
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

139

Manuscript received January 5, 2020

Manuscript revised January 20, 2020

Experimental Analysis of On(log n) Class Parallel Sorting

Algorithms

Mubashir Ali
1
, Zarsha Nazim

2
, Wajid Ali

3
, Aamir Hussain

4
, Nosheen Kanwal

5
, Mahnoor Khalid Paracha

6

Department of Software Engineering, Lahore Garrison University, Lahore, Pakistan1,2;

Department of Computer Science, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan4;

Department of Computer Science, Bahauddin Zakariya University, Multan, Pakistan3,5,6;

Abstract
Amount of data is rising rapidly with the passage of time. Sorting is

well known computer science problem that is widely used in

various applications. So there is need of certain sorting techniques

that can arrange this data as fast as possible. The analysis of sorting

algorithms on performance basis has significance in understanding

that which technique is most effectual in the field of data

management and which approach can arrange massive data

accurately in least duration of time. The performance of an

algorithm is measured on the basis of time complexity, space

complexity and computation complexity. Multicore computer

architecture attracts the researchers towards parallel computing for

attaining highest computational performance from computer

systems. In this research paper, an experimental analysis is

conducted to measure the performance of On(log n) class sorting

algorithms in terms of execution time in parallel manner. Only

same On(log n) class 12 algorithms are analyzed that leads this

work towards novel results. Experimentation is performed using

C++ language and OpenMP library is implemented for standard

parallelism. Data size increase in terms of 2 power N. Test cases

are executed with three type of following integer data; random

integers, sorted integers and reversed sorted integers. State of the

art results are illustrated using comparative graphs that shows the

performance of different algorithms under same scenario. This

research work help to select appropriate sorting technique with

regard to data set and environment.

Key words:
Sorting Algorithms, Experimental Analysis, Time Complexity,

On(log n) Class, Parallel Processing, OpenMP

1. Introduction

Sorting is one of the most studied problem in the world of

computer science. Due to its importance, it is implemented

in many computer applications. Sorting is conjugative

problem having more than one techniques with diverse

solutions [1]. Saving, arranging and managing data was not

a big issue since six to seven decades ago. But the data began

to rise at enormous speed with the domination of internet at

global level. According to international statistics, every

human is creating nearly 1.5 megabytes of data every second

which means by year 2020 there is going to be 44 trillion

zettabytes of data in digital world [2]. Managing the data

that is growing at this speed requires effectual data

management techniques by which the user can store and

arrange data as fast as possible with efficiency.

Sorting is the data management technique which helps to

arrange data in particular order. Phonebooks having

contacts, different languages dictionaries, ranking in search

engines, password encryption and decryption are the most

common applications of sorting [3,4]. Searching becomes

faster with the help of sorting. It is one of the basic

operations performed in every computer’s database [5].

Various sorting algorithms were developed in the past. The

performance of sorting algorithms is measured by

complexity analysis. Time complexity is one of the

important factor for measuring performance of an algorithm.

Sorting algorithms are also classified on the basis of time

complexity classes. In this research, we selected 12

well-known On(log n) class sorting algorithms for

experimental analysis. Number of tools exists in computing

world to practice parallel computing in real life applications.

Parallel computing opens many opportunities for sorting

related problems. It requires significant communication

bandwidth among cores, unlike many other parallel

computing standards. Parallel computing can be categorized

as Multicore and Multiprocessor [6]. A core is the

component of the processor, its main tasks are to perform,

read and execute the instructions. Multicore processors

chips are made up of more than one core. The main

advantage of a multicore processor over single core is that

the multicore processor has options that it can either use all

available cores to deal with a single task by dividing it into

threads. Parallel computing is a process in which a single

instruction can be divided up into different partitions and

every part is executed on different layers (cores) of a system;

it is also known as multithreading. Multicore processors also

have capability to deal with multiple tasks at a single time

[7]. The computer architecture has been categorized as

instruction level parallelism and data level parallelism. Peak

efficiency stage of parallel application can be reached by

using multicore computing technology. Performance can be

estimated after collecting the information about the

execution characteristics of a sorting or problem solving

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

140

strategy. Execution time is one of the complexity factor

which help to measure the performance of any algorithm [8].

