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Summary 
Satellite communication is a fundamental part of modern-day 
communication infrastructure. Hence the information security is 
also critical in satellite communication. Authenticated Encryption 

(AE) algorithm provides confidentiality, integrity, and 
authenticity of data, all primary data security services with a single 
algorithm. The AES-GCM algorithm is the most famous and 
widely used AE algorithm, which is also recommended to be used 
in satellite application. However, the AES-GCM architecture is 
not nonce misuse attack resistant. Also, most of the existing AE 
algorithms (including GCM) are based on block cipher design, 
which is vulnerable to side-channel attacks due to using the same 

key for a longer duration. Re-keying is an effective approach to 
protect the algorithm against side-channel attack. On the other 
hand, satellites have limited computational capacity, high 
throughput requirements, and higher latency attributes. Therefore, 
there is a need for the AE algorithm, which is not only secure 
against known attacks but also fast and capable of supporting high 
throughput requirements of satellite communication. In this paper, 
we have proposed an AE algorithm architecture named SEAA 

(Secure and Efficient Authenticated encryption Algorithm), in 
which the re-keying approach is incorporated such that, the SEAA 
becomes resistant side-channel and nonce misuse attacks at the 
same time without any additional protection or overhead. 
Additionally, the proposed algorithm also reduces the 
computational complexity of the traditional AES-GCM algorithm 
to increase the efficiency of the proposed AE algorithm. The 
experimental results of the proposed algorithm in software and 

hardware (FPGA) show that the computational performance 
(speed and throughput) of the proposed algorithm are better than 
the famous AES-GCM, despite being secure against known attack 
applicable to AES-GCM. Hence, SEAA is a suitable AE algorithm 
for satellite application. 
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1. Introduction 

From With the rapid growth of information processing and 

communication technologies, data exchange also increased 

radically in recent decades. This has also resulted in the 

ever-increasing demand for ensuring information security. 
The security of the modern-day communication system is 

based on the CIA-AAA model (Confidentiality, Integrity, 

Availability, Authentication, Authorization, and 

Accounting. The former two are related to data protection 

and are focus of our work, while the latter four are related 

to the user's authentication and access to system resources. 

For data protection, confidentiality ensures that apart from 

the intended receiver, nobody could get into the content of 

a message. While data origin authenticity and integrity 

services ensure that the data is received only from a 

particular sender, and is not forged in the transmission path. 

Confidentiality is achieved by encrypting the message with 

an encryption algorithm (Symmetric-key or asymmetric key 

Algorithm). Data authenticity and integrity services are 
together provided through data authentication algorithms, 

which are either hash-based or cipher based in case of 

symmetric key algorithms, or digital signature-based in case 

of public-key cryptography. 

Satellites are a fundamental part of modern-day 

communication infrastructure, providing communication, 

navigation, remote sensing, earth observation, weather 

monitoring, and other services for civil, commercial and 

defense purposes. The security of satellite communication 

is critical, and compromise in security could have serious 

problems. Therefore, the Consultative Committee for Space 

Data System (CCSDS) recommends using security 
algorithm and protocols for securing satellite 

communication according to the security classification of a 

space mission as either high, moderate, or minimum 

security missions [1]. On the other hand, satellites also have 

the limited computational capacity and high throughput 

requirements (for communicating extensive data, e.g., 

stored images); hence, the security solutions for satellite 

communication, should be fast and lightweight.  

Understandably encryption without data origin and content 

authentication is not secure, in particular in satellite 

application [2]. Therefore, both encryption and data 
authentication services are used to secure satellite 

communication. Authenticated Encryption (AE) algorithm 

provides all these encryption, origin of data authentication, 

and data integrity services altogether by a single algorithm. 

Among the existing AE algorithms, the most famous AE 

algorithm is Advanced Encryption Standard, Galois 

Counter Mode (AES-GCM), which was designed by 

McGrew and Viega and standardized by the National 

Institute of Standards and Technology (NIST) and 

International Organization for Standardization (ISO) [3], 

[4]. The CCSDS also recommends using AES-GCM when 
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encryption in combination with data integrity and origin 

authentication is required in space missions [5]. The AES-

GCM utilizes AES in counter mode (AES-CTR) encryption, 

while polynomial multiplication on Associated Data (AD) 

is performed in the Galois field multiplier for authentication 

tag generation. Therefore, GCM can provide high-speed AE 
in both software and hardware [6], [7], as well as it can be 

parallelized and pipelined [8], methods that can be very 

advantageous in the space community [5].  

 Despite its computational efficiency, AES-GCM is 

vulnerable against nonce misuse attack. In a nonce misuse 

attack, if the same nonce is used for two different messages, 

the information could be leaked. The AES-GCM algorithm 

uses a simple exclusive or (XOR) operation on plaintext for 

the generation of ciphertext. So, in case of the use of the 

same nonce for different messages, a simple XOR can 

differentiate between the messages. The criticality of nonce 

misuse attack in practical applications such as Transport 
Layer Security (TLS) has already been demonstrated [9]. 

