
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

185

Manuscript received December 5, 2019

Manuscript revised December 20, 2019

SEAA: Secure and Efficient Authenticated Encryption Algorithm

for Satellite Application

Abid Murtaza, S. Jahanzeb Hussain Pirzada, Tongge Xu, and Liu Jianwei

School of Cyber Science and Technology, Beihang University (BUAA), Beijing, China

Summary
Satellite communication is a fundamental part of modern-day
communication infrastructure. Hence the information security is
also critical in satellite communication. Authenticated Encryption

(AE) algorithm provides confidentiality, integrity, and
authenticity of data, all primary data security services with a single
algorithm. The AES-GCM algorithm is the most famous and
widely used AE algorithm, which is also recommended to be used
in satellite application. However, the AES-GCM architecture is
not nonce misuse attack resistant. Also, most of the existing AE
algorithms (including GCM) are based on block cipher design,
which is vulnerable to side-channel attacks due to using the same

key for a longer duration. Re-keying is an effective approach to
protect the algorithm against side-channel attack. On the other
hand, satellites have limited computational capacity, high
throughput requirements, and higher latency attributes. Therefore,
there is a need for the AE algorithm, which is not only secure
against known attacks but also fast and capable of supporting high
throughput requirements of satellite communication. In this paper,
we have proposed an AE algorithm architecture named SEAA

(Secure and Efficient Authenticated encryption Algorithm), in
which the re-keying approach is incorporated such that, the SEAA
becomes resistant side-channel and nonce misuse attacks at the
same time without any additional protection or overhead.
Additionally, the proposed algorithm also reduces the
computational complexity of the traditional AES-GCM algorithm
to increase the efficiency of the proposed AE algorithm. The
experimental results of the proposed algorithm in software and

hardware (FPGA) show that the computational performance
(speed and throughput) of the proposed algorithm are better than
the famous AES-GCM, despite being secure against known attack
applicable to AES-GCM. Hence, SEAA is a suitable AE algorithm
for satellite application.

Key words:
Authenticated Encryption, Nonce misuse, Side-channel Attack,
Algorithm, AES-GCM

1. Introduction

From With the rapid growth of information processing and

communication technologies, data exchange also increased

radically in recent decades. This has also resulted in the

ever-increasing demand for ensuring information security.
The security of the modern-day communication system is

based on the CIA-AAA model (Confidentiality, Integrity,

Availability, Authentication, Authorization, and

Accounting. The former two are related to data protection

and are focus of our work, while the latter four are related

to the user's authentication and access to system resources.

For data protection, confidentiality ensures that apart from

the intended receiver, nobody could get into the content of

a message. While data origin authenticity and integrity

services ensure that the data is received only from a

particular sender, and is not forged in the transmission path.

Confidentiality is achieved by encrypting the message with

an encryption algorithm (Symmetric-key or asymmetric key

Algorithm). Data authenticity and integrity services are
together provided through data authentication algorithms,

which are either hash-based or cipher based in case of

symmetric key algorithms, or digital signature-based in case

of public-key cryptography.

Satellites are a fundamental part of modern-day

communication infrastructure, providing communication,

navigation, remote sensing, earth observation, weather

monitoring, and other services for civil, commercial and

defense purposes. The security of satellite communication

is critical, and compromise in security could have serious

problems. Therefore, the Consultative Committee for Space

Data System (CCSDS) recommends using security
algorithm and protocols for securing satellite

communication according to the security classification of a

space mission as either high, moderate, or minimum

security missions [1]. On the other hand, satellites also have

the limited computational capacity and high throughput

requirements (for communicating extensive data, e.g.,

stored images); hence, the security solutions for satellite

communication, should be fast and lightweight.

Understandably encryption without data origin and content

authentication is not secure, in particular in satellite

application [2]. Therefore, both encryption and data
authentication services are used to secure satellite

communication. Authenticated Encryption (AE) algorithm

provides all these encryption, origin of data authentication,

and data integrity services altogether by a single algorithm.

Among the existing AE algorithms, the most famous AE

algorithm is Advanced Encryption Standard, Galois

Counter Mode (AES-GCM), which was designed by

McGrew and Viega and standardized by the National

Institute of Standards and Technology (NIST) and

International Organization for Standardization (ISO) [3],

[4]. The CCSDS also recommends using AES-GCM when

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

186

encryption in combination with data integrity and origin

authentication is required in space missions [5]. The AES-

GCM utilizes AES in counter mode (AES-CTR) encryption,

while polynomial multiplication on Associated Data (AD)

is performed in the Galois field multiplier for authentication

tag generation. Therefore, GCM can provide high-speed AE
in both software and hardware [6], [7], as well as it can be

parallelized and pipelined [8], methods that can be very

advantageous in the space community [5].

 Despite its computational efficiency, AES-GCM is

vulnerable against nonce misuse attack. In a nonce misuse

attack, if the same nonce is used for two different messages,

the information could be leaked. The AES-GCM algorithm

uses a simple exclusive or (XOR) operation on plaintext for

the generation of ciphertext. So, in case of the use of the

same nonce for different messages, a simple XOR can

differentiate between the messages. The criticality of nonce

misuse attack in practical applications such as Transport
Layer Security (TLS) has already been demonstrated [9].

Moreover, GCM is also vulnerable against side-channel

attacks, in particular, Differential Power Analysis (DPA)

attack, because of using the same key for longer duration in

block cipher (AES) [10]. In side-channel attacks,

information about the key is extracted by observing the

physical properties of the device such as power utilization

or the electromagnetic field [11], which could lead to a

successful recovery of the key. The recent demonstration of

these attacks is presented in [12] and [13].

Apart from AES GCM, many new lightweight AE
algorithms have been proposed by researchers in

Competition for Authenticated Encryption: Security,

applicability, and reliability (CAESAR) [10] and otherwise

in recent years, to comply with the demands for lightweight

AE algorithm for resource-constrained devices and

applications, such as the Internet of Things (IoT). However,

most of the proposed AE schemes have some computational

limitations or security concerns. For example, many of the

proposed schemes are not complete nonce-misuse resistant

[14] and also have vulnerabilities against side-channel

attacks [15]. On the other hand, the schemes which are

secure against nonce-misuse attack (such as Primate [16])
are slow by design and not suitable for large data as in case

of satellite application (images) [17]. Also, most of the AE

schemes are based on nonce, which is additional overhead

data and processing costs, which is critical for satellite

application.