By making a change in the technique from sequential to

parallel could give us effectual results in lesser execution

time. The actual reason behind designing parallel sorting

techniques is to attain performance standards. The

performance standards of these strategies concern with a

number of cores that exists in the system, core to core

discontinuation, design of memory hierarchy, and costs on

synchronization.

OpenMP stands for “Open Multi-Processing” library.

OpenMP is a directive based parallel processing model for

C++ language. OpenMP program is essentially a sequential

program added with compiler directives to set out

parallelism. OpenMP makes conversion of existing

sequential programs into parallel programs easier. Parallel

regions are where parallel execution occurs via multiple

simultaneously executing threads. Every single thread

contains its own program counter and executes instructions

one after another, like sequential program execution. Shared

variables are the means of communicating data between

threads. OpenMP architecture is derived from the standard

of ANSI X3H5 and having the advantages of portability and

extensibility [9]. OpenMP is used to bring parallelism in

various real life applications [10]. It is conducive in

multi-threaded processing based applications evolution.

OpenMP programming strategy composed of an assembly of

directives, pragmas, functions and variables. By

implementing it in C++, it provides mind blowing outputs

by dealing with the tasks of parallel processing dividing and

passing load efficiently [11].

Fig. 1 Parallel processing [12]

The figure 1 is demonstrating the mechanism of parallel

processing or multithreading in which master thread is

controlling the parallel tasks. Comparative analysis of

sorting algorithms return the most effectual techniques to

efficiently sort the data [13].

This paper is arranged in the following parts. Part two

discusses the background work that will help us to justify the

validity of domain. Part three elaborates different sorting

algorithms that are analyzed in experimental analysis. Part

four elaborates the experimental setup, actual

experimentation and comparative results with the help of

graphs and charts. Lastly, the part five concludes the

research work with outcomes and findings.

2. Background Study

In past few years, a lot of work has been done to find efficient

ways to solve multiple problems simultaneously and this

new field of computing is known as “Parallel computing”.

Parallel computing is most widely used paradigm to improve

the performance of the systems. Modern day Computers are

complex and they have a capability of executing different

application programs on multiple processors. In simple

words, parallel computing comes with the main purpose of

synchronous utilization of multiple computer threads or

cores to deal with a multiple computational problem. A

problem is divided into different parts and instructions from

each part are executed simultaneously on different

processing units. In parallel computing multiple processing

units or threads can perform operations independently, but

they have the same memory resources.

Singh et al. distinguished the sequential scheduling and

parallel scheduling of the number of quest in two stage

decision problem. By utilizing the available information

related to task interdependencies, the total amount of time

can be calculated and amount of effort that is required for

any proposed appointment of tasks to the two stages. This

paper proposed a perspective for lowering either required

time or required effort or both by regulating the schedule

that which of the tasks should be dealt with at which time.

This proposed method can be applied to information from a

computer workstation design problem [14]. Unfortunately,

practical Parallel Sort libraries are very hard to design, they

must be carefully tuned and rely on a number of trade-off

depending on the target architecture and target application.

A detailed analysis of shortcomings and benefits of each

selected sorting technique and an insight onto that which of

the algorithm is most suitable for a specific type of

application [15]. Merging algorithms for parallel computer

are used to derive parallel sorting algorithms where

processors interact with each other through interconnection

networks like the mesh, the perfect shuffle and a lot of other

sparse networks. In this paper after discussion phase about

the network sorting strategies, they have shown a model

which is based on shared memory allocation for parallel

computation, derivation of faster algorithms from parallel

enumeration sorting strategies becomes possible. In which

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020 141

first goal needed to be accomplished is the ranking of all

keys and then in the next step they described to rearrange the

keys according to the ranking in step one. Evaluation of

Parallel sorting strategies is done on the basis of a number of

criteria, which is not only relevant to their time complexity

but it also depends on their feasibility. They further

described that the thing which is making their attractive

communication schemes more suitable for implementation

is that the network sorting algorithms are working on

non-adaptive schedules [16]. Sorting algorithms are also

implemented in various power systems. An upgradation of

binary bat algorithm for effective allocation of MPUs in

power systems is presented by [17]. There are a lot of

applications that are time-critical like weather forecasting.