Moreover, GCM is also vulnerable against side-channel 

attacks, in particular, Differential Power Analysis (DPA) 

attack, because of using the same key for longer duration in 

block cipher (AES) [10]. In side-channel attacks, 

information about the key is extracted by observing the 

physical properties of the device such as power utilization 

or the electromagnetic field [11], which could lead to a 

successful recovery of the key. The recent demonstration of 

these attacks is presented in [12] and [13]. 

Apart from AES GCM, many new lightweight AE 
algorithms have been proposed by researchers in 

Competition for Authenticated Encryption: Security, 

applicability, and reliability (CAESAR) [10] and otherwise 

in recent years, to comply with the demands for lightweight 

AE algorithm for resource-constrained devices and 

applications, such as the Internet of Things (IoT). However, 

most of the proposed AE schemes have some computational 

limitations or security concerns. For example, many of the 

proposed schemes are not complete nonce-misuse resistant 

[14] and also have vulnerabilities against side-channel 

attacks [15]. On the other hand, the schemes which are 

secure against nonce-misuse attack (such as Primate [16]) 
are slow by design and not suitable for large data as in case 

of satellite application (images) [17]. Also, most of the AE 

schemes are based on nonce, which is additional overhead 

data and processing costs, which is critical for satellite 

application. 

Therefore, there still a need for a lightweight AE algorithm 

that is not only capable of parallel processing to support 

high data rates but also secure against both active nonce 

misuse attack as well as passive side-channel attacks. This 

paper proposed such an algorithm named SEAA, where not 

only the security vulnerabilities of existing AE schemes 
have been addressed, but also, the computations of the 

algorithm have been simplified for improved computational 

performance. 

The remaining of this article is arranged as follows: In 

section 2, related work has been reviewed. In section 3, we 

have proposed our algorithm with details. Section 4 shows 

the implementation results. Section 5 provides a security 

analysis of the proposed algorithm. Section 6 concludes the 

paper. 

2. Related Work 

AES-GCM algorithm is the most famous AE algorithm and 

used in many modern-day security protocols (such as IEEE 

802.1AE, IETF IPSec, SSH, and TLS/SSL, etc.) [18], 

because of being computationally efficient due to parallel in 

architecture without any optimization. However, there have 

been many optimized and efficient implementations of 
AES-GCM on FPGA hardware [19],[20],[21]. However, 

due to the vulnerability of GCM against nonce-misuse 

attack, the GCM-SIV variant of the GCM algorithm has 

been proposed, which provides complete nonce misuse 

resistance [22]. However, firstly in GCM-SIV, plaintext 

needs to be processed twice, which decreases its 

computational performance than AES-GCM [23]. Secondly, 

both GCM and GCM-SIV are vulnerable to side-channel 

attacks. 

CAESAR was started in 2012 for the selection of the most 

suitable AE algorithm for different categories, including the 
lightweight category. 57 AE schemes were presented to this 

competition, and six were declared as winners. For the 

lightweight application category (resource-constrained 

case), 2 AE schemes were announced as winners, i.e., 

Ascon [24] and ACORN [25]. There are several studies on 

the proposed AE schemes in CAESAR to evaluate the 

performance comparison of different proposed AE schemes 

of the competition [14], [26]. The computational 

performance of both the CAESAR winners, Ascon and 

ACORN, is better and at a lower cost than AES GCM [27]. 

However, both the winners of CAESAR (Ascon and 

ACORN) are not completely nonce-misuse resistant [14]. 
Similarly, a study shows that many of the proposed AE 

algorithms, including Ascon and ACORN, have significant 

Information leakage in the 186 partan-6 FPGA and are 

likely vulnerable to DPA [13].  

There are two approaches to the countermeasure of these 

passive attacks. First is the conventional method of hiding 

or masking the implementation of the cryptographic 

algorithm [28]. But the problem of these methods is high 

overhead, area, and cost of protection [29], which are 

critical in satellite application. Although, there are schemes 

such as COFB whose objective was to reduce the size of the 
mask without compromising security [30]. The alternate 

solution is fresh re-keying [31], which means obtaining a 

new session key every time. This approach can provide 

inherent protection against the DPA attack. This concept is 

similar to the idea of Forward Secrecy (FS), which uses a 
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new key for every new message. This FS concept is used in 

many applications nowadays because of its benefits such as 

with re-keying or FS, in case of a compromise of a key, only 

a message could be leaked while all the communication 

stays at risk otherwise [32]. The new keys can be achieved 

either derivation from the master key or some lightweight 
protocols that can be used for the exchange of new keys [33]. 

Most of the existing and proposed AE schemes are not 

designed for this re-keying or FS approach. 

From this brief review of related work, we can see that; 

there is a need for nonce misuse resistant as well as a side-

channel attack resistant AE algorithm for satellite 

application, which is also fast and capable of supporting 

high data rate support for satellite application. In this paper, 

we will show that incorporating re-keying or FS concept 

inside the algorithm design can produce an efficient AE 

algorithm, which is inherently side-channel attack resistant, 

as well as nonce misuse resistant. Furthermore, the re-
keying approach allows simplifying the computation of 

block cipher used in the AE algorithm. Therefore, 

implementation results and performance of the proposed 

AE algorithm validates the computational superiority over 

the existing AE algorithm, such as AES-GCM.  