Therefore, there still a need for a lightweight AE algorithm

that is not only capable of parallel processing to support

high data rates but also secure against both active nonce

misuse attack as well as passive side-channel attacks. This

paper proposed such an algorithm named SEAA, where not

only the security vulnerabilities of existing AE schemes
have been addressed, but also, the computations of the

algorithm have been simplified for improved computational

performance.

The remaining of this article is arranged as follows: In

section 2, related work has been reviewed. In section 3, we

have proposed our algorithm with details. Section 4 shows

the implementation results. Section 5 provides a security

analysis of the proposed algorithm. Section 6 concludes the

paper.

2. Related Work

AES-GCM algorithm is the most famous AE algorithm and

used in many modern-day security protocols (such as IEEE

802.1AE, IETF IPSec, SSH, and TLS/SSL, etc.) [18],

because of being computationally efficient due to parallel in

architecture without any optimization. However, there have

been many optimized and efficient implementations of
AES-GCM on FPGA hardware [19],[20],[21]. However,

due to the vulnerability of GCM against nonce-misuse

attack, the GCM-SIV variant of the GCM algorithm has

been proposed, which provides complete nonce misuse

resistance [22]. However, firstly in GCM-SIV, plaintext

needs to be processed twice, which decreases its

computational performance than AES-GCM [23]. Secondly,

both GCM and GCM-SIV are vulnerable to side-channel

attacks.

CAESAR was started in 2012 for the selection of the most

suitable AE algorithm for different categories, including the
lightweight category. 57 AE schemes were presented to this

competition, and six were declared as winners. For the

lightweight application category (resource-constrained

case), 2 AE schemes were announced as winners, i.e.,

Ascon [24] and ACORN [25]. There are several studies on

the proposed AE schemes in CAESAR to evaluate the

performance comparison of different proposed AE schemes

of the competition [14], [26]. The computational

performance of both the CAESAR winners, Ascon and

ACORN, is better and at a lower cost than AES GCM [27].

However, both the winners of CAESAR (Ascon and

ACORN) are not completely nonce-misuse resistant [14].
Similarly, a study shows that many of the proposed AE

algorithms, including Ascon and ACORN, have significant

Information leakage in the 186 partan-6 FPGA and are

likely vulnerable to DPA [13].

There are two approaches to the countermeasure of these

passive attacks. First is the conventional method of hiding

or masking the implementation of the cryptographic

algorithm [28]. But the problem of these methods is high

overhead, area, and cost of protection [29], which are

critical in satellite application. Although, there are schemes

such as COFB whose objective was to reduce the size of the
mask without compromising security [30]. The alternate

solution is fresh re-keying [31], which means obtaining a

new session key every time. This approach can provide

inherent protection against the DPA attack. This concept is

similar to the idea of Forward Secrecy (FS), which uses a

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

187

new key for every new message. This FS concept is used in

many applications nowadays because of its benefits such as

with re-keying or FS, in case of a compromise of a key, only

a message could be leaked while all the communication

stays at risk otherwise [32]. The new keys can be achieved

either derivation from the master key or some lightweight
protocols that can be used for the exchange of new keys [33].

Most of the existing and proposed AE schemes are not

designed for this re-keying or FS approach.

From this brief review of related work, we can see that;

there is a need for nonce misuse resistant as well as a side-

channel attack resistant AE algorithm for satellite

application, which is also fast and capable of supporting

high data rate support for satellite application. In this paper,

we will show that incorporating re-keying or FS concept

inside the algorithm design can produce an efficient AE

algorithm, which is inherently side-channel attack resistant,

as well as nonce misuse resistant. Furthermore, the re-
keying approach allows simplifying the computation of

block cipher used in the AE algorithm. Therefore,

implementation results and performance of the proposed

AE algorithm validates the computational superiority over

the existing AE algorithm, such as AES-GCM.

3. Proposed Algorithm

Before the description of our algorithm, it is helpful to

explain the design concept of the proposed algorithm.

3.1 Proposed approach

We can note from the AES-CTR part of AES-GCM that the

ciphertext is generated by simple XOR operation of

plaintext with the 128-bit output of AES block (say

Temporary variable Ti). Here Ti is widely different from Ti-

1, even though the same key and same algorithm are used,

and the counter value of both is different by only 1

(increment operation). This is because of AES round

functions, which ensure the widely different output even if

the input is changed only by 1 bit, and the same key is used.

But to note here is that in essence, the encryption process of
AES-CTR is similar to One-time Pad (OTP), where the

plaintext is simply XOR with the same size key, which is

never used again.

Our design principle is that instead of XORing the plaintext

Pi with Ti for ciphertext generation, we propose to XOR

two new keys called key1, key2, with Ti for the ciphertext

generation. This approach can provide some unique benefits

as follows. Firstly, the total reliance on AES block cipher

for the generation of unique Ti to eventually ensure unique

ciphertext for the same plaintext can be significantly

reduced. Because, even if using the same plaintext &

corresponding Ti, the new keys key1 and key2, can provide
the uniqueness in ciphertext for the same plaintext & Ti.

Hence, the block cipher function can be simplified or

reduced. Secondly, the use of new keys (key1 and key2) for

every message block will inherently prevent our algorithm

from side-channel attacks such a DPA. Thirdly, in the

conventional encryption or AE algorithm approach, a single

key is used with a different nonce to ensure unique

ciphertext in case of the same plaintext. If we can ensure
that apart from plaintext (or Ti), both the XORing numbers

(i.e., key1 and key2) are always new, unique, and random,

then this will ensure a unique ciphertext for the same

plaintext and same Ti. Hence, the proposed algorithm

SEAA will not be vulnerable to nonce misuse attack.