In which the accurate weather forecast of upcoming days is

calculated and sorted in specific order. This procedure of

calculation is done again and again to fetch the updated

results. The computational complexity of a weather problem

is directly related to the accuracy and detail of the requested

forecast simulation. Weather code are implemented in

parallel fashion using OpenMP, instead of forecast on

sequential manner [18].

Lakshmi et al. discussed various parallel algorithms. They

elaborated in details the parallel aspect of sorting algorithms

by considering different factors [19]. Recent studies are

mainly focused on general-purpose sorting using a custom

comparison operator that rules out many specialized

algorithms from the consideration, but it is helpful when

data structure is not known in advance. The main conclusion

is that parallel sorting algorithms are very hard to parallelize

because they are data intensive [20]. In recent studies they

have classified the algorithms into three categories. First

category is of network sorting algorithms. In this category

they have mentioned the techniques which was basically

working on non-adaptive and repeated merging orders.

However, in the context of sorting networks their first

initiative was that in the more prevalent model of parallel

computation the fundamental parallel merging strategies

were eventually embedded. In which the data is

interchanged simultaneously between lines on a sparse

interconnected networks and this is all done by processors.

Second category is of shared memory sorting algorithms. In

this category they have mentioned the algorithms which

needs a memory access pattern which is more adaptable than

the category one sorting strategies. They have supposed that

the in parallel computation the processor is performing tasks

by sharing, reading and writing the access to an enormous

memory poll by various degrees of connections and number

of conflict resolution approaches. Shared memory sorting

strategies are not that much feasible than the network

sorting techniques when it comes to hardware perspective

but when it comes to execution speed they were found much

faster than the network techniques. At the end they have

briefly summarized that both in the network and parallel

strategies the processors were utilized. Third category is of

the parallel file sorting strategies. In this category they have

mentioned the both types of parallel strategies external and

internal parallel sorting strategies that are using parallelism

to give solution of problems involving large size data [21].

The performance of sorting applications can be improved via

Code optimization with deep value profiling [22]. Li et al.

performed detailed experimental analysis of various sorting

algorithms in parallel manner. They have adopted OpenMP

for parallel computing [23].

3. Sorting Algorithms

In this section, only the On(log n) class algorithms and their

variants are discussed that are selected for experimental

analysis.

A. Merge Sort

Merge sort is a divide and conquer strategy based algorithm.

In this sorting technique, the input array is divided into two

parts and these parts are further divided into two halves.

After arranging the sub arrays into desired, the merge part

combines the whole parts into one sorted array [16].

Algorithm:

1. Find out the middle integer of array to divide the

array into two parts:

middle m = (p+r)/2

2. merge_Sort called for first part:

Call merge_Sort(array, p, q)

3. merge_Sort will be called again for second part:

Call merge_Sort(array, p+q, r)

4. Merge the both parts sorted in step 2 and 3:

Call merge(array, p, q, r)

B. Quick Sort

Quicksort is also based upon divide and conquer technique

like merge sort. Initially, quicksort selects an element as

pivot point and then it divides the given data list around the

selected pivot point. The performance of quick sort is based

upon the pivot selection. There exist many versions of

quicksort due to pivot selection techniques [24].

