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Summary 
The Constrained CP-net problem concerns finding solutions that 

satisfy a set of hard constraints and not preferentially dominated 
by other satisfiable solution in the search space. In this paper, we 
propose an algorithm to find k optimal solutions given a 
constrained CP-net structure. We identify sufficient conditions 
under which the proposed algorithm is guaranteed to have the 
anytime property where the solutions found so far will never be 
dominated by any future solution. Furthermore, to enhance the 
solving process in practice, we rely on constraint propagation 

techniques and maintain a heuristic search function based on the 
minimum number of worsening flips and hamming distance to the 
optimal.  
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1. Introduction 

Proper handling of decision maker preferences is crucial in 

successfully deploying AI applications [7, 9]. Preferences 

and user wishes represent intuitively what the user wants to 

see or explore in an AI application. Hence, dealing with 

preferences is a cornerstone in many decision making 

processes.  

In many scenarios, there are both preferences and 

constraints on what the user wishes to see and what any 

solution must satisfy Preferences. This is evident in 

different application domains such as product 

configurations and recommender systems [5, 13]. Thus, 

handling both is of great interest to many applications. 
Preference constrained optimization [5, 11] concerns 

studying such problems and efficiently finding Pareto 

solutions (or outcomes) that are satisfied by the set of 

constraints and optimal according to the given preferences. 

The pareto optimality of solutions is defined based on two 

requirements: 1) satisfiability of the constraints, i.e., the 

solutions need to be satisfiable with the given hard 

constraints, and 2) preferential dominance according to the 

preference model (e.g., CP-net) which asserts that no 

satisfiable solution is dominating the current solution.  

In this paper, we propose a simple yet effective approach to 
find k-optimals over the problem structure while applying 

different constraint propagation techniques. In 

addition, we use a heuristic to guide the search space to the 

set of optimal solutions. This heuristic is based on the 

number of worsening flips and the hamming distance to the 

optimal. Finding a subset of the actual pareto optimals is 

recommended in many scenarios. In some applications, the 
set of pareto optimals can be huge, therefore, rather than 

waiting for the whole set, the user might be satisfied witha 

subset of manageable size.  

One important property for any algorithm for finding k 

optimals is the anytime behaviour. This anytime 

(sometimes called online) property guarantees that the set 

of solutions found so far are optimal regardless of the 

upcoming solutions. [5] proposed an anytime algorithm for 

the constrained CP-net problem by utilizing the 

conservative semantics of the CP-nets. We are not aware of 

any other algorithm that preserves this property in the 

literature of constrained CP-nets. Furthermore, we are not 
aware of any research work for finding k−optimals. In this 

paper, we define a condition with which our heuristic will 

always guide the space towards the non-dominated 

solutions and thus preserve the anytime property. Moreover, 

our experiments show that even when the condition is 

violated, there are many cases where the heuristic 

successfully identifies the correct k−optimals.  

Our heuristic is based on the following variable ordering: 

We topologically rank the variables based on their 

participation in the constrained network (i.e., the number of 

constraints that a variable X is involved in) and then fix that 
rank to be topologically correct with the graph in CP-net .  

The paper is structured as follows. The next two sections 

provide the background and related work. Our algorithm is 

then presented in section four. Section five reports the 

experiments over randomly generated problem instances. 

Finally, concluding remarks and future directions are 

presented in section six.  

2. Preliminaries 

2.1 Conditional Preference Networks (CP-nets) 

The CP-net model is a graphical model, i.e., can be 

represented as directed graph where vertices are the 

attributes of the domain and edges are interdependencies 
among attributes [4]. It allows us to express complex 

(conditional) ordinal preferences of the form: “If it is Friday 

night, I prefer to watch a horror movie to a comedy one”. 