Finally, it will provide security similar to the provably

secure OTP. Because, due to our design of three variables

for ciphertext generation (Ti, key1 and key2), compromise

of any one variable (e.g., key1 or key2) will still maintain

the confidentiality of the plaintext because of the other two

variables. Mathematically, if N numbers of n bits each are

XORed with each other, then there exist 2(N-1) n possible
unique permutations, which can produce the same

ciphertext. So, if the length of three numbers is 128 bits each,

then there will be 2(3-1)128 = 2256 permutations of three

numbers that can produce the same ciphertext. So, even if

one number is known to the attacker, there still exist 2128

possible combinations of the other two numbers. As the

attacker has no further information, he can never be sure

which combination among 2128 is correct, which is a

similar situation to OTP.

Based on the above description of the design principle, we

can see that one of the main task of the proposed algorithm
is to ensure new keys (key1 and key2) for every plaintext

block, such that keys (key1 and key2) will never be used

again, at least together in case of the same plaintext.

Now, we will explain the proposed algorithm SEAA in

detail, which is shown in figure 1. As a pre-requirement, we

suggested that the sender and receiver need to have shared

a secret random key of 256 bits, whose first 128 bits will be

called master key (K0) and the last 128 bits will be called

initialization vector (IV), while the message is divided into

128-bit blocks. In figure 1, we can see that plaintext blocks

are processed in the modified AES block to provide Ti.

Then these Ti are XORed with corresponding Ki and IV_i
to produce Ci. While P1 to Pn and XORed together. The

resultant is processed in the modified AES block to generate

the authentication tag by XORing with Kn+1 finally.

There are four main stages of SEAA; Key Expansion

Algorithm, Modified AES for Ti generation, the Encryption

process, and finally, the Tag generation.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

188

Fig. 1 Proposed AE Algorithm

3.2. Encryption Process

The encryption process of the SEAA is as simple as XOR

of two keys IV_i and Ki with Ti, as shown in equation one

below.

Ci = Ti ⊕ IV_i ⊕Ki

 (1)

Where 'i' is block number, C is ciphertext, P is plaintext.

Here Ti is generated through modified AES block step, Ki

is generated through Key expansion algorithm, and IV_i is

obtained by increment and right shift operation on IV_i-1

(as proposed for AES-GCM by A. S. Bader et al. [32]) and

then XORing it with K0 as shown in equation 2 below.

IV_i= RS ((IV_(i-1)) +1) ⊕ K0 (2)

The right shift and increment operation on IV_(i-1)
provides a new key every time. Hence, the generated

ciphertext is always largely changed. Also, after the

generation of IV_i, this IV_i becomes IV_(i-1) for the

generation of next IV_i. Through this method, IV is

continuously updated and never used again. Similarly, the

last IV, i.e., IV_n of one message, is considered as IV_0 for

the next message, this will provide the desired, never used

again characteristic and hence side-channel attack

resistance.

3.3. Key Expansion Algorithm

As we know that, we need to ensure the availability of new

key for every message block. Besides, we also need one

new key for tag generation. Therefore, if there are n
message blocks, there is a need for n+1 keys (K1 to Kn+1).

In our other recent work [33], we have proposed a

modification in AES key expansion algorithm, which can

produce 128 distinct keys from 1 main key. We can use a

slightly modified version of that key expansion algorithm

for the generation of unlimited unique keys. The flow

diagram of the modified key expansion algorithm is shown
in figure 2.

Fig. 2 SEAA Key Expansion Algorithm

The keys generated through the above algorithm are entirely

different and unpredictable with the previous keys. Hence

we can have unlimited unique and random keys through this

algorithm. There are two possibilities for the execution of

the above algorithm; firstly, it is possible that both the
sender and receiver pre-generate and store a large number

of keys (K1 to Kn) in a lookup table, to be used during the

encryption process, and periodically update the table. This

will save time during encryption. Alternately, the keys can

be generated at the time of encryption, as the time required

to generate one key in the above key expansion is very short.

The keys generated from the above mechanism should

never be used again. For example, if the number of blocks

in 1st message is five, then keys K1 to K5 will be used for

encryption and K6 for the tag generation. Now, for the 2nd

message, K6 will become K0 for the derivation of new K1
to Kn for the second message, or if pre-calculated, K7

onward will be used for the following messages.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

189

3.4. Modified AES

To generate Ti, we proposed using a modified AES block

cipher with plaintext Pi and key K0 as input. The modified

AES is the same as standard AES, with the only difference

is reduced no of rounds from ten to four in the modified

version, as shown in figure 3. The reason for this

modification is that there are several algorithms which use

four rounds of AES as building block such as stream cipher

LEX [34], the Pelican message authentication code function

[35], the AE algorithm POET [36], and provably secure

MACs [37]. Also, this has been shown that 256 message
blocks can be encrypted under the same key, given all round

keys are independent [38] in 4 round AES. While our

approach is to use new keys for a new message, hence the 4

round AES is sufficient to provide the desired high security

against differential cryptanalysis.

Moreover, in the conventional algorithm such as AES-CTR,

the input (counter) to the block cipher is changed by only 1

(increment) for different input blocks. As a result, the

dependence on block cipher to produce unique Ti is

enormous. Because, if Ti is not largely changed for minor

input change (counter), then the same plaintext will produce

similar ciphertext. However, in the proposed approach, the
uniqueness of ciphertext does not only depend on Ti;

instead, it also depends on the new Ki and IV_i. Hence, in

the SEAA, the block cipher computations can be simplified

as proposed. Also, unlike the traditional AE approach, the

purpose of the block cipher in SEAA is mainly to provide

strength to the authentication part, where the change in a

single bit of input is desired to be reflected by a complete

change in output through avalanche effect. For this, as

experimental results show, four rounds are adequate to

completely change the Ti by a change in a single bit in the

input. Hence, reducing the complexity of AES rounds AES
does not compromise security. Therefore, only 4 AES

rounds are used in SEAA.

Also note that with this approach, we can use AES round

keys in alternate blocks, such as, for odd number blocks,

key 1 to key five can be used, and for even number message

blocks, key 6 to key 11 can be used).

3.5. Tag Generation

Finally, the tag can be generated by giving the resultant

XOR of all the plaintexts as input to the modified AES

algorithm, and XORing the result of the block cipher with

key Kn+1 as shown in fig.1. This tag of 128 bits will be

attached with the ciphertext and will serve the

authentication purpose similar to that in most cipher based
MAC such as CMAC or PCMAC [34].

