
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

155

Manuscript received January 5, 2020

Manuscript revised January 20, 2020

Finding k-Pareto optimals for the Constrained CP-net problem

Eisa Alanazi

Department of Computer Science, Umm Al-Qura University, Makkah, Saudi Arabia

Summary
The Constrained CP-net problem concerns finding solutions that

satisfy a set of hard constraints and not preferentially dominated
by other satisfiable solution in the search space. In this paper, we
propose an algorithm to find k optimal solutions given a
constrained CP-net structure. We identify sufficient conditions
under which the proposed algorithm is guaranteed to have the
anytime property where the solutions found so far will never be
dominated by any future solution. Furthermore, to enhance the
solving process in practice, we rely on constraint propagation

techniques and maintain a heuristic search function based on the
minimum number of worsening flips and hamming distance to the
optimal.

Key words:
Constraints, Preferences, Optimization, Decision Making

1. Introduction

Proper handling of decision maker preferences is crucial in

successfully deploying AI applications [7, 9]. Preferences

and user wishes represent intuitively what the user wants to

see or explore in an AI application. Hence, dealing with

preferences is a cornerstone in many decision making

processes.

In many scenarios, there are both preferences and

constraints on what the user wishes to see and what any

solution must satisfy Preferences. This is evident in

different application domains such as product

configurations and recommender systems [5, 13]. Thus,

handling both is of great interest to many applications.
Preference constrained optimization [5, 11] concerns

studying such problems and efficiently finding Pareto

solutions (or outcomes) that are satisfied by the set of

constraints and optimal according to the given preferences.

The pareto optimality of solutions is defined based on two

requirements: 1) satisfiability of the constraints, i.e., the

solutions need to be satisfiable with the given hard

constraints, and 2) preferential dominance according to the

preference model (e.g., CP-net) which asserts that no

satisfiable solution is dominating the current solution.

In this paper, we propose a simple yet effective approach to
find k-optimals over the problem structure while applying

different constraint propagation techniques. In

addition, we use a heuristic to guide the search space to the

set of optimal solutions. This heuristic is based on the

number of worsening flips and the hamming distance to the

optimal. Finding a subset of the actual pareto optimals is

recommended in many scenarios. In some applications, the
set of pareto optimals can be huge, therefore, rather than

waiting for the whole set, the user might be satisfied witha

subset of manageable size.

One important property for any algorithm for finding k

optimals is the anytime behaviour. This anytime

(sometimes called online) property guarantees that the set

of solutions found so far are optimal regardless of the

upcoming solutions. [5] proposed an anytime algorithm for

the constrained CP-net problem by utilizing the

conservative semantics of the CP-nets. We are not aware of

any other algorithm that preserves this property in the

literature of constrained CP-nets. Furthermore, we are not
aware of any research work for finding k−optimals. In this

paper, we define a condition with which our heuristic will

always guide the space towards the non-dominated

solutions and thus preserve the anytime property. Moreover,

our experiments show that even when the condition is

violated, there are many cases where the heuristic

successfully identifies the correct k−optimals.

Our heuristic is based on the following variable ordering:

We topologically rank the variables based on their

participation in the constrained network (i.e., the number of

constraints that a variable X is involved in) and then fix that
rank to be topologically correct with the graph in CP-net .

The paper is structured as follows. The next two sections

provide the background and related work. Our algorithm is

then presented in section four. Section five reports the

experiments over randomly generated problem instances.

Finally, concluding remarks and future directions are

presented in section six.

2. Preliminaries

2.1 Conditional Preference Networks (CP-nets)

The CP-net model is a graphical model, i.e., can be

represented as directed graph where vertices are the

attributes of the domain and edges are interdependencies
among attributes [4]. It allows us to express complex

(conditional) ordinal preferences of the form: “If it is Friday

night, I prefer to watch a horror movie to a comedy one”.

Such information or preferences is associated with every

attribute. Formally, for a set of attributes A = {X1 , . . . ,

Xn } and assuming every Xi is associated with a set of

possible domain values D(Xi), CP-nets can be described as

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

156

a pair (G, P) where G is a directed graph and P is a set of

conditional preference table T(Xi) for every attribute Xi ∈

A. From the preference tables, we can determine how one

solution is preferred to another (a.k.a dominance relation).

Figure 1 shows simple network for variables X,Y and Z.

The user stated that her preference to X is that she always

prefer x more than x .̄ On the other hand, her preference

over the variable Z depends on the values of both attributes

X and Y as stated in the graph (we say X and Y are parents

of Z). The figure also show the preference relation graph on
all possible solutions or alternatives. The existence of a path

from s to s′ is a certificate that s′ is better to s (i.e., s′ ≻ s)

whereas the absence of a path represents incomparability

between s and s′ (s ◃▹ s′).

Fig. 1 A CP-net and full preference relation.

2.2 Constrained Networks

Constrained Networks (CN) [6] are undirected graph where

vertices represent variables V , each has a possible domain

of values D(Xi), and edges shows constraint relations

between pairs of variables. A constraint relation (Xi,Xj) is

a subset of the cartesian product D(Xi) × D(Xj) showing the

allowed configurations. The aim is to construct an
assignment (a value from each variable domain) such that

all constraints are satisfied. Such assignment is known an

satisfiable or consistent assignment.