Algorithm:

1. Choose the highest index value has pivot

2. Take two variables to point left and right of the list

excluding pivot

3. Left points to the low index

4. Right points to the high

5. While value at left is less than pivot move right

6. While value at right is greater than pivot move left

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

142

7. If both step 5 and step 6 does not match swap left and

right

8. If left ≥ right, the point where they met is new pivot

C. Heap Sort

Heap sorting is a technique which is based on the binary

heap and it is a comparison based technique. This approach

is similar to the selection sort in which the largest element is

determined and then move the largest data element to the

end of array or list. The process will go on for remaining

data elements [25,26].

Algorithm:

1. Make a binary tree of available list.

2. Transform the Binary Tree into Min Heap.

3. Delete the root element from Min Heap using

Heapify method.

4. Put the deleted element into the Sorted list.

5. Repeat the same until Min Heap becomes empty.

6. Display the sorted list.

D. Intro sort

Intro sort is a hybrid sort which was developed in 1997 by

David musser in musser. Its performance is fast in some

cases while it also comes up with average and worst

performance in others. This technique is also known as

introspective sorting technique. Its mechanism at beginning

is same as quicksort and at the recursion step its mechanism

is diverted to the heapsort when the recursive depth surpass a

level based on the data being sorted. Its actual performance

is near to the quicksort on quintessential sets of data

elements [8].

E. Tim Sort

Tim sort is also a hybrid sorting technique which was firstly

designed by Tim peters in year 2002. It was designed to give

effectual results on many kinds of actual datasets. It is

derived from the merge and insertion sorting strategies. Tim

sort is a durable technique and beats every other sorting

technique when it comes to time. It has On(log n) time

complexity for worst case. The algorithm finds out the chain

of the data that are already organized and uses that

observation to sort the remaining data more efficiently. This

is performed by combining an identified subsequence, called

a run, with existing runs until targeted benchmark is

archived. Tim sort is mostly used in python programming

language [27].

F. Smooth Sort

Smooth sort is a variant of a heap sort. It was designed by

Edsger Dijkstra and published it in year 1981. It is a

comparison oriented sorting technique. It is similar to heap

sort because it is also an in place strategy with upper bound

On(log n). Its time complexity will come closer to O(n) if the

given data is already sorted to some extent [28].

G. Library Sort

Library sort is a technique that works basically on an

insertion sort. A. Bender et al. developed this technique in

2004 and they published it 2 years later in 2006. It is similar

to insert sort but it comes with inconsistency in the array to

speed up the successive insertions. Library sort is durable

technique based on comparison. However, it has most of the

chances of running in On(log n) time if we compare it to the

quick sort, instead of insertion sort's O(n2). The

methodology used for this advancement is very alike to the

one used in skip list [29]. If we compare it to the insertion

sort, the main disadvantage of library sort is that it needs an

extra space for the jumps or gaps.

H. Cube Sort

Cube sort is a parallel sorting strategy. Cube sort was

developed in 1992 and its hybrid version is redeveloped in

2014. It develops a self-stabilized multi-dimensional array

from the data to be ordered [30]. In Sorting, when each

element is inserted the cube then the elements swiftly

transformed to an array. Cube sort has On(log n) time

complexity for the worst case.

I. Tree Sort

A tree sort is a technique that develops a binary search tree

from the data to be organized and then travel across so that

the data comes out in sorted order. Douglas in 1959,

Windley in 1960 and later Hibbard in 1962 proposed binary

trees and implemented it in applications of sorting,

searching, and data maintenance [31]. Its most often use is

organizing data elements online: after every insertion, the

data seen so far is available in well-organized order.

J. Tournament Sort

Tournament sort is a data organizing technique.

Tournament sort is a variation of heapsort. The name of the

technique is due to its resemblance to a single elimination

competition where there are a lot of players or teams which

plays in two-sided matches. Each match’s performance

compares the players with one another and the player with

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020 143

best stats is promoted to play the match at the coming levels

[32].