Fig. 3 Modified AES Algorithm

3.6. Decryption and Authentication Process

The decryption process of SEAA consists of XORing the

ciphertext with key Ki and IV_i to get Ti, as shown below.

Ti = Ci ⊕ IV_i ⊕Ki
 (3)

After receiving the Ti, the receiver can process Ti in the

modified AES decryption process of the same four rounds

to get the corresponding plaintext Pi. The order of the sub-

process of the modified AES decryption process will be

reversed than that in the encryption process for the recovery

of plaintext.

After decryption and obtaining the plaintexts, the receiver

can generate the tag by the same method through which

generated by the sender, and compare the received and
generated tags to ensure authentication. If the tags are the

same, the receiver can be sure about the authenticity and

integrity of the message. Otherwise, the receiver can discard

the message by considering it forged during the path.

4. Experimental results

4.1 Assumptions and pre-computations

In the implementation stage of the algorithm, it is assumed

that in SEAA, both the keys (Ki and IV_i) are pre-computed

and stored (as recommended in the algorithm description

section). After the sharing of secret keys K0 and IV_0, any

desired number of the key can be generated through key
expansion algorithm and stored in the memory, to be

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

190

utilized later in SEAA for encryption and authentication tag

generation.

Table 1 shows the result of the proposed key expansion

algorithm for the generation of K1 to K8 from K0. Table 1

also shows the results of the derivation of IV_1 to IV_8

from IV_0. From the generated keys (both Ki and IV_i), it
can be seen clearly that these are entirely changed from

previous keys and the master keys (K0 and IV_0).

Table 1: Key Expansion and IV Expansion Experimental Results

Furthermore, the NIST’s statistical tests for randomness

[39], such as Frequency test and Runs test are also

performed on the generated keys to check the randomness

of generated keys and the resultant p values are shown in

table 2 below. The frequency test checks if the number of

ones and zeros are almost equal or not in the binary key,
while runs test determines whether the oscillation between

different runs of ones and zeros of various lengths is too fast

or too slow [39]. Since the results shows that all the

generated keys pass the frequency test and runs test (p value

> 0.01) hence all keys can be considered as random

(however, all the applicable test in NIST statistical test suite

for randomness from the total 17 test maybe performed for

further endorsement).

Table 2: Experimental Results of NIST Randomness Tests on Generated

Keys
Key
no.

Frequency Test
P-value

Runs Test
P-value

I
Ki

IV_i
Ki

IV_i

1 0.3768
 (Pass)

0.5959
(Pass)

2.0000
(Pass)

0.8399
(Pass)

2 0.1573
(Pass)

0.4795
(Pass)

1.8940
(Pass)

1.6028
(Pass)

3 0.8597
(Pass)

0.4795
(Pass)

0.1109
(Pass)

0.6897
(Pass)

4 0.1573
(Pass)

0.7237
(Pass)

0.1508
(Pass)

0.0750
(Pass)

5 0.5959
(Pass)

0.7237
(Pass)

0.0199
(Pass)

0.1088
(Pass)

6 0.7237
(Pass)

0.5959
(Pass)

0.0503
(Pass)

0.0724
(Pass)

7 0.59595
(Pass)

0.2888
(Pass)

1.9773
(Pass)

1.2023
(Pass)

8 0.3768
(Pass)

0.8597
(Pass)

0.1356
(Pass)

1.6219
(Pass)

From the speed of the key expansion algorithm viewpoint,

under the pre-computed assumption, the time of Key

expansion algorithm can be excluded from the processing

time of SEAA. However, for a reference, figure 4 shows the

time required for the generation (expansion) of different no
of keys from given K0 and IV_0. From figure 4, we can see

that the algorithm can generate 3000 keys Ki or 2000 keys

IV_i if the key expansion algorithm is run for only one

second. Accordingly, any number of keys can be pre-

computed in a short time duration and stored.

Fig. 4 Time for expansion of n no of keys through Key Expansion

Algorithm

4.2 Software Implementation

The proposed algorithm has been implemented on

MATLAB software on a normal Laptop with 4 GB RAM, a

Core i5 processor without any code optimization for time.
After having required encryption keys (IV_i and Ki) from

the key expansion algorithm, the next stage of SEAA is the

Ti generation using a modified AES block. For this,

plaintext P1 to Pn are input to the modified AES algorithm

(4 rounds only) to produce the T1 to Tn, respectively. To

demonstrate the effectiveness of the proposed re-keying

approach, we have used the same plaintext Pi in 8 input

blocks for the same T1 to T8 generation. Then for the

encryption, the generated Ti is XORed with corresponding

Ki and IV_i to generate C1 to C8 as per equation 1. The

results of the encryption process are shown in figure 5.

From the results, it can be seen that having the same Pi and
corresponding Ti as well, eight different ciphertexts (C1 to

C8) are received, because of different Ki and IV_i. Hence

the experimental results validate the algorithm's working

with the desired output. Here IV_i and Ki are the same as

shown in table 1.

K0 = 2B7E151628AED2A6ABF7158809CF4F3C
IV_0 = 09CF4F3CABF7158828AED2A62B7E1516

K1=4043BC36E5A8B3C739
40A80E7C818F57

IV_1=AF99B2887D555862B
FA07CDB1C7045B7

K2=7B0839DF1C70D8FA4
AE3C912200A090

IV_2=7CB2CC5216047E97F
4272BE587F76DE0

K3=AEC4A51E33D4A9B3C
91FAE05C8A7AA93

IV_3=9527733F23ACEDED
51E4807ACA34F9CC

K4=DBCFFD4286D917D66
289AAD758DABC

IV_4=E1EDAC89B978A450
030555B56CD533DA

K5=655FB194ABB2A5AEE
F0D772AF114518C

IV_5=DB88C352F412808EA
A75BF52BFA5D6D1

K6=59DEF9100533714B5A
AB5B0DA4ABCA0

IV_6=46BA74BF52A792E1F
ECDCA21561DA455

K7=310663AC391BFDCCD
EC20E9F39E13E1E

IV_7=08232F4981FD1BD65
491F098A2C19D17

K8=A492BA9D70FBEBBC8
C65EA52F66940FA

IV_8=2F6F82B2E8505F4D8
1BFEDC458AF81B0

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

191

Fig. 5 Encryption Results of the Same Plaintext in 8 input blocks

Finally, the authentication tag is generated by the steps

shown in figure 1 and explained in section 3.5. The results

of the tag generation are shown in table 3 below. To verify

the authentication process of our algorithm, a simple hex

digit (a half byte) is changed in first byte of ciphertext block

C2 from 5 to 6, as highlighted in the table below. As a result
of this forgery, Ti extracted from Ci as per equation 3 is also