3. Proposed Algorithm  

Before the description of our algorithm, it is helpful to 

explain the design concept of the proposed algorithm.  

3.1 Proposed approach 

We can note from the AES-CTR part of AES-GCM that the 

ciphertext is generated by simple XOR operation of 

plaintext with the 128-bit output of AES block (say 

Temporary variable Ti). Here Ti is widely different from Ti-

1, even though the same key and same algorithm are used, 

and the counter value of both is different by only 1 

(increment operation). This is because of AES round 

functions, which ensure the widely different output even if 

the input is changed only by 1 bit, and the same key is used. 

But to note here is that in essence, the encryption process of 
AES-CTR is similar to One-time Pad (OTP), where the 

plaintext is simply XOR with the same size key, which is 

never used again.  

Our design principle is that instead of XORing the plaintext 

Pi with Ti for ciphertext generation, we propose to XOR 

two new keys called key1, key2, with Ti for the ciphertext 

generation. This approach can provide some unique benefits 

as follows. Firstly, the total reliance on AES block cipher 

for the generation of unique Ti to eventually ensure unique 

ciphertext for the same plaintext can be significantly 

reduced. Because, even if using the same plaintext & 

corresponding Ti, the new keys key1 and key2, can provide 
the uniqueness in ciphertext for the same plaintext & Ti. 

Hence, the block cipher function can be simplified or 

reduced. Secondly, the use of new keys (key1 and key2) for 

every message block will inherently prevent our algorithm 

from side-channel attacks such a DPA. Thirdly, in the 

conventional encryption or AE algorithm approach, a single 

key is used with a different nonce to ensure unique 

ciphertext in case of the same plaintext. If we can ensure 
that apart from plaintext (or Ti), both the XORing numbers 

(i.e., key1 and key2) are always new, unique, and random, 

then this will ensure a unique ciphertext for the same 

plaintext and same Ti. Hence, the proposed algorithm 

SEAA will not be vulnerable to nonce misuse attack. 

Finally, it will provide security similar to the provably 

secure OTP. Because, due to our design of three variables 

for ciphertext generation (Ti, key1 and key2), compromise 

of any one variable (e.g., key1 or key2) will still maintain 

the confidentiality of the plaintext because of the other two 

variables. Mathematically, if N numbers of n bits each are 

XORed with each other, then there exist 2(N-1) n possible 
unique permutations, which can produce the same 

ciphertext. So, if the length of three numbers is 128 bits each, 

then there will be 2(3-1)128 = 2256 permutations of three 

numbers that can produce the same ciphertext. So, even if 

one number is known to the attacker, there still exist 2128 

possible combinations of the other two numbers. As the 

attacker has no further information, he can never be sure 

which combination among 2128 is correct, which is a 

similar situation to OTP. 

Based on the above description of the design principle, we 

can see that one of the main task of the proposed algorithm 
is to ensure new keys (key1 and key2) for every plaintext 

block, such that keys (key1 and key2) will never be used 

again, at least together in case of the same plaintext.  

Now, we will explain the proposed algorithm SEAA in 

detail, which is shown in figure 1. As a pre-requirement, we 

suggested that the sender and receiver need to have shared 

a secret random key of 256 bits, whose first 128 bits will be 

called master key (K0) and the last 128 bits will be called 

initialization vector (IV), while the message is divided into 

128-bit blocks. In figure 1, we can see that plaintext blocks 

are processed in the modified AES block to provide Ti. 

Then these Ti are XORed with corresponding Ki and IV_i 
to produce Ci. While P1 to Pn and XORed together. The 

resultant is processed in the modified AES block to generate 

the authentication tag by XORing with Kn+1 finally. 

There are four main stages of SEAA; Key Expansion 

Algorithm, Modified AES for Ti generation, the Encryption 

process, and finally, the Tag generation. 
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Fig. 1  Proposed AE Algorithm 

3.2. Encryption Process 

The encryption process of the SEAA is as simple as XOR 

of two keys IV_i and Ki with Ti, as shown in equation one 

below.  

Ci = Ti ⊕ IV_i ⊕Ki   

 (1) 

 

Where 'i' is block number, C is ciphertext, P is plaintext. 

Here Ti is generated through modified AES block step, Ki 

is generated through Key expansion algorithm, and IV_i is 

obtained by increment and right shift operation on IV_i-1 

(as proposed for AES-GCM by A. S. Bader et al. [32]) and 

then XORing it with K0 as shown in equation 2 below. 

IV_i= RS ((IV_(i-1)) +1) ⊕ K0  (2) 

 

The right shift and increment operation on IV_(i-1) 
provides a new key every time. Hence, the generated 

ciphertext is always largely changed. Also, after the 

generation of IV_i, this IV_i becomes IV_(i-1) for the 

generation of next IV_i. Through this method, IV is 

continuously updated and never used again. Similarly, the 

last IV, i.e., IV_n of one message, is considered as IV_0 for 

the next message, this will provide the desired, never used 

again characteristic and hence side-channel attack 

resistance. 

