i, then we

show that the total number of nodes in line j, i ≤ j ≤ m, by
estimating the number of idle nodes in both binary trees in

addition to a single operation node in level log(m-1)+1 that

will be idle as well. For the first binary tree, T1, that is

connected to the inputs of H, the total number of nodes is

m-1. If the line number, l, is even number, then there is no

nodes in T1. If the line number, l, is odd and equals to 2h+1,

2 ≤ h ≤ log m - 1, then the number of nodes in line l is equal

to log l -1. The rest of the odd line numbers has only one

node. Thus, we estimate the total number of idle nodes,

NI(1), if there exists a faulty node in line i as NI(1)=
∑ 1𝑚

𝑙=𝑖,𝑙 𝑖𝑠 𝑜𝑑𝑑 + ∑ log 𝑙 − 1𝑚
𝑙=2ℎ+1,𝑙 𝑖𝑠 𝑜𝑑𝑑,𝑙>𝑖 .

For the second binary tree, T2, that is connected to the output

of H, there is a one operation node in each line. Thus, the

total number of idle nodes NI(2)= ∑ 1𝑚
𝑙=𝑖 = m-i+1.

Thus the total number of idle nodes if a faulty node exists

in line i is NI= NI(1)+ NI(2)+1. Figure 4 shows an F-circuit

with idle nodes where the faulty node is in line 5.

Lemma 8. Let L(m) be an L-circuit of width m and depth
d(L). If there is a faulty node in line i, then the number of
idle nodes NI(1)+ NI(2)+1. ∎
The above results show that, if there is a faulty node, both

the L-circuit and the H-circuit can perform the prefix

computation for an input of smaller size. However, the H-

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

154

circuit loses its advantage in computing the prefix for an

input of width larger than the width of the circuit. Then we

can conclude that the L-circuit can better handle faulty

nodes.

Corollary 9. Let L(m) be an L-circuit and H(m) be an H-
circuit of the same width m. If there is a faulty node in line
i<m, then L can handle the faulty nodes better than H(m).
 ∎

4. Design of New Prefix circuits

In this section we propose new parallel prefix circuits that
can handle faulty nodes better. The proposed designs are

based on the analysis done in section 3 for the L-circuits and

the H-circuits.

4.1 Fault tolerant L-circuit

In this section we consider the L-circuit that was

investigated in section 3.1. The importance of the L-circuit

is that it belongs to the class of depth-size optimal circuits

if the fan-out is 2. The L-circuit is shown to have good

performance when the input size is the same as the width of

the circuit.

Recall the analysis done in section 3.1, if a faulty node

exists in line i, then L-circuit can be used to generate prefix

computation for input of size i-1. It follows that if the faulty
node exists in a line that is closer to line m, then the number

of idle nodes is smaller. We will use this observation in

designing a Fault tolerant L-circuit (FL-circuit) that can

better handle faulty nodes.

Fig. 4 Idle nodes in H(9).

Fig. 5 Prefix circuit FL(9).

Definition 1. A parallel prefix circuit is called an FL-circuit,

if it has the same structure as L-circuit [7] in addition to one

duplicate node for each of the original nodes in the first

⌈
𝑚

2
⌉ lines. ∎

Our proposed design, FL-circuit, depends on having a

duplicate operation node for each original operation node in
the first few lines. A duplicate operation node will be used

if the original operation node is faulty. Such duplicate node

if used (if a node is faulty), will save a large number of idle

operation nodes in later lines. For example, having a

duplicate node in line 2 will save the whole circuit if the

node in line 2 is faulty. Thus, FL-circuit will be equipped

with a number of duplicate nodes for the first m/2 lines. If

any original node in line i< ⌈
𝑚

2
⌉ goes faulty, then the

duplicate node will be active and the whole circuit operate

as originally designed.

If any original node in line i> ⌈
𝑚

2
⌉ goes faulty, then the

circuit can generate the prefix computation for an input of

width h<i (Lemma 2). Figure 5 shows an FL-circuit of
width 9. Consequently, we have the following theorem.

Theorem 10. Let FL(m) be an FL-circuit of width m and

depth d(FL). If there is a faulty node in line i<⌈
𝑚

2
⌉ (resp.

i≥⌈
𝑚

2
⌉), then FL(m) can generate prefix computation for

input of width m (resp. h<i) in ⌈
𝑚

2
⌉ time steps. Moreover,

FL(m) has (
𝑚−3ℎ

2
+ 2) duplicate nodes.