be changed in the corresponding byte in the corresponding

block. When the receiver uses this Ti to obtain the plaintext,

the plaintext is completely changed, as highlighted in the

table below. Finally, the resultant tag generated using

recovered plaintext is completely changed from the original

tag received together with the ciphertext, as shown in table

3 below. Therefore, the receiver can easily know that the

integrity of the message has been compromised.

Table 3: Results of Tag Generation process of SEAA

Figure 6 shows the comparison of block processing time for

Ti generation in both standard AES algorithm (10 rounds)

and modified AES algorithm (only four rounds). The results

show that the processing time of 4 round AES is

significantly less than the standard algorithm.

Fig. 6 Comparison of processing time of Modified and standard AES

algorithm

Finally, figure 7 shows the comparison of total time for

ciphertext and tag generation of the proposed algorithm

with AES-GCM for up to 16 input message blocks. Here the

total encryption time of the proposed algorithm includes

time for keys expansion (Ki and IV both), modified AES

Block processing time, encryption time (which consists of

XORing the Ki, Ti, and IV_i together), and tag generation.

From the results, it can be seen that the speed performance
proposed SEAA algorithm is significantly better than the

widely used AES-GCM on MATLAB software. Even

though no code optimization has been performed and AES

initialization time (such as key expansion, s-boxes

generation, etc.) and tag generation times are not included

in the AES-GCM results.

Fig. 7 Total Processing Times of the AES-GCM and SEAA

T
im

e
(

S
ec

o
n

d
s

)

Number of Input Blocks

Total Tag Generation Time

AES

-…

OriginalP1=
F0F1F2F3F4F5F6F7F8F9FA

FB00000000

Original P2=
F0F1F2F3F4F5F6F7F8F9FAF

B00000000

Resultant C1=
D158C21563225EDBEA364

0162A4DD64A

Resultant C2 =
A58083641C1CC6663C5F83B

7EF4BD1DA

Tag (from original P1 & P2) =
F20A5AE5EA35572B55C8713CB3204234

Original C1=
D158C21563225EDBEA364

0162A4DD64A

Modified C2 =
A68083641C1CC6663C5F83B

7EF4BD1DA

Recovered P1=
F0F1F2F3F4F5F6F7F8F9FA

FB00000000

Recovered P2=
169B26FA5CFB7D115EBCE

D6D6847C991

Tag (from recovered p1 and P2) =
0BC628A1D0D024D538A85C3FD6B5A1AD

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

192

4.3 Hardware Implementation

It is important to note here that in our software

implementation, the algorithm followed a serial flow. But

on the hardware capable of parallelization, many of the

processes can be parallelized for significant performance

improvement. In particular, if the keys Ki and IV_i are pre-

calculated, then the actual processing of the algorithm at

runtime will only consist of modified block processing, the

encryption process, and the tag generation. Here, due to the

architecture of the algorithm, all the plaintext blocks can be

processed in parallel to produce Ti simultaneously.
Therefore, the corresponding encryption process (which

consists of XORing of IV_i and Ki with Ti) can also be

performed in parallel so that all the ciphertext can be

generated in parallel in just one clock cycle after having Ti,

Ki, and IV_i. Similarly, the tag can also be generated in

parallel to ciphertext generation, so, we can see that apart

from the key expansion algorithm, all the other processes

can be parallelized. Therefore, the SEAA is fully

parallelized (provided the keys are pre-computed and stored

in memory), and hence suitable for high throughput

applications.

 The experiments were performed on the proposed
algorithm on hardware using Xilinx Vertex-6 FPGA and

Modelsim simulation software. The simulation results are

shown in figure 8. The experiment for proposed encryption

and authentication tag generation is performed using a

single core of the proposed algorithm. The key generation

takes two clock cycles for the generation of each expanded

key. The modified ciphertext generation takes four clock

cycles for Ti generation from Pi, and one clock cycle for

XORing the Ti with Ki and IV_i. Therefore, a total of five

clock cycles are required for the generation of ciphertext

generation or encryption. Similarly, the tag generation used
a separate algorithm core for implementation. Therefore,

five clock cycles are used for encryption and authentication

tag generation in parallel. The FPGA simulations results are

the same as obtained through MATLAB implementation, as

can be seen from fig. 8.

Figure 8 Simulation Results of FPGA Implementation of proposed AE

algorithm

Table 4: Resource utilization of FPGA

Input

blocks

Resources

CLB

Slices

Clock Freq.

(MHz)
BRAM

Throughput

(Gbps)

1 956 305.64 20 7.84

2 1912 305.64 30 15.64

3 2868 305.64 40 23.47

4 3824 305.64 50 31.29

5 4780 305.64 60 39.12

6 5736 305.64 70 46.94

7 6692 305.64 80 54.77

8 7648 305.64 90 62.59

9 8604 305.64 100 70.41

10 9560 305.64 110 78.24

11 10516 305.64 120 86.06

12 11472 305.64 130 93.89

Table 4 shows the resource utilization of the proposed

algorithm on FPGA. The throughput has been calculated by

the following formula.
Throughput = number of bits *freq / clock cycles

There have been different implementations of AES-GCM

on FPGA. Table 5 shows the results of the throughput

comparison results of AES-GCM implementation on the

FPGA and proposed algorithm. The proposed

implementation results show high throughput

implementation with the recent optimization results of the

AES-GCM algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

193

Table 5: Comparison of proposed and AES-GCM algorithms on FPGA

hardware

S.

No
Implementation

Resources

CLB

Slices

Clock

Freq.