Such information or preferences is associated with every 

attribute. Formally, for a set of attributes A = {X1 , . . . , 

Xn } and assuming every Xi is associated with a set of 

possible domain values D(Xi), CP-nets can be described as 
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a pair (G, P ) where G is a directed graph and P is a set of 

conditional preference table T(Xi) for every attribute Xi ∈ 

A. From the preference tables, we can determine how one 

solution is preferred to another (a.k.a dominance relation).  

Figure 1 shows simple network for variables X,Y and Z. 

The user stated that her preference to X is that she always 

prefer x more than x .̄ On the other hand, her preference 

over the variable Z depends on the values of both attributes 

X and Y as stated in the graph ( we say X and Y are parents 

of Z). The figure also show the preference relation graph on 
all possible solutions or alternatives. The existence of a path 

from s to s′ is a certificate that s′ is better to s (i.e., s′ ≻ s) 

whereas the absence of a path represents incomparability 

between s and s′ (s ◃▹ s′).  

 

 

 

Fig. 1  A CP-net and full preference relation.  

2.2 Constrained Networks  

Constrained Networks (CN) [6] are undirected graph where 

vertices represent variables V , each has a possible domain 

of values D(Xi), and edges shows constraint relations 

between pairs of variables. A constraint relation (Xi,Xj) is 

a subset of the cartesian product D(Xi) × D(Xj) showing the 

allowed configurations. The aim is to construct an 
assignment (a value from each variable domain) such that 

all constraints are satisfied. Such assignment is known an 

satisfiable or consistent assignment.  

A classic approach to tackle CNs is by a simple 

Backtracking algorithm. A more intelligent way of 

detecting inconsistent assignments in advance is by 

employing different propagation or look-aheaf techniques 

during the search. The main potential of using such 

techniques is to detect inconsistencies earlier, hence prune 

more branches of the search [10].  

3. Related Work 

Constrained CP-net problem has been tackled in many 

works [5, 14, 11, 8, 15, 12]. The work in [15] introduced 

couple of ways to prune the search space. A compilation 

scheme for the CP-net information into hard constraints was 

introduced in [12]. Then, the set of satisfiable solutions of 

the compiled constraints represent the pareto optimals of 

the constrained CP-net problem. In [8] an efficitent method 

to approximate the CP-net information has been proposed. 
The method transformed the CP-net into a soft constraint 

problem [3]. The work in [1] proposed a method that adopt 

arc consistency (AC) and edit the structure of the CP-net 

accordingly. The aim is to remove some domain values of 

the network, hence early pruning to some unpromising 

branches during the search.  

In [5], a recursive and anytime algorithm (termed Search-

CP) was introduced. Search-CP iteratively calls a smaller 

set of the original CP-net and strength the constraints to the 

current instantiated variables resulting in a simplied CN. 

Search-CP [5] algorithm asserts that upon the expansion of 
a node x, we assign the most preferred value for its current 

variable. This guarantees that for any node o  ̄ after o, there 

is at least a variable X with a better assignment in o than o ̄ 

given their identical values of the parents. Moreover, 

Search-CP has a strategy to prune unpromising branches 

during the search process. However, the variable ordering 

in Search-CP is fixed in advance. The work in [2] did 

investigate constraint propagation for the general case of 

finding single solution and there exists no concrete study on 

variable ordering and heuristic when solving the k > 1 

pareto problem.  

4. Finding k Pareto Solutions 

In this section, we propose a new algorithm, the k Pareto 

optimals, for a constrained CP-net structure. The algorithm 

is based on the observation that the set of (nearly) Pareto 

optimals are the ones that are closest to the original CP-net 

optimal. An outcome o is optimal with respect to CP-net N , 

if there is no other outcome o  ̄ such that N |= o  ̄ ≻ o. In the 
case of acyclic CP-net, it is known that there is only one 

optimal outcome.  

4.1 Problem Formulation  

We assume an acyclic CP-net structure and adopt the 

hamming distance to the optimal in addition to the number 

of worsening flips as a measurement for how good an 
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assignment is. A constrained CP-net is a tuple ⟨N, con⟩ 
where N and con is the corresponding preferences and 

constraints structures respectively.  