3.3. Key Expansion Algorithm 

As we know that, we need to ensure the availability of new 

key for every message block. Besides, we also need one 

new key for tag generation. Therefore, if there are n 
message blocks, there is a need for n+1 keys (K1 to Kn+1). 

In our other recent work [33], we have proposed a 

modification in AES key expansion algorithm, which can 

produce 128 distinct keys from 1 main key. We can use a 

slightly modified version of that key expansion algorithm 

for the generation of unlimited unique keys. The flow 

diagram of the modified key expansion algorithm is shown 
in figure 2.  

 

 

Fig. 2  SEAA Key Expansion Algorithm 

The keys generated through the above algorithm are entirely 

different and unpredictable with the previous keys. Hence 

we can have unlimited unique and random keys through this 

algorithm. There are two possibilities for the execution of 

the above algorithm; firstly, it is possible that both the 
sender and receiver pre-generate and store a large number 

of keys (K1 to Kn) in a lookup table, to be used during the 

encryption process, and periodically update the table. This 

will save time during encryption. Alternately, the keys can 

be generated at the time of encryption, as the time required 

to generate one key in the above key expansion is very short. 

The keys generated from the above mechanism should 

never be used again. For example, if the number of blocks 

in 1st message is five, then keys K1 to K5 will be used for 

encryption and K6 for the tag generation. Now, for the 2nd 

message, K6 will become K0 for the derivation of new K1 
to Kn for the second message, or if pre-calculated, K7 

onward will be used for the following messages.  
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3.4. Modified AES 

To generate Ti, we proposed using a modified AES block 

cipher with plaintext Pi and key K0 as input. The modified 

AES is the same as standard AES, with the only difference 

is reduced no of rounds from ten to four in the modified 

version, as shown in figure 3. The reason for this 

modification is that there are several algorithms which use 

four rounds of AES as building block such as stream cipher 

LEX [34], the Pelican message authentication code function 

[35], the AE algorithm POET [36], and provably secure 

MACs [37]. Also, this has been shown that 256 message 
blocks can be encrypted under the same key, given all round 

keys are independent [38] in 4 round AES. While our 

approach is to use new keys for a new message, hence the 4 

round AES is sufficient to provide the desired high security 

against differential cryptanalysis.   

Moreover, in the conventional algorithm such as AES-CTR, 

the input (counter) to the block cipher is changed by only 1 

(increment) for different input blocks. As a result, the 

dependence on block cipher to produce unique Ti is 

enormous. Because, if Ti is not largely changed for minor 

input change (counter), then the same plaintext will produce 

similar ciphertext. However, in the proposed approach, the 
uniqueness of ciphertext does not only depend on Ti; 

instead, it also depends on the new Ki and IV_i. Hence, in 

the SEAA, the block cipher computations can be simplified 

as proposed. Also, unlike the traditional AE approach, the 

purpose of the block cipher in SEAA is mainly to provide 

strength to the authentication part, where the change in a 

single bit of input is desired to be reflected by a complete 

change in output through avalanche effect. For this, as 

experimental results show, four rounds are adequate to 

completely change the Ti by a change in a single bit in the 

input. Hence, reducing the complexity of AES rounds AES 
does not compromise security. Therefore, only 4 AES 

rounds are used in SEAA. 

Also note that with this approach, we can use AES round 

keys in alternate blocks, such as, for odd number blocks, 

key 1 to key five can be used, and for even number message 

blocks, key 6 to key 11 can be used). 

3.5. Tag Generation 

Finally, the tag can be generated by giving the resultant 

XOR of all the plaintexts as input to the modified AES 

algorithm, and XORing the result of the block cipher with 

key Kn+1 as shown in fig.1. This tag of 128 bits will be 

attached with the ciphertext and will serve the 

authentication purpose similar to that in most cipher based 
MAC such as CMAC or PCMAC [34].        

 

 

Fig. 3  Modified AES Algorithm 

3.6. Decryption and Authentication Process 

The decryption process of SEAA consists of XORing the 

ciphertext with key Ki and IV_i to get Ti, as shown below. 

Ti = Ci ⊕ IV_i ⊕Ki    
    (3) 

 

After receiving the Ti, the receiver can process Ti in the 

modified AES decryption process of the same four rounds 

to get the corresponding plaintext Pi.  The order of the sub-

process of the modified AES decryption process will be 

reversed than that in the encryption process for the recovery 

of plaintext.   

After decryption and obtaining the plaintexts, the receiver 

can generate the tag by the same method through which 

generated by the sender, and compare the received and 
generated tags to ensure authentication. If the tags are the 

same, the receiver can be sure about the authenticity and 

integrity of the message. Otherwise, the receiver can discard 

the message by considering it forged during the path. 

4. Experimental results 

4.1 Assumptions and pre-computations 

In the implementation stage of the algorithm, it is assumed 

that in SEAA, both the keys (Ki and IV_i) are pre-computed 

and stored (as recommended in the algorithm description 

section). After the sharing of secret keys K0 and IV_0, any 

desired number of the key can be generated through key 
expansion algorithm and stored in the memory, to be 
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utilized later in SEAA for encryption and authentication tag 

generation. 