(MHz)

Throughput

(Gbps)

1 Yang et al. [19] 463328 271.00 34.69
2 Lemsitzer et al. [20] 13200 110.00 14.1
3 Y. Zhang et al. [21] 6482 381.60 48.8
4 Proposed SEAA 11472 305.64 93.89

5. Discussion on Security Algorithms

5.1. Mathematical Analysis

As explained in section 2, the encryption process of our

algorithm consists of XORing the Ti with two unique keys

Ki and IV_i. Therefore, for the attacker, it is impossible to

get to correct Ti without knowing the correct values of Ki,

IV_i. This is because there exist 2256 possible

combinations of Ki, IV_i, and Ti that can produce the same

Ci. As, both Ki and IV_i will not be used again, so the
attacker has no further information to guess the correct

combination of three numbers among 2256 values.

The key expansion algorithm is designed to produce a new

key every time, so assuming the Ki, IV_i will never be used

again, the algorithm is as secure as OTP. Even if we

consider the key expansion algorithm generates a key Ki

that has already been used to encrypt any plaintext block in

the past together with IV_i, even then it is unlikely that at

the same instant the corresponding key IV_i will also be

generated same as used earlier with that Ki. This is because

both the keys Ki and IV_i are expanded through a different

mechanism. So, we can see that even if a key Ki is repeated,
the chances of the same corresponding IV_i is negligible.

Hence, the repetition of the key will not make any

compromise in security because of freshness in the

corresponding key.

Similarly, knowing Ti somehow may also not help attacker

because K0, which is used in the modified AES block, is

not known to the attacker so he cannot reach to the plaintext

easily.

5.2. Protection Against Compromised Key

Suppose the attacker can get the correct value of any one of

the two secrets keys, K0 or IV. By knowing the key

expansion algorithm, he can get all the corresponding Ki or

IV_i as the sender and receiver know. Now if the attacker
tries to decrypt the ciphertext, he will face two challenges;

Firstly, which values of Ki or IV_i are to be used is a

challenge for the attacker, especially if he does not have

information about the block lengths of all the messages

from the sender to the attacker till this message. If the

attacker missed any single message and did not know the

block length of that message, he cannot be sure about the

correct value of Ki to be used for decryption.

Secondly, we know that even if the attacker can identify the

correct value of Ki, he still cannot get the correct plaintext

because he does not know the other two variables, Ti or IV_i.

For an attacker, there still exist 2128 possible combinations
of Ti and IV_i, which can produce the same Ci, despite

knowing Ki. So, we can see. As explained in section 2, the

advantage of our approach of using three variables

(including two unique keys) is that knowing anyone key

will not help the attacker, and the data protected with the

proposed algorithm will remain secure.

Furthermore, due to proposed key expansion design, where

K0 is used in IV_i expansion and IV_0 is used in Ki

expansion, knowing any Ki will not help the attacker to

reach any other Ki or K0. Hence, unlike standard AES key

expansion in which knowing one round key could lead to

even disclosure of master key [36], the master key in our
algorithm will remain secure even after knowing the correct

Ki.

We can see that this is a unique kind of protection, which

our algorithm provides where the compromise of key does

not compromise security. This does not exist in any other

existing or proposed algorithm to the best of author’s

knowledge, because all of them uses one key and not

designed to be used with forward secrecy or re-keying. So,

if the attacker can get the secret key somehow, he can easily

decrypt all future ciphertext produced by the help of that

secret key.

5.3. Chosen Plaintext Attack

Generally, by the chosen-plaintext attack, an attacker tries
to get the secret key used for encryption, so that later he can

use the same key to decrypt ciphertext correctly. Suppose

an attacker can get temporary access to the system/device

using our encryption algorithm. The attacker will try to get

some useful information such that when he does not have

access to the system, he could get decrypt the ciphertext

correctly. Now by having access to such a system, the

attacker can get the ciphertext against his plaintext of choice.

Even this cannot help the attacker because the ciphertext is

generated using Ki and IV_i, which the attacker does not

know either. It is possible that by applying some
cryptanalysis technique on the modified AES block, the

attacker gets success in obtaining the correct K0. But still,

he does not know which value of Ki is to be used when, and

also, he does not know the IV_i as discussed above. Hence

the proposed algorithm is secure against the Chosen

plaintext attack, which means it is also secure against

known-plaintext attack, and ciphertext only attacks as well.

Furthermore, even in a worst-case scenario, where the

attacker can fetch IV_i and Ki also, even then knowing Ki

and IV_i for other blocks will not be easy for attacker as

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

194

well knowing the correct combination of Ki and IV_i are

two difficult tasks remains for the attacker.

5.4. Side-Channel Attack Protection

AS the design goal of the algorithm is to ensure protection

against side-channel attacks, therefore, because of using

new Ki and IV_i for every new message block protects from

providing any useful information to the attacker through

passive side-channel attacks such as DPA. As re-keying is
incorporated in the proposed algorithm, hence it inherently

protects the algorithm from a Side-channel attack, and no

separate re-keying or fresh keying mechanism or exchange

is required.

Also, many of the existing block ciphers use one key for a

longer duration, which makes the key a target of an attacker,

and they use different methods such as brute force, etc. But

our algorithm uses new keys every time, which makes brute

force type attack naturally not applicable because spending

a significant amount of time and resources in exhaustive key

search (brute force) makes sense in traditional block ciphers.
Still, it is of no use in our use case. Because knowing anyone

of Ki or IV_i will not help the attacker.

5.5. Nonce Misuse Protection

Again as the desired goal of the proposed algorithm is to

also ensure its protection against nonce misuse attacks such

as on AES-GCM. So, we can see that the proposed

algorithm does not use any nonce. Hence the nonce misuse

attack is not applicable in our algorithm in that simple

context. Also, this reduces the nonce overhead and

processing costs. Secondly, whenever the new key is

generated (Ki or IV_i), it becomes the basis for the

generation of new keys (Ki and IV_i). So, the flaw which

exists in the counter-based nonce (whereby injecting faults
the counter may be overflowed to repeat the nonce) is also

not applicable to our proposed algorithm.

Finally, the use of two new keys every time ensures that

even if the attacker can make repetition of any one of the

keys (Ki or IV_i) somehow, then again, it is extremely

unlikely that the same pair of IV_i and Ki is used again.