An assignment for variables X is a mapping for each 

variable Xi ∈ X to one of its domain values xi ∈ DXi . 

An assignment X is complete if it contains values to all 

variables in the network otherwise it is partial. The induced 

graph in Figure 1b represents all possible complete 

assignments in the network. In the following, we use both 
nodes and assignments interchangeably. We compute the 

expected cost for a node X in the search space as follow: 

f(X) = r(X) where r(X) is the total number of worsening 

flips associated with X. The number of worsening flips for 

a variable Y ∈ X assigned to value yi given Pa(Y), r(Y = 

yi|P a(Y )), is equal to the position of yi in the order 

associated with C P T (Y ) given its parents values. For 

instance, r(C = c ̄|A = a, B = b) in Figure 1b is equal to one. 

In the following, we simply refer to the number of 

worsening flips for a node X as r(X) unless stating 

otherwise. Formally speaking, the number of worsening 

flips for an assignment X = [X1 = x1, X2 = x2..., Xn = xn] 

is computed as shown in Equation (1).  

𝑟(𝑿) = ∑ 𝑟(𝑋𝑖)
𝑛
𝑖=1                    (1) 

 

where Xi is the ith variable in X and n is the size of the 

assignment. We break the ties according to the hamming 

distance measure. The hamming distance for a node X is the 

number of distinct values between X and opt where opt is 

the unique optimal outcome for the underlying acyclic CP-

net structure. Recall the network in Figure 1, it is obvious 

that xyz is the optimal choice and its hamming distance to 

xy ̄z (denoted as hd(xy’z)) is equal to one where it has two 

worsening flips (i.e. r(xy’z) = 2). Generally, the hamming 
distance for an assignment X = [X1 = x1, X2 = x2,..., Xn = 

xn] is calculated in the following way.  

ℎ𝑑(𝑿) = ∑ ℎ𝑑(𝑋𝑖) + |𝑛 − 𝑘|𝑛
𝑖=1         (2) 

 

where k is the cardinality of the optimal. Finally, the 

heuristic function is defined as:  

𝑓(𝑿) = min⁡(𝑟(𝑿))                 (3) 

 

 

Fig. 2  f (x) fails to preserve the anytime behavior  

 

 

4.2 k Pareto Algorithm  

As discussed in [5], we can maintain the search space in a 

way that whenever a variable X is considered, we assign X 

to xi where xi is the preferred value of X given its ancestors. 

If X = xi is infeasible according to some constraints, we try 

X =𝑥𝑖+1 till we have a consistent value for X, otherwise we 

backtrack to the previous variable and change its value. 

This will result in an anytime behaviour from the semantics 

of the CP-nets. In this paper, our motivation is to find a 

heuristic function that can preserve the anytime behaviour 

to some extend while guiding the search efficiently to find 
k pareto optimals. We do this by posing a restriction over 

the dominance relation. In particular, we assume that for 

any two outcomes oi and oj with the same number of 

worsening flips (i.e. r(oi)==r(oj)), if oi ≻oj then 

hd(oi)<hd(oj).  

Proving the anytime behaviour under this assumption is 

straightforward. We adapt the notations and the proof of 

Lemma 3 in [5]. Thus, it is sufficient to show that for any 

o  ̄ that comes after o during the search process it is the case 

where o  ̄ does not dominate o. Indeed, if o ̄ comes after o 
then r(o ̄) ≥ r(o). If r(o ̄) > r(o) we are sure from the 

semantics of the CP-net that N entails o  ̄ ≻ o. Now assume 

r(o ̄) == r(o), If o  ̄ ≻ o then it must be the case where hd(o )̄ 

< hd(o) otherwise there is no way for o ̄ to dominate o. 

However, in our algorithm we are sure if that is the case 

then o  ̄ must proceed o hence N |̸= o ̄ ≻ o.  