Table 1 shows the result of the proposed key expansion 

algorithm for the generation of K1 to K8 from K0. Table 1 

also shows the results of the derivation of IV_1 to IV_8 

from IV_0. From the generated keys (both Ki and IV_i), it 
can be seen clearly that these are entirely changed from 

previous keys and the master keys (K0 and IV_0). 

Table 1: Key Expansion and IV Expansion Experimental Results 

 

Furthermore, the NIST’s statistical tests for randomness 

[39], such as Frequency test and Runs test are also 

performed on the generated keys to check the randomness 

of generated keys and the resultant p values are shown in 

table 2 below. The frequency test checks if the number of 

ones and zeros are almost equal or not in the binary key, 
while runs test determines whether the oscillation between 

different runs of ones and zeros of various lengths is too fast 

or too slow [39]. Since the results shows that all the 

generated keys pass the frequency test and runs test (p value 

> 0.01) hence all keys can be considered as random 

(however, all the applicable test in NIST statistical test suite 

for randomness from the total 17 test maybe performed for 

further endorsement). 

Table 2: Experimental Results of NIST Randomness Tests on Generated 

Keys 
Key 
no.  

Frequency Test 
P-value 

Runs Test 
P-value 

I 
Ki                  

IV_i 
Ki              

IV_i 

1 0.3768 
 (Pass) 

0.5959 
(Pass) 

2.0000 
(Pass) 

0.8399 
(Pass) 

2 0.1573  
(Pass) 

0.4795 
(Pass) 

1.8940 
(Pass) 

1.6028 
(Pass) 

3 0.8597  
(Pass) 

0.4795 
(Pass) 

0.1109 
(Pass) 

0.6897 
(Pass) 

4 0.1573 
(Pass) 

0.7237 
(Pass) 

0.1508 
(Pass) 

0.0750 
(Pass) 

5 0.5959 
(Pass) 

0.7237 
(Pass) 

0.0199 
(Pass) 

0.1088 
(Pass) 

6 0.7237  
(Pass) 

0.5959 
(Pass) 

0.0503 
(Pass) 

0.0724 
(Pass) 

7 0.59595 
(Pass) 

0.2888 
(Pass) 

1.9773 
(Pass) 

1.2023 
(Pass) 

8 0.3768 
(Pass) 

0.8597 
(Pass) 

0.1356 
(Pass) 

1.6219 
(Pass) 

 

From the speed of the key expansion algorithm viewpoint, 

under the pre-computed assumption, the time of Key 

expansion algorithm can be excluded from the processing 

time of SEAA. However, for a reference, figure 4 shows the 

time required for the generation (expansion) of different no 
of keys from given K0 and IV_0. From figure 4, we can see 

that the algorithm can generate 3000 keys Ki or 2000 keys 

IV_i if the key expansion algorithm is run for only one 

second. Accordingly, any number of keys can be pre-

computed in a short time duration and stored. 

 

 

Fig. 4  Time for expansion of n no of keys through Key Expansion 

Algorithm 

4.2 Software Implementation 

The proposed algorithm has been implemented on 

MATLAB software on a normal Laptop with 4 GB RAM, a 

Core i5 processor without any code optimization for time. 
After having required encryption keys (IV_i and Ki) from 

the key expansion algorithm, the next stage of SEAA is the 

Ti generation using a modified AES block. For this, 

plaintext P1 to Pn are input to the modified AES algorithm 

(4 rounds only) to produce the T1 to Tn, respectively. To 

demonstrate the effectiveness of the proposed re-keying 

approach, we have used the same plaintext Pi in 8 input 

blocks for the same T1 to T8 generation. Then for the 

encryption, the generated Ti is XORed with corresponding 

Ki and IV_i to generate C1 to C8 as per equation 1. The 

results of the encryption process are shown in figure 5. 

From the results, it can be seen that having the same Pi and 
corresponding Ti as well, eight different ciphertexts (C1 to 

C8) are received, because of different Ki and IV_i. Hence 

the experimental results validate the algorithm's working 

with the desired output. Here IV_i and Ki are the same as 

shown in table 1. 

K0  = 2B7E151628AED2A6ABF7158809CF4F3C 
IV_0 = 09CF4F3CABF7158828AED2A62B7E1516 

K1=4043BC36E5A8B3C739
40A80E7C818F57 

IV_1=AF99B2887D555862B
FA07CDB1C7045B7 

K2=7B0839DF1C70D8FA4
AE3C912200A090 

IV_2=7CB2CC5216047E97F
4272BE587F76DE0 

K3=AEC4A51E33D4A9B3C
91FAE05C8A7AA93 

IV_3=9527733F23ACEDED
51E4807ACA34F9CC 

K4=DBCFFD4286D917D66
289AAD758DABC 

IV_4=E1EDAC89B978A450
030555B56CD533DA 

K5=655FB194ABB2A5AEE
F0D772AF114518C 

IV_5=DB88C352F412808EA
A75BF52BFA5D6D1 

K6=59DEF9100533714B5A
AB5B0DA4ABCA0 

IV_6=46BA74BF52A792E1F
ECDCA21561DA455 

K7=310663AC391BFDCCD
EC20E9F39E13E1E 

IV_7=08232F4981FD1BD65
491F098A2C19D17 

K8=A492BA9D70FBEBBC8
C65EA52F66940FA 

IV_8=2F6F82B2E8505F4D8
1BFEDC458AF81B0 
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Fig. 5  Encryption Results of the Same Plaintext in 8 input blocks 