K. Block Sort

Block sort is a sorting algorithm integrating at least two

merge operations along with insertion sort to come at On(log

n) in-place durable arrangement. Kim et al. introduced one

practical strategy for O(log n) in place merging in 2008. The

technique gets its name by the observation that merging two

organized data lists, list A and list B, is equal to dividing A

into same sized blocks, inserting each A block into B with

some rules, and merging AB pairs [33].

L. Comb Sort

Dobosiewicz et al. originally developed it in year 1980.

Stephen Lacey and Richard Box modified and redesigned it

in 1991. This technique is basically an advancement of the

Bubble Sort. Bubble Sort mechanism works by always

checking and managing the adjacent values. So all

swappings are done one by one. By breaching the size more

than 1 the comb Sort improves over a Bubble Sort [13].

4. Experimentation and Results

This section is further divided into experimental setup,

actual experimentation and discussion.

A. Experimental Setup

The experimental setup is configured by using HP Elitebook

840 G2 5th generation laptop. The system based upon i5

processor (having four processing cores) clocked at 2.30

GHZ with 64 bit Windows operating system. It has 4 GB

DDR3 RAM and standard GPU installed from AMD. The

sorting algorithms are implemented using C++ language

and specifically dev IDE. For parallelism, the standard

OpenMP library is used. OpenMP itself divides the task into

multiple threads and forward to available cores for attaining

highest performance. We will use integer data for sorting in

our experimentation and the amount of data will lie between

210 to 220 integer numbers. Table 1 shows the different type

test cases that are executed for analysis

Table 1: Units for Magnetic Properties

Test

Case
Nature of Data Description

1 Random Integers Unorganized data elements

2 Sorted Integers Organized data elements

3 Reverse Sorted Integers Reversed Organized elements

B. Experimentation

Experimental results are shown using graphs and charts. All

the selected 12 sorting techniques are implemented and

execution time in seconds is recorded for given data items.

Following graphs show the state of the art comparative

results.

Fig. 2. Execution Time in Seconds for Sorting 210 to 220 Random Integers

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

144

The graph in figure 2 illustrates the processor execution

time in seconds of different algorithms for sorting the

random integers data. The data range or size of data is

shown in x-axis that increases in standard ratio with two

power n. The value of n grows from 10 to 20. While on

y-axis, the actual execution time is shown. For sorting the

given range of data, above mentioned 12 sorting

approaches are executed. Quick sort performs very well

with respect to other techniques. Merge sort, heap sort and

tim sort consumes average time to sort the given range. But

remaining algorithms comparatively consumes very high

time for arranging the data. Specifically comb sort and

tournament sort performs worst with regard to execution

time.

Fig. 3 Execution Time in Seconds for Sorting 210 to 220 Sorted Integers

The graph in figure 3 elaborates the actual processing time

in seconds of various above mentioned sorting algorithms

for arranging the already sorted integers. The data range is

shown in x-axis that grows with ratio of two power n. The

value of n exists between 10 to 20. Actual execution time and

sorting techniques are shown on y-axis. Again, Quick sort

and merge sort almost equally performs well with respect to

other techniques. Comb sort, tournament sort and cube sort

consumes very high time with respect to other techniques.

Remaining all techniques take average time to sort the given

range of data.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020 145

Fig. 4 Execution Time in Seconds for Sorting 210 to 220 Reverse Sorted Integers

The graph in figure 4 illustrates the processor execution time

in seconds of different sorting algorithms for arranging the

reversed integers data into sorted order. The data range or

size of data is shown in x-axis that increases in standard

ratio with two power n. The value of n grows from 10 to 20.

While on y-axis, the actual execution time is shown. For

sorting the given range of data, above mentioned 12 sorting

approaches are executed. Quick sort performs well with

respect to other techniques. Merge sort, heap sort, library

sort, cube sort, block sort and tim sort consumes average

time to sort the given range. But remaining algorithms comb

sort, tournament sort, intro sort and tree sort comparatively

consumes very high time for arranging the data.

Fig. 5 Best Profile of Execution Time in Seconds for Sorting 210 to 220 Size Data of All Test Cases

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

146

The graph in figure 5 shows the best profile of execution

time in seconds of quick sort for arranging the given data.