Proof. We first assume that the faulty node is in line i<⌈
𝑚

2
⌉.

Since FL-circuit has duplicate nodes (one duplicate node

for each original node) in the first ⌈
𝑚

2
⌉ lines, then any

faulty node in the first ⌈
𝑚

2
⌉ lines can be replaced by a

duplicate node and the FL-circuit can work like the
original L-circuit and can generate prefix computation

in ⌈
𝑚

2
⌉ time steps. If the faulty node is in line i≥⌈

𝑚

2
⌉, Then

circuit also can work like the original L-circuit with a
faulty node. By Lemma 2, FL-circuit can work like the

1

2

3

4

5

6

7

x1 x9x8
x7x6x5x4x3x2

Faulty node

Idle nodes in NI(1)

Idle nodes in NI(2)

x1 x9x8
x7x6x5x4x3x2

1

2

3

4

5

Duplicate node

Original node

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

155

original L-circuit and can generate prefix computation

in ⌈
𝑚

2
⌉ time steps.

For the number of duplicate nodes of FL(m), recall the

structure of the L-circuit, it is straightforward to have

(
𝑚−3ℎ

2
+ 2) duplicate nodes. ∎

Theorem 10 applies also if there is more than one faulty

node in the first ⌈
𝑚

2
⌉ lines.

4.2 Fault tolerant H-circuit

In this section we consider designing the fault tolerant H-

circuit. The H-circuit belongs to the class of circuits that

performs well when the input size is larger than the width

of the circuit. We showed that, if there is a faulty node, then

H-circuit loses its advantage in handling larger-width input.

To try keep the advantage of the H-circuit in dealing with

larger input width, we propose to equip the H-circuit with a

duplication node for each original operation node. A

duplicate operation node will be used if the corresponding
original operation node is faulty. Such duplicate node if

used will save the operation of the circuit. Thus, if any

number of nodes in the H-circuit go faulty, then the circuit

can still be used to generate the prefix computation as it is

originally planned.

Definition 2. A parallel prefix circuit is called an FH-

circuit, if it has the same structure as H-circuit [4] in

addition to one duplicate node for each of the original

nodes. Since the size, s(H)= 2m-3 [4], then the number of

duplicate nodes is 2m-3. ∎

Theorem 11. Let FH(m) be an FH-circuit of width m and
depth d(FH). If there is a faulty node in line 1 ≤ i ≤ m, then
FL(m) can generate prefix computation similar to the
circuit H(m). Moreover, FH(m) has 2m -3 duplicate nodes.
 ∎

5 Simulation of Prefix Circuits

In this section, we simulate the L-circuit and the H-circuit

on FPGA using Verilog. The prefix operation was selected

to be addition. The target device is Xilinx xc3s500e-5-fg320

running on a clock of 50 MHz. For both the L-circuit and

H-circuit, three circuits were simulated of width 5, 9, and

17.

For the L-circuit, L(17), L(9) and L(5) were implemented

and their performance were assessed. Then a faulty node is

assumed in L(9) at line 6 and the time penalty was computed
if L(9) is used for computing the prefix operation for an

input of width < 6. Also a faulty node is assumed in L(17)

at line 10 and the time penalty was computed if L(17) is

used for computing the prefix operation for an input of

width <10. Table 1 shows the results of L-circuit simulation.

The results shows that if L(9) has a faulty node and is used

to compute the prefix for input of width < 6, then the circuit

has 66.6% time more than the time in case the L(5) is used.

Also, if L(17) has a faulty node and is used to compute the

prefix for input of width < 10, then L(17) has 80% time

more than the time in case the L(9) is used.

Table 1: Simulation results of L-Circuit

L-circuit

L(17) L(9) L(5)
Time Delay 12.3642 ns 6.869 ns 4.1214 ns

Time Penalty 80% 66.6% -

For the H-circuit, H(17), H(9) and H(5) were implemented
and their performance were assessed. Then a faulty node is

assumed in H(9) at line 6 and the time penalty was

computed if H(9) is used for computing the prefix operation

for an input of width < 6. Also a faulty node is assumed in

H(17) at line 10 and the time penalty was computed if H(17)

is used for computing the prefix operation for an input of

width <10. Table 2 shows the results of H-circuit simulation.