Finally, the authentication tag is generated by the steps 

shown in figure 1 and explained in section 3.5. The results 

of the tag generation are shown in table 3 below. To verify 

the authentication process of our algorithm, a simple hex 

digit (a half byte) is changed in first byte of ciphertext block 

C2 from 5 to 6, as highlighted in the table below. As a result 
of this forgery, Ti extracted from Ci as per equation 3 is also 

be changed in the corresponding byte in the corresponding 

block. When the receiver uses this Ti to obtain the plaintext, 

the plaintext is completely changed, as highlighted in the 

table below. Finally, the resultant tag generated using 

recovered plaintext is completely changed from the original 

tag received together with the ciphertext, as shown in table 

3 below. Therefore, the receiver can easily know that the 

integrity of the message has been compromised. 

Table 3: Results of Tag Generation process of SEAA 

 

Figure 6 shows the comparison of block processing time for 

Ti generation in both standard AES algorithm (10 rounds) 

and modified AES algorithm (only four rounds). The results 

show that the processing time of 4 round AES is 

significantly less than the standard algorithm.     

 

 

Fig. 6  Comparison of processing time of Modified and standard AES 

algorithm 

Finally, figure 7 shows the comparison of total time for 

ciphertext and tag generation of the proposed algorithm 

with AES-GCM for up to 16 input message blocks. Here the 

total encryption time of the proposed algorithm includes 

time for keys expansion (Ki and IV both), modified AES 

Block processing time, encryption time (which consists of 

XORing the Ki, Ti, and IV_i together), and tag generation. 

From the results, it can be seen that the speed performance 
proposed SEAA algorithm is significantly better than the 

widely used AES-GCM on MATLAB software. Even 

though no code optimization has been performed and AES 

initialization time (such as key expansion, s-boxes 

generation, etc.) and tag generation times are not included 

in the AES-GCM results. 

 

 

Fig. 7  Total Processing Times of the AES-GCM and SEAA 
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FB00000000 

Original P2= 
F0F1F2F3F4F5F6F7F8F9FAF

B00000000 

Resultant C1= 
D158C21563225EDBEA364

0162A4DD64A 

Resultant C2 = 
A58083641C1CC6663C5F83B

7EF4BD1DA 

Tag (from original P1 & P2) = 
F20A5AE5EA35572B55C8713CB3204234 

Original C1= 
D158C21563225EDBEA364

0162A4DD64A 

Modified C2 = 
A68083641C1CC6663C5F83B

7EF4BD1DA 

Recovered P1= 
F0F1F2F3F4F5F6F7F8F9FA

FB00000000 

Recovered P2= 
169B26FA5CFB7D115EBCE

D6D6847C991 

Tag (from recovered p1 and P2) = 
0BC628A1D0D024D538A85C3FD6B5A1AD 
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4.3 Hardware Implementation 

It is important to note here that in our software 

implementation, the algorithm followed a serial flow. But 

on the hardware capable of parallelization, many of the 

processes can be parallelized for significant performance 

improvement. In particular, if the keys Ki and IV_i are pre-

calculated, then the actual processing of the algorithm at 

runtime will only consist of modified block processing, the 

encryption process, and the tag generation. Here, due to the 

architecture of the algorithm, all the plaintext blocks can be 

processed in parallel to produce Ti simultaneously. 
Therefore, the corresponding encryption process (which 

consists of XORing of IV_i and Ki with Ti) can also be 

performed in parallel so that all the ciphertext can be 

generated in parallel in just one clock cycle after having Ti, 

Ki, and IV_i. Similarly, the tag can also be generated in 

parallel to ciphertext generation, so, we can see that apart 

from the key expansion algorithm, all the other processes 

can be parallelized. Therefore, the SEAA is fully 

parallelized (provided the keys are pre-computed and stored 

in memory), and hence suitable for high throughput 

applications.  

 The experiments were performed on the proposed 
algorithm on hardware using Xilinx Vertex-6 FPGA and 

Modelsim simulation software. The simulation results are 

shown in figure 8. The experiment for proposed encryption 

and authentication tag generation is performed using a 

single core of the proposed algorithm. The key generation 

takes two clock cycles for the generation of each expanded 

key. The modified ciphertext generation takes four clock 

cycles for Ti generation from Pi, and one clock cycle for 

XORing the Ti with Ki and IV_i. Therefore, a total of five 

clock cycles are required for the generation of ciphertext 

generation or encryption. Similarly, the tag generation used 
a separate algorithm core for implementation. Therefore, 

five clock cycles are used for encryption and authentication 

tag generation in parallel. The FPGA simulations results are 

the same as obtained through MATLAB implementation, as 

can be seen from fig. 8. 