This ensures that the confidentiality will remain protected

even if one or both keys start repeating because the

probability of repetition of the same used pair is still very

low in that case.

5.6. Protection against Active Attacks

As explained in the Experimental results section, if an

attacker can modify the ciphertext, without any change to
the tag. Then the receiver can easily be intimated about this

modification because the generated and received tags will

not match. This same is true if the attacker can change the

tag without any change to the ciphertext.

Also because for tag generation both K0 (in block process)

and Ki (in last XOR for tag) are used, which are not known

to the attacker, so for him, it is extremely difficult to forge

both, the ciphertext and corresponding tag such that the

receiver can be fooled about forgery because the attacker

does not have any useful information to do this.
Lastly, if an attacker tries to use his key (IV_i and/or Ki) to

make the receiver fool, the receiver cannot be a fool,

because the correct plaintext will be recovered only using

the correct keys of the intended sender. So, the proposed

algorithm will ensure authenticity, integrity, and

confidentiality of data against all known famous

active/passive attacks.

6. Conclusion

To address the need for nonce misuse attack and side-

channel attack resistant AE algorithm, which is suitable for

the satellite application environment, this paper presents a

new AE algorithm that is designed based on the re-keying

or forward secrecy principle. The concept of re-keying is

incorporated in the proposed algorithm such that it provides

the inherent resistance against both, the side-channel attacks
such as DPA (which is applicable to the most block cipher)

as well as the nonce misuse attack (which applies to AES-

GCM). Furthermore, by incorporating the re-keying

technique in the proposed algorithm, the computational

complexity of the block cipher has been reduced than the

famous AES-GCM algorithm. Therefore, the experimental

results show a significant increase in the computational

speed &

Acknowledgments

This work was supported by the 2018 Industrial Internet

Innovation and Development Project of the Ministry of
Industry and Information Technology (no. IIIDP-9.1-2018

of MIIT).

References
[1] CCSDS, "The Application Of Security To CCSDS

Protocols," Informational Rep. (Green Book), vol. CCSDS
350., no. March 2019.

[2] L. Jianwei, L. Weiran, W. Qianhong, L. Dawei, and C.
Shigang, “Survey on key Security technologies for space
information networks,” J. Comm. and Info. Netw., vol. 1, no.
1. pp. 72–85, 2016.

[3] National Institute of Standards and Technology (NIST) and
Special publication 800-38D, "Recommendation for Block
Cipher Modes of OperationS: Galois/Counter Mode (GCM)
and GMAC,” 2007.

[4] ISO/IEC19772:2009, “Information technology-Security
techniques-Authenticated Encryption,” 2009.

[5] CCSDS Recommended Standards, "CCSDS Cryptographic
Algorithms," CCSDS 352.0-B-1 (Blue Book), no. November

2012.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

195

[6] V. Arun, K. Vanisree, D. L. Reddy, “Implementation of AES-
GCM encryption algorithm for high performance and low
power architecture using FPGA,” Int. J. Res. Appl., vol. 1, no.
3, pp. 120–131.

[7] J. Su, N. Gu, Q. Bai, and C. Lin, “Parallel Implementation of

AES-GCM with High Throughput and Energy Efficiency,”
2018 Int. Conf. Netw. Netw. Appl., pp. 251–256, 2018.

[8] N. Ahmed, L. M. Wei, and M. H. Jabbar, “Advanced
Encryption Standard with Galois Counter Mode using Field
Programmable Gate Array,” J. Phys. Conf. Ser., vol. 1019, no.
012008, pp. 1–7, 2018.

[9] H. Böck, A. Zauner, S. Devlin, J. Somorovsky, and P.
Jovanovic, “Nonce-Disrespecting Adversaries : Practical

Forgery Attacks on GCM in TLS,” in USENIX WOOT, 2016,
pp. 1–11.

[10] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to
differential power analysis,” J. Cryptogr. Eng., vol. 1, no. 1,
pp. 5–27, 2011.

[11] E. Brier, C. Clavier, and F. Olivier, “Correlation power
analysis with a leakage model,” LNCS, vol. 3156, pp. 16–29,
2004.

[12] E. Ronen, C. O. Flynn, A. Shamir, and A. Weingarten, “IoT
Goes Nuclear : Creating a ZigBee Chain Reaction,” Cryptol.
ePrint Arch., vol. Report 201, p.
http://eprint.iacr.org/2016/1047.

[13] A. Moradi and T. Schneider, "Improved Side-Channel
Analysis Attacks on Xilinx Bitstream Encryption of 5, 6, and
7 Series," LNCS, vol. 9689, pp. 71–87, 2016.

[14] S. Koteshwara and A. Das, “Comparative Study of

Authenticated Encryption Targeting Lightweight IoT
Applications,” IEEE Des. Test, vol. 34, no. 4, pp. 26–33,
2017.

[15] W. Diehl, A. Abdulgadir, F. Farahmand, et al. “Comparison
of Cost of Protection against Differential Power Analysis of
Selected Authenticated Ciphers,” Cryptography, vol. 2, no.
26, pp. 1–32, 2018.

[16] “PRIMATEs v1.02. (Sep. 2014). CAESAR submission.,”
2014.

[17] S. Koteshwara, A. Das, and K. K. Parhi, “Architecture
Optimization and Performance Comparison of Nonce-
Misuse-Resistant Authenticated Encryption Algorithms,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 27, no. 5, pp.
1053–1066, 2019.

[18] H. Weiss, “CCSDS Standardization of Security Algorithms
for Civil Space Missions,” pp. 1–11, 2012.

[19] B. Yang, S. Mishra, and R. Karri, “High Speed Architecture

for Galois / Counter Mode of Operation (GCM),” in IACR
Cryptology EPrint, 2005, p. 146.

[20] M. B. S. Lemsitzer, J.Wolkerstorfer, N. Felber, “Multi-
gigabit GCM-AES architecture optimized for FPGASs,” in
International workshop on cryptographic hardware and
embedded systems CHES, 2007, pp. 227–238.