The results shows that if H(9) has a faulty node and is used

to compute the prefix for input of width < 6, then the circuit

has 40% time more than the time in case the H(5) is used.

Also, if H(17) has a faulty node and is used to compute the

prefix for input of width < 10, then H(17) has 28.6% time
more than the time in case the H(9) is used.

Table 2: Simulation results of H-Circuit

 H-circuit
H(17) H(9) H(5)

Time Delay 12.3642 ns 9.6166 ns 6.869 ns
Time Penalty 28.6% 40% -

6 Conclusions

In this paper, we have investigated different classes of

parallel prefix circuits in the existence of faulty nodes in

terms of time penalty and number of idle nodes. The

analysis shows that some classes of prefix circuits can

handle faulty nodes better than others. Also, we have
proposed new designs for prefix circuits that can handle

faulty nodes. The idea is based on having some duplicate

nodes that can be active when some nodes go faulty.

One direction to extend this work is to analyze other classes

of circuits. Other directions include proposing other designs

that could handle faulty nodes.

Acknowledgment

This work is done under the grant received (82/40) by

Deanship of research at Islamic University of Madinah

(IUM) for application- based research. We also give special

thanks to the administration of IUM for their support in

every aspect.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

156

References
[1] Jaja J (1992) An introduction to parallel algorithms. Addison

Wesley, Redwood City, CA, USA.
[2] Leighton FT (1992) Introduction to parallel algorithms and

architectures: arrays, trees, hypercubes. Morgan Kaufmann,
San Mateo

[3] Vaidyanathan R, Trahan JL (2004) Dynamic reconfiguration:
architectures and algorithms, vol 13.Springer Series in
Computer Science. Kluwer Academic/Plenum Publishers,
New York

[4] 4 .Lin Y-C, Hung L-L (2009) Fast problem-size-independent
parallel prefix circuits. J Parallel Distrib Comput 69:382–388

[5] Hatem M El-Boghdadi (2013), A class of almost-optimal
size-independent parallel prefix circuits. J Parallel Distrib
Comput 73:888–894

[6] Hatem M. El-Boghdadi (2015), Dynamic-width
reconfigurable parallel prefix circuits. The Journal of
Supercomputing 71(4): 1177-1195

[7] Y.-C. Lin, C.-K. Liu, Finding optimal parallel prefix circuits
with fan-out 2 in constant time, Inform. Process. Lett. 70 (4)
(1999) 191–195.

[8] Y.-C. Lin, C.-C. Shih, Optimal parallel prefix circuits with
fan-out at most 4, in: Proc. 2nd IASTED Int. Conf. on Parallel
and Distributed Computing and Networks, Brisbane,
Australia, 1998, pp. 312–317.

[9] T. D. Sawarkar, L. Chawle and N Narole, “ Survey paper on

Implementation of FPGA based Parallel Microprogrammed
FIR Architecture”, International Journal of Advanced
Research in Computer Engineering & Technology
(IJARCET) Volume 5 Issue 1, January 2016.

Hatem M. El-Boghdadi is a professor of

Computer Engineering at Cairo University,
Giza, Egypt since 2015. Currently, he is on
leave at the Islamic University of Madinah,
Saudi Arabia. His research interests include
Parallel Architectures and Algorithms,
Network-on-Chips, Reconfigurable
Computing.

Dr. Fazal Noor received his PhD
Engineering from McGill University,
Canada 1993. He received his M. Eng ad B.
Eng from Concordia University, in 1986 and
1984, respectively. Dr. Noor is working as
Associate Professor in the Faculty of
Computer Science and Information Systems,

Islamic University of Madinah. Dr. Noor
has numerous publications in International

conferences and journals. His current research interests are in
neural networks, optimization algorithms, image recognition,
parallel and distributed computing, embedded systems, IoT,
robotics.

Dr. Mahmoud, is currently a Professor in
computer Sciences department at Islamic
university of Madinah KSA, holds Ph.D in
artificial intelligent from Cairo university,
Dr. Mahmoud has a diverse educational and

research background. His research expertise
is in the expert systems, multimedia, data
mining, ontology, intelligent systems, and
knowledge base systems. He has been active

in research with over 40 papers published in refereed journals and
conferences. He is a senior member of IEEE.