 

 

Figure 8 Simulation Results of FPGA Implementation of proposed AE 

algorithm 

Table 4: Resource utilization of FPGA 

Input 

blocks 

Resources 

CLB 

Slices 

Clock Freq. 

(MHz) 
BRAM 

Throughput 

(Gbps) 

1 956 305.64 20 7.84 

2 1912 305.64 30 15.64 

3 2868 305.64 40 23.47 

4 3824 305.64 50 31.29 

5 4780 305.64 60 39.12 

6 5736 305.64 70 46.94 

7 6692 305.64 80 54.77 

8 7648 305.64 90 62.59 

9 8604 305.64 100 70.41 

10 9560 305.64 110 78.24 

11 10516 305.64 120 86.06 

12 11472 305.64 130 93.89 

Table 4 shows the resource utilization of the proposed 

algorithm on FPGA. The throughput has been calculated by 

the following formula. 
Throughput = number of bits *freq / clock cycles 

 

There have been different implementations of AES-GCM 

on FPGA. Table 5 shows the results of the throughput 

comparison results of AES-GCM implementation on the 

FPGA and proposed algorithm. The proposed 

implementation results show high throughput 

implementation with the recent optimization results of the 

AES-GCM algorithm. 
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Table 5: Comparison of proposed and AES-GCM algorithms on FPGA 

hardware  

S. 

No 
Implementation 

Resources 

CLB 

Slices 

Clock 

Freq. 

(MHz) 

Throughput 

(Gbps) 

1 Yang et al. [19] 463328 271.00 34.69 
2 Lemsitzer et al. [20] 13200 110.00 14.1 
3 Y. Zhang et al. [21] 6482 381.60 48.8 
4 Proposed SEAA 11472 305.64 93.89 

5. Discussion on Security Algorithms 

5.1. Mathematical Analysis 

As explained in section 2, the encryption process of our 

algorithm consists of XORing the Ti with two unique keys 

Ki and IV_i. Therefore, for the attacker, it is impossible to 

get to correct Ti without knowing the correct values of Ki, 

IV_i. This is because there exist 2256 possible 

combinations of Ki, IV_i, and Ti that can produce the same 

Ci. As, both Ki and IV_i will not be used again, so the 
attacker has no further information to guess the correct 

combination of three numbers among 2256 values. 

The key expansion algorithm is designed to produce a new 

key every time, so assuming the Ki, IV_i will never be used 

again, the algorithm is as secure as OTP. Even if we 

consider the key expansion algorithm generates a key Ki 

that has already been used to encrypt any plaintext block in 

the past together with IV_i, even then it is unlikely that at 

the same instant the corresponding key IV_i will also be 

generated same as used earlier with that Ki. This is because 

both the keys Ki and IV_i are expanded through a different 

mechanism. So, we can see that even if a key Ki is repeated, 
the chances of the same corresponding IV_i is negligible. 

Hence, the repetition of the key will not make any 

compromise in security because of freshness in the 

corresponding key.   

Similarly, knowing Ti somehow may also not help attacker 

because K0, which is used in the modified AES block, is 

not known to the attacker so he cannot reach to the plaintext 

easily. 

5.2. Protection Against Compromised Key 

Suppose the attacker can get the correct value of any one of 

the two secrets keys, K0 or IV. By knowing the key 

expansion algorithm, he can get all the corresponding Ki or 

IV_i as the sender and receiver know. Now if the attacker 
tries to decrypt the ciphertext, he will face two challenges; 

Firstly, which values of Ki or IV_i are to be used is a 

challenge for the attacker, especially if he does not have 

information about the block lengths of all the messages 

from the sender to the attacker till this message. If the 

attacker missed any single message and did not know the 

block length of that message, he cannot be sure about the 

correct value of Ki to be used for decryption.  

Secondly, we know that even if the attacker can identify the 

correct value of Ki, he still cannot get the correct plaintext 

because he does not know the other two variables, Ti or IV_i. 

For an attacker, there still exist 2128 possible combinations 
of Ti and IV_i, which can produce the same Ci, despite 

knowing Ki. So, we can see. As explained in section 2, the 

advantage of our approach of using three variables 

(including two unique keys) is that knowing anyone key 

will not help the attacker, and the data protected with the 

proposed algorithm will remain secure. 

Furthermore, due to proposed key expansion design, where 

K0 is used in IV_i expansion and IV_0 is used in Ki 

expansion, knowing any Ki will not help the attacker to 

reach any other Ki or K0. Hence, unlike standard AES key 

expansion in which knowing one round key could lead to 

even disclosure of master key [36], the master key in our 
algorithm will remain secure even after knowing the correct 

Ki.    