The restriction over the hamming distance is infeasible for 

general CP-nets in a sense that it can be the case where oi 

≻ oj and r(oi) == r(oj) but hd(oi) ≥ hd(oj). For instance, 

consider the CP-net in Figure 2, in this network a’b’ c ≻ 

a’bc where both flips and hd(a’b’c) > hd(a’bc) and the 

induced graph over the network is total order. However, we 

believe that there are other classes of CP-nets where the 

condition is satisfied by the nature of the induced graph. 

The example in Figure 1 represents one structure where the 

anytime property is preserved while guiding the search 

space through the heuristic function f . Figure 3 shows the 

search space for a systematic anytime algorithm. Search-CP 

behaves in a similar fashion except it prunes some 

dominated branches. Figure 4 shows the set of solutions for 
the CP-net as points in two dimensions space. Clearly, for 

any two solutions xi and xj where i ≥ j while breaking the 

ties according to hd(x), it is the case that either xj ≻ xi or xj 

<> xi (i.e., they are incomparable).  

Moreover, even for the general case, we argue that the 

resulted outcomes are nearly optimals where the decision 

maker is more llikely to accept them. Our algorithm is 

similar to the proposed approach in [5]. However, in our 

algorithm we go one step ahead and guide the space via the 

heuristic. This will result in sooner examination of different 
solutions in the search space that might be optimal. For 

instance, assume the CP-net in Figure 1 and the constraint 

C(X,Y) where the tuple (x,y) is not allowed. The two pareto 
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optimals are xy’z’ and x’yz. Assume X, Y, Z to be the 

topological ordering, a typical algorithm will first try the 

whole branch of X = x since x is unconditionally preferred 

to x’. However, our algorithm will explore the branch X = 

x’ as soon as some worsening flips happen in the branch X 

= x. This allows the algorithm to quickly find another 
optimal, if exists.  

A frontier is maintained which holds nodes that are soon 

will be expanded. The frontier is sorted based on the 

minimum value of f (X) and break ties by the hamming 

distance of X. Once the assignment is expanded to a new 

variable, we assign the best value of the new variable in the 

light of his parents’ values. Initially, we initialize an empty 

root node where f (X) is a large integer and rank them based 

on most constrained function. To simplify the problem even 

futher, we use the procedure in [1] to shrink the search 

space in advance using constraint propagation techniques. 

The procedure to find k optimals is outlined in Algorithm 1.  

4.3 Finding k-nearly Optimals 

In this section we argue that even though our heuristic does 

not guarantee finding k−pareto optimals for arbitrary 

acyclic CP-nets, it generates good quality of outcomes with 

respect to the preference structure. This stems from the fact 

that the set of solutions with the minimum number of 

worsening flips and closest to the original optimal have 

satisfied many preference statements and might be a 

potential pareto outcome.  

 

Fig. 3  All possible solutions for Example 1  

 

Algorithm 1: Finding k Pareto Solutions 

Finding nearly optimals may have a large impact over the 

considered problem. For instance, consider a recommender 

system where the user explicitly states her preferences and 

constraints. The user might be interested in quick but rather 

nearly optimal answers instead of waiting for the exact set 

of optimals. Moreover, it might be the case where nearly 

optimal answers contain some interesting recommendations 

for her. In this case, nearly optimal solutions is a good 

candidate to apply in practice. Further extensions can be 

applied here. For example, maintaining q Pareto outcomes 
where q < k and the rest are nearly optimals that are not 

dominated by the q outcomes.  
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Fig. 4  f (x) when preserving the anytime property  

5. Experimentation  

In this section we evaluate three methods for finding k 

optimals. The first method is similar to the method 

proposed in [5] except that it is not a recursive and with no 

variable ordering heuristic and constraint propagation 

(called Depth First Search (DFS) henceforth). The second 

method is our proposed k algorithm (that we call f(x)). The 

third method is our proposed algorithm in addition to the 

most constrained heuristic and Forward Checking (FC) 
constraint propagation. All experiments were conducted 

over the ACCPnet structure [1], which is the resulting CP-

net after removing inconsistent domain values following 

AC propagation technique.  