The range of data is shown on x-axis that grows from 2

power 10 to 2 power 20. The graph shows the processing

time of all three cases; random data, sorted data as well as

reversed sorted data. Comparatively, quick sort performs

very well with respect to other algorithms. All the

algorithms fall under the same time complexity class but

show different execution behavior for different nature of

data. Overall for integers data, quick sort performs best.

Fig. 6 Worst Profile of Execution Time in Seconds for Sorting 210 to 220 Size Data of All Test Cases

The graph in figure 6 illustrates the worst profile of

execution time in seconds of comb sort for arranging the

given data. The range of data is shown on x-axis that grows

from 2 power 10 to 2 power 20. The graph shows the

processing time of all three cases; random data, sorted data

as well as reversed sorted data. Comparatively, comb sort

performs inefficient with respect to other algorithms. In all

test cases, comb sort consumes more execution time for

sorting the given range of data. The results of tournament

sort and intro sort are also unacceptable for time critical

applications.

A. Discussion

After experimentation, we draw graphs on the basis of

comparative tables for analyses of results for all On(log n)

class sorting algorithms. Results show that the quick sort is

the efficient sort with all data types, whether the data is

sorted, random or reverse sorted. It holds its position as the

best sorting algorithm in all of the cases for small to large

amount of data. Merge sort and heap sort are near to each

other when comes to performance. They also show efficient

results in terms of execution time and considered as the 2nd

best sorting techniques. After these algorithms, tim sort,

library sort, smooth sort, cube sort and block sort

performance is average as they are also near to each other

when it comes to performance. In last, comb sort, tree sort,

intro sort and tournament sort are the algorithms with worst

results in terms of highest execution time. These techniques

have continuous growth in execution time for random data

but when these are executed with sorted and reverse sorted

data, the growth becomes irregular. Sudden upshifts could

be clearly seen in graphs.

5. Conclusion and Future Work

Sorting is essentially used in many applications of computer

science. Number of sorting algorithms has been developed

and categorized with the help of time complexity classes.

Various algorithms of same complexity class may perform

different with different nature of data. The same class

sorting algorithms are further analyzed using execution time

under same experimental setups. In this research, an

experimental analysis is conducted among different sorting

algorithms of On(log n) class. 12 well-known algorithms are

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020 147

executed under same experimental setup with three test

cases. Test cases consist of random integers data, sorted

integers and reversed sorted integers that grows from 2

power 10 to 2 power 20 size. All the algorithms are executed

in parallel manner to achieve the highest performance from

CPU. OpenMP library is used to implement standard

parallelism. Experimental results show that the quick sort

performs outstanding for all test cases. Merge sort and heap

sort are also near to quick sort. Tim sort, library sort, smooth

sort, cube sort and block sort performs average in terms of

execution time. Comb sort, tree sort, intro sort and

tournament sort performs worst in terms of execution time.

This experimental analysis is done on integers data. May be

the behavior of sorting algorithms differ for other nature of

data.

In future, we will analyze the same algorithms on different

type of data like floats, logarithmic, statistical and available

standard datasets. We will analyze these algorithms under

different experimental setup with Java using MPJ Express

parallelism library to identify the behavior of sorting

techniques in different environments.

References
[1] Amato NM, Iyer R. A comparison of parallel sorting

algorithms on different architectures. Texas A M Univ. …

[Internet] 1998;Available from:

http://parasol-www.cs.tamu.edu/dsmft/publications/psort-tr.

pdf%5Cnpapers2://publication/uuid/890192B7-5654-4280-9

55A-4EF8912C08A6

[2] “Big Data” Is No Longer Enough: It’s Now All About “Fast

Data” [Internet]. [cited 2019 Oct 31];Available from:

https://www.entrepreneur.com/article/273561

[3] Albattah W. Analysis of passwords: Towards understanding of

strengths and weaknesses. Int. J. Adv. Appl. Sci.