We can see that this is a unique kind of protection, which 

our algorithm provides where the compromise of key does 

not compromise security. This does not exist in any other 

existing or proposed algorithm to the best of author’s 

knowledge, because all of them uses one key and not 

designed to be used with forward secrecy or re-keying. So, 

if the attacker can get the secret key somehow, he can easily 

decrypt all future ciphertext produced by the help of that 

secret key. 

5.3. Chosen Plaintext Attack 

Generally, by the chosen-plaintext attack, an attacker tries 
to get the secret key used for encryption, so that later he can 

use the same key to decrypt ciphertext correctly. Suppose 

an attacker can get temporary access to the system/device 

using our encryption algorithm. The attacker will try to get 

some useful information such that when he does not have 

access to the system, he could get decrypt the ciphertext 

correctly. Now by having access to such a system, the 

attacker can get the ciphertext against his plaintext of choice. 

Even this cannot help the attacker because the ciphertext is 

generated using Ki and IV_i, which the attacker does not 

know either. It is possible that by applying some 
cryptanalysis technique on the modified AES block, the 

attacker gets success in obtaining the correct K0. But still, 

he does not know which value of Ki is to be used when, and 

also, he does not know the IV_i as discussed above. Hence 

the proposed algorithm is secure against the Chosen 

plaintext attack, which means it is also secure against 

known-plaintext attack, and ciphertext only attacks as well. 

Furthermore, even in a worst-case scenario, where the 

attacker can fetch IV_i and Ki also, even then knowing Ki 

and IV_i for other blocks will not be easy for attacker as 
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well knowing the correct combination of Ki and IV_i are 

two difficult tasks remains for the attacker. 

5.4. Side-Channel Attack Protection 

AS the design goal of the algorithm is to ensure protection 

against side-channel attacks, therefore, because of using 

new Ki and IV_i for every new message block protects from 

providing any useful information to the attacker through 

passive side-channel attacks such as DPA. As re-keying is 
incorporated in the proposed algorithm, hence it inherently 

protects the algorithm from a Side-channel attack, and no 

separate re-keying or fresh keying mechanism or exchange 

is required.   

Also, many of the existing block ciphers use one key for a 

longer duration, which makes the key a target of an attacker, 

and they use different methods such as brute force, etc. But 

our algorithm uses new keys every time, which makes brute 

force type attack naturally not applicable because spending 

a significant amount of time and resources in exhaustive key 

search (brute force) makes sense in traditional block ciphers. 
Still, it is of no use in our use case. Because knowing anyone 

of Ki or IV_i will not help the attacker. 

5.5. Nonce Misuse Protection 

Again as the desired goal of the proposed algorithm is to 

also ensure its protection against nonce misuse attacks such 

as on AES-GCM. So, we can see that the proposed 

algorithm does not use any nonce. Hence the nonce misuse 

attack is not applicable in our algorithm in that simple 

context. Also, this reduces the nonce overhead and 

processing costs. Secondly, whenever the new key is 

generated (Ki or IV_i), it becomes the basis for the 

generation of new keys (Ki and IV_i). So, the flaw which 

exists in the counter-based nonce (whereby injecting faults 
the counter may be overflowed to repeat the nonce) is also 

not applicable to our proposed algorithm.  

Finally, the use of two new keys every time ensures that 

even if the attacker can make repetition of any one of the 

keys (Ki or IV_i) somehow, then again, it is extremely 

unlikely that the same pair of IV_i and Ki is used again. 

This ensures that the confidentiality will remain protected 

even if one or both keys start repeating because the 

probability of repetition of the same used pair is still very 

low in that case. 

5.6. Protection against Active Attacks 

As explained in the Experimental results section, if an 

attacker can modify the ciphertext, without any change to 
the tag. Then the receiver can easily be intimated about this 

modification because the generated and received tags will 

not match. This same is true if the attacker can change the 

tag without any change to the ciphertext.  

Also because for tag generation both K0 (in block process) 

and Ki (in last XOR for tag) are used, which are not known 

to the attacker, so for him, it is extremely difficult to forge 

both, the ciphertext and corresponding tag such that the 

receiver can be fooled about forgery because the attacker 

does not have any useful information to do this.  
Lastly, if an attacker tries to use his key (IV_i and/or Ki) to 

make the receiver fool, the receiver cannot be a fool, 

because the correct plaintext will be recovered only using 

the correct keys of the intended sender.  So, the proposed 

algorithm will ensure authenticity, integrity, and 

confidentiality of data against all known famous 

active/passive attacks. 

6. Conclusion  

To address the need for nonce misuse attack and side-

channel attack resistant AE algorithm, which is suitable for 

the satellite application environment, this paper presents a 

new AE algorithm that is designed based on the re-keying 

or forward secrecy principle. The concept of re-keying is 

incorporated in the proposed algorithm such that it provides 

the inherent resistance against both, the side-channel attacks 
such as DPA (which is applicable to the most block cipher) 

as well as the nonce misuse attack (which applies to AES-

GCM). Furthermore, by incorporating the re-keying 

technique in the proposed algorithm, the computational 

complexity of the block cipher has been reduced than the 

famous AES-GCM algorithm. Therefore, the experimental 

results show a significant increase in the computational 

speed & 
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