The computer specifications for the experiments are as 

follow: the computer is Mac Book Pro with processor Intel 

Core i5 with four gigabyte RAM. For all experiments,n, 

which is the number of variables, is randomly selected 

between 3 and 20. After fixing n, we generate a random 

structure of CP-net where every attribute has at most two 

parents.  
The constrained network structure is randomly generated 

where the number of variables ncap is equal to n/1.5 and 

constraints density and tightness both set to 50%.  

We conduct three experimental tests. First, we report the 

time needed (in milliseconds) to find the k optimal for all 

the three methods. Second, we report the number of 

generated nodes for each method. In the third experiment, 

we report a comparison between the DFS actual k−pareto 

outcomes and the proposed method. More precisely, we run 

DFS first, if the result is the original optimal, we ignore it 

and regenerate random structures again. Otherwise, we run 

the other two algorithms over the same structure. For any n, 
we compute time needed to find the optimals for five times 

and then take the average. We abort any iteration that takes 

more than 30 seconds. We also take the average number of 

the visited nodes. Lastly, we compare the f(x) and DFS 

results. For any n, we compare the DFS generated solutions 

with the f(x) results. We calculate the change percentage as 

follows. Each solution s has a weight equal to w(s) = 1/k. 

For each solution, we compute the number of different 

values diff and take their percentage (i.e. diff/n ). We sum 

these numbers and multiply them by w(s). For instance, 
assume k = 3 and f(x) misses two solutions in a particular 

iteration; one solution with 4 different values and another 

with 6 out of n = 20. The percentage is ((4/20) · 100)/3 = 

6.6%. Similarly, the second solution has 10%, Therefore, 

this iteration has 16.6% change.  

Figures 5 and 6 show the time and number of nodes 

generated respectively where the x-axis is the number of 

variables. DFS goes blindly in the search space looking for 

an optimal. It examines the whole branch before 

considering the other branches. Generally, this takes more 

time than the heuristic method. On the other hand, f(x) finds 

the optimals sooner in many instances. This is specially true 
if the optimals are distributed along the search space. While 

the performance of FC is not superior, it removes many 

inconsistent nodes from the space and it is unclear yet 

whether it is favourable to apply it in the long run with the 

most constrained variable heuristic.  

 

 

Fig. 5  Time needed for different methods when k = 3  

 

Fig. 6  Number of Generated Nodes 
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Table 1: Percentage of missing some actual k−optimal values 

 

5. Conclusion  

This paper discusses the problem of finding k-Pareto 

optimals for the constrained CP-net problem. The proposed 
algorithm uses the number of worsening flips and the 

hamming distance to the optimal as a heuristic. We adopted 

the most constrained variable heuristic to rearrange 

variables in the CP-net and used Forward Checking (FC) 

during the search to remove some inconsistent values from 

the search space. We identified a condition under which the 

algorithm has an anytime property where the set of pareto 

optimals found so far will never shrinks. We briefly 

discussed the applicability of finding nearly optimal 

solutions.  

In the near future, we are planning to find an enhancement 

over the proposed heuristic. Another important line of work 
is to have theoretical justification for choosing the number 

k. Different k values have a clear and direct impact on the 

performance of the algorithm. So far, we have considered k 

to be user-centric and ignored the underlying problem 

structure. That is, the user inputs it and then the algorithm 

looks for k Pareto solutions. An enhancement over this is to 

relate k to the underlying structure and find an optimal 

value for it. While the notion of optimality in this context is 

debatable, we think a value that will most likely satisfy the 

user. This relation might be established based on the 

maximal anti-chain resulted from the induced graph.  
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