2018;5:51–60.

[4] et al. F. Finding the top conferences using novel ranking

algorithm. Int. J. Adv. Appl. Sci. 2017;4:148–52.

[5] Cormen TH. Introduction to algorithms. MIT Press; 2009.

[6] Sharma SK. Performance Analysis of Parallel Algorithms on

Multi-core System using OpenMP. Int. J. Comput. Sci. Eng.

Inf. Technol. 2012;2:55–64.

[7] Chandra R. Parallel programming in OpenMP. Morgan

Kaufmann Publishers; 2001.

[8] Musser DR. Introspective Sorting and Selection Algorithms.

Softw. Pract. Exp. [Internet] 1997;27:983–93. Available from:

http://www.cs.rpi.edu/%7B~%7Dmusser/gp/Intro sort.ps

[9] Krastev P. Introduction To Parallel Computing and Openmp

Objectives :

[10] Tan et al. Load-balanced parallel architectures for 2-D water

quality model PARATUNA-WQ on OpenMP. Int. J. Adv.

Appl. Sci. 2017;4:94–9.

[11] Mateescu G. Parallel Computing with OpenMP on distributed

shared memory platforms. 2002;Available from:

http://cs.pub.ro/%7B~%7Dapc/2003/resources/openmp/open

mp.pdf

[12] Huang S-C. Parallel Computing and OpenMP Tutorial. 2013;

[13] Elkahlout AH, Maghari AYA. A comparative Study of Sorting

Algorithms Comb , Cocktail and Counting Sorting. Int. Res. J.

Eng. Technol. [Internet] 2017;4:1387–90. Available from:

https://irjet.net/archives/V4/i1/IRJET-V4I1249.pdf

[14] Alter S. Defining information systems as work systems:

implications for the IS field. Eur. J. Inf. Syst. [Internet] 2008

[cited 2019 Feb 10];17:448–69. Available from:

https://www.tandfonline.com/doi/full/10.1057/ejis.2008.37

[15] Cormen TH, Leiserson CE, Rivest RL, Stein C. Section 35.1:

The vertex-cover problem. MIT Press and McGraw-Hill;

2001.

[16] Shen HL. Optimal parallel algorithm of merge sort based on

OpenMP. Appl. Mech. Mater. 2014;556–562:3400–3.

[17] Ravindra M, Rao RS. An upgraded binary bat algorithm

approach for optimal allocation of PMUs in power system

with complete observability. Int. J. Adv. Appl. Sci.

2017;4:33–9.

[18] Akhmetova D, Iakymchuk R, Ekeberg O, Laure E.

Performance study of multithreaded MPI and Openmp tasking

in a large scientific code. Proc. - 2017 IEEE 31st Int. Parallel

Distrib. Process. Symp. Work. IPDPSW 2017 2017;756–65.

[19] Lakshmi varahan S, Dhall SK, Miller LL. Parallel Sorting

Algorithms. Adv. Comput. 1984;23:295–354.

[20] Wu H. Parallel Computing Using GPUs. Statistics (Ber).

2011;6:90–4.

[21] Zecena I, Zong Z, Ge R, Jin T, Chen Z, Qiu M. Energy

consumption analysis of parallel sorting algorithms running

on multicore systems. 2012 Int. Green Comput. Conf. IGCC

2012 2012;6–11.

[22] Khan MA. Improving performance through deep value

profiling and specialization with code transformation. Comput.

Lang. Syst. Struct. 2011;37:193–203.

[23] Li JM, Zhang J. The performance analysis and research of

sorting algorithm based on OpenMP. 2011 Int. Conf.

Multimed. Technol. ICMT 2011 2011;3281–4.

[24] Yaroslavskiy V. Dual-Pivot Quicksort [Internet]. 2009.