[21] Y. Zhang, N. Wu, F. Zhou, X. Zhang, and Z. Jinbao, “High
performance AES-GCM implementation based on efficient

AES and FR-KOA multiplier,” IEICE Electron. Express, vol.
15, no. 14, pp. 1–9, 2018.

[22] S. Gueron, A. Langley, and Y. Lindell, “AES-GCM-SIV:
Specification and Analysis.,” IACR Cryptol. ePrint Arch.,
vol. 2017, no. July 2017, p. 168, 2017.

[23] S. Koteshwara, A. Das, and K. K. Parhi, “Performance
comparison of AES-GCM-SIV and AES-GCM algorithms

for authenticated encryption on FPGA platforms,” Conf. Rec.
51st Asilomar Conf. Signals, Syst. Comput. ACSSC 2017,
vol. 2017-October, pp. 1331–1336, 2018.

[24] C. Dobraunig, M. Eichlseder, A. F. Mendel, and M. Schlaffer.,
“Ascon v1.2. Submission to the CAESAR Competition,”

2016.
[25] H. Wu, “ACORN: A Lightweight Authenticated Cipher (v3),”

2016.
[26] E. B. Kavun, H. Mihajloska, and T. Yalcin, “A Survey on

Authenticated Encryption — ASIC Designer ’ s Perspective,”
ACM Comput. Surv., vol. 50, no. 6, p. Article 88 (21 pages),
2017.

[27] W. Diehl, F. Farahmand, A. Abdulgadir, J.-P. and Kaps, and

K. Gaj, “Face-off between the CAESAR Lightweight
Finalists : ACORN vs. Ascon," in 2018 International
Conference on Field-Programmable Technology (FPT), 2018,
pp. 333–336.

[28] E. Prouff and M. Rivain, “Masking against Side-Channel
Attacks : a Formal Security Proof,” LNCS, vol. 7881, pp.
142–159, 2013.

[29] C. Dobraunig, M. Eichlseder, S. Mangard, et al.," ISAP –

Towards Side-Channel Secure Authenticated Encryption,"
IACR Trans. Symmetric Cryptol., vol. 2017, no 1, no. 80–
105, 2017.

[30] A. Chakraborti, T. Iwata, K. Minematsu, and M. Nandi,
“Blockcipher-Based Authenticated Encryption: How Small
Can We Go?,” J. Cryptol., vol. https://do, 2019.

[31] A. Christoph Dobraunig, F. Koeune, S. Mangard, et al.,
“Towards fresh and hybrid re-keying schemes with beyond

birthday security,” LNCS, vol. 9514, pp. 225–241, 2015.
[32] A. Murtaza, S. Jahanzeb, H. Pirzada, and M. N. Hasan, “An

Efficient Encryption Algorithm for Perfect Forward Secrecy
in Satellite Communication,” Commun. Comput. Inf. Sci.,
vol. in press, 2019.

[33] A. Murtaza, T. Xu, S. Jahanzeb, H. Pirzada, and L. Jianwei,
“A Lightweight Authentication and Key Sharing Protocol for
Satellite Communication,” Int. J. Comput. Commun. Engin,
vol. 9, issue 1, pp 47-53, 2020.

[34] A. Biryukov, “The Design of a Stream cipher LEX,” LNCS,
vol. 4356, pp. 67–75, 2007.

[35] J. Daemen and V. Rijmen, “The Pelican MAC Function.,”
IACR Cryptol. ePrint Arch., vol. 088, 2005.

[36] F. Abed et al., “Pipelineable On-Line Encryption,” LNCS,
vol. 8540, pp. 1–20, 2014.

[37] K. Minematsu and Y. Tsunoo, “Provably secure MACs from
differentially-uniform permutations and AES-based

implementations,” LNCS, vol. 4047, pp. 226–241, 2006.
[38] J. Daemen, M. Lamberger, N. Pramstaller, et al.,

“Computational aspects of the expected differential
probability of 4-round AES and AES-like ciphers,”
Computing, vol. 85, no. 1–2, pp. 85–104, 2009.

[39] A. Rukhin, J. Soto, and J. Nechvatal, "A Statistical Test Suite
for Random and Pseudorandom Number Generators for
Cryptographic Applications," NIST Spec. Publ. 800-22, no.

April 2010.

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.12, December 2019

196

Abid Murtaza was born at Karachi,
Pakistan. In 2010, he has received the M.Sc.
Electronics degree from the University of
Karachi, Karachi, Pakistan. He has been
working in Satellite Ground Control Station

at Space and Upper Atmospheric research
Commission (SUPARCO), the National
Space Agency of Paksitan, since 2010.
Currently, he is pursuing his Ph.D. degree
in Information security in Space

Technology at Beihang University (Beijing, China). So far in his
Ph.D. he has published more than 20 research papers at
international conferences and journals. His research interests

include Satellite Communication, Space Information networks,
cryptography, Information Security for Satellite communication,
etc.

Syed Jahanzeb Hussain Pirzada was born
at Attock, Pakistan. In 2007, he received his
BE degree in electronics engineering from
NED University of engineering and

technology, Karachi, Pakistan. In 2012, he
received MS degree in electrical,
electronics, control and instrumentation
engineering from Hanyang University,
Seoul, South Korea. He has more then 10
year’s experience in working for the

National Space Agency of Pakistan (SUPARCO). Since 2018 he
is enrolled for PhD degree in Space Technology Applications at

Beihang University, Beijing, China. His research interest is
information security and cryptography for satellite applications.

Tongge Xu graduated from Beijing
University of Aeronautics and Astronautics
in 1993 with a master's degree in
engineering. He is now Associate Professor
of school of cyber science and technology at
Beihang university, Beijing, China. His

research areas are network management and
flow / protocol analysis technology, UNIX /
Linux system development, large

information system design and development technology, public
opinion big data analysis and mining

Liu Jianwei was born at Shandong, China.
He received BS and MS degrees in

electronics and information engineering
from Shandong University, Shandong,
China in 1985 and 1988 respectively. He
received his Ph.D. degree in electronics and
communication systems from Xidian
University, Shaanxi, China in 1998. He is
now professor and dean of school of cyber
science and technology at Beihang

University, Beijing, China. His current research interests include
wireless communication networks, cryptography, and information
and network security.