Available from:

http://iaroslavski.narod.ru/quicksort/DualPivotQuicksort.pdf

[25] MacKay D. Heapsort, Quicksort, and Entropy [Internet].

users.aims.ac.za/~mackay; 2005. Available from:

http://users.aims.ac.za/%7B~%7Dmackay/sorting/sorting.ht

ml

[26] Katajainen J. The Ultimate Heapsort. Aust. Comput. Sci.

Commun. [Internet] 1998;20:87–96. Available from:

http://hjemmesider.diku.dk/%7B~%7Djyrki/Myris/Kat1998

C.html

[27] Auger N, Nicaud C, Pivoteau C. Merge Strategies: from

Merge Sort to TimSort. hal-01212839 [Internet]

2015;Available from:

https://hal-upec-upem.archives-ouvertes.fr/hal-01212839

[28] Dijkstra EW. Smoothsort – an alternative to sorting in situ

(EWD-796a) [Internet]. Center for American History,

University of Texas at Austin; Available from:

http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD796a.P

DF

[29] Faujdar N, Ghrera SP. A detailed experimental analysis of

library sort algorithm. 12th IEEE Int. Conf. Electron. Energy,

Environ. Commun. Comput. Control (E3-C3), INDICON

2015 2016;1–6.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

148

[30] Cypher R, Sanz JLC. Cubesort: A parallel algorithm for

sorting N data items with S-sorters. J. Algorithms

1992;13:211–34.

[31] Singh A, Garg D. Implementation and Performance Analysis

of Exponential Tree Sorting. Int. J. Comput. Appl.

2011;24:34–8.

[32] Tournament sort - Wikipedia [Internet]. [cited 2019 Nov

13];Available from:

https://en.wikipedia.org/wiki/Tournament_sort

[33] Fenwick P, Fenwick P. Block Sorting Text Compression -

Final Report. 1996 [cited 2020 Jan 21];Available from:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.

7580

Mubashir Ali received his MCS and MS

degree in Computer Science from Bahauddin

Zakariya University Multan, Pakistan. He is

currently associated as a Lecturer with

Department of Software Engineering, Lahore

Garrison University, Pakistan. His work has

appeared in many leading journals and

international conferences. His research

interests include Design and Analysis of

Complex Algorithms, Internet of Things, Wireless Sensor

Networks and Cloud Computing.

Zarsha Nazim received her MPhil degree in

Computer sciences recently from Forman

Christian University, Lahore. She is

currently working as a lecturer in Garrison

university Lahore, Pakistan. Her research

interests include Software engineering,

Human Computer Interaction and usability

evaluation. She has several publications in

prestigious journals and conferences.

Wajid Ali received his BSCS and MSCS

degrees respectively in 2016 and 2018 from

Department of Computer Science,

Bahauddin Zakariya University Multan,

Pakistan. He is currently working in

Information Technology Department of Food

Authority Punjab, Pakistan. His resaerch

interests are Algorithm Analysis, Parallel

Processing and Performance Estimation.

Aamir Hussain received the Ph.D. degree in

computer science and technology from the

School of Computer Science and Technology,

Wuhan University of Technology, China, in

2016. He is currently an Assistant Professor

with the Department of Computer Science,

Muhammad Nawaz Shareef University of

Agriculture Multan, Pakistan. His research

interests include Wireless Sensor Networks,

Internet of Things, and Software-Defined Networks (SDN).

Nosheen Kanwal completed her MCS in

2016 and MSCS in 2018 from Bahauddin

Zakariya University Multan, Pakistan. Her

research interests including Algorithms,

Netowrks and botnet malware detection.

Now she is serving as SSE(CS) at Education

Department Punjab and as resaercher under

the umbrella of BZU. She also works on

different manuals of BS Classes.

Mahnoor Khalid Paracha completed his

MSCS from Bahauddin Zakariya University,

Multan, Pakistan. Currently she is affiliated

with Punjab School Education Department

(PSED) and serving in multiple institutions

as a visiting faculty member. Her research

areas are Algorithms Analysis, Network

Protocol Analysis and Data Communication.