A classic approach to tackle CNs is by a simple

Backtracking algorithm. A more intelligent way of

detecting inconsistent assignments in advance is by

employing different propagation or look-aheaf techniques

during the search. The main potential of using such

techniques is to detect inconsistencies earlier, hence prune

more branches of the search [10].

3. Related Work

Constrained CP-net problem has been tackled in many

works [5, 14, 11, 8, 15, 12]. The work in [15] introduced

couple of ways to prune the search space. A compilation

scheme for the CP-net information into hard constraints was

introduced in [12]. Then, the set of satisfiable solutions of

the compiled constraints represent the pareto optimals of

the constrained CP-net problem. In [8] an efficitent method

to approximate the CP-net information has been proposed.
The method transformed the CP-net into a soft constraint

problem [3]. The work in [1] proposed a method that adopt

arc consistency (AC) and edit the structure of the CP-net

accordingly. The aim is to remove some domain values of

the network, hence early pruning to some unpromising

branches during the search.

In [5], a recursive and anytime algorithm (termed Search-

CP) was introduced. Search-CP iteratively calls a smaller

set of the original CP-net and strength the constraints to the

current instantiated variables resulting in a simplied CN.

Search-CP [5] algorithm asserts that upon the expansion of
a node x, we assign the most preferred value for its current

variable. This guarantees that for any node o ̄ after o, there

is at least a variable X with a better assignment in o than o ̄

given their identical values of the parents. Moreover,

Search-CP has a strategy to prune unpromising branches

during the search process. However, the variable ordering

in Search-CP is fixed in advance. The work in [2] did

investigate constraint propagation for the general case of

finding single solution and there exists no concrete study on

variable ordering and heuristic when solving the k > 1

pareto problem.

4. Finding k Pareto Solutions

In this section, we propose a new algorithm, the k Pareto

optimals, for a constrained CP-net structure. The algorithm

is based on the observation that the set of (nearly) Pareto

optimals are the ones that are closest to the original CP-net

optimal. An outcome o is optimal with respect to CP-net N ,

if there is no other outcome o ̄ such that N |= o ̄ ≻ o. In the
case of acyclic CP-net, it is known that there is only one

optimal outcome.

4.1 Problem Formulation

We assume an acyclic CP-net structure and adopt the

hamming distance to the optimal in addition to the number

of worsening flips as a measurement for how good an

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

157

assignment is. A constrained CP-net is a tuple ⟨N, con⟩
where N and con is the corresponding preferences and

constraints structures respectively.

An assignment for variables X is a mapping for each

variable Xi ∈ X to one of its domain values xi ∈ DXi .

An assignment X is complete if it contains values to all

variables in the network otherwise it is partial. The induced

graph in Figure 1b represents all possible complete

assignments in the network. In the following, we use both
nodes and assignments interchangeably. We compute the

expected cost for a node X in the search space as follow:

f(X) = r(X) where r(X) is the total number of worsening

flips associated with X. The number of worsening flips for

a variable Y ∈ X assigned to value yi given Pa(Y), r(Y =

yi|P a(Y)), is equal to the position of yi in the order

associated with C P T (Y) given its parents values. For

instance, r(C = c ̄|A = a, B = b) in Figure 1b is equal to one.

In the following, we simply refer to the number of

worsening flips for a node X as r(X) unless stating

otherwise. Formally speaking, the number of worsening

flips for an assignment X = [X1 = x1, X2 = x2..., Xn = xn]

is computed as shown in Equation (1).

𝑟(𝑿) = ∑ 𝑟(𝑋𝑖)
𝑛
𝑖=1 (1)

where Xi is the ith variable in X and n is the size of the

assignment. We break the ties according to the hamming

distance measure. The hamming distance for a node X is the

number of distinct values between X and opt where opt is

the unique optimal outcome for the underlying acyclic CP-

net structure. Recall the network in Figure 1, it is obvious

that xyz is the optimal choice and its hamming distance to

xy ̄z (denoted as hd(xy’z)) is equal to one where it has two

worsening flips (i.e. r(xy’z) = 2). Generally, the hamming
distance for an assignment X = [X1 = x1, X2 = x2,..., Xn =

xn] is calculated in the following way.

ℎ𝑑(𝑿) = ∑ ℎ𝑑(𝑋𝑖) + |𝑛 − 𝑘|𝑛
𝑖=1 (2)

where k is the cardinality of the optimal. Finally, the

heuristic function is defined as:

𝑓(𝑿) = min⁡(𝑟(𝑿)) (3)

Fig. 2 f (x) fails to preserve the anytime behavior

4.2 k Pareto Algorithm

As discussed in [5], we can maintain the search space in a

way that whenever a variable X is considered, we assign X

to xi where xi is the preferred value of X given its ancestors.

If X = xi is infeasible according to some constraints, we try

X =𝑥𝑖+1 till we have a consistent value for X, otherwise we

backtrack to the previous variable and change its value.

This will result in an anytime behaviour from the semantics

of the CP-nets. In this paper, our motivation is to find a

heuristic function that can preserve the anytime behaviour

to some extend while guiding the search efficiently to find
k pareto optimals. We do this by posing a restriction over

the dominance relation. In particular, we assume that for

any two outcomes oi and oj with the same number of

worsening flips (i.e. r(oi)==r(oj)), if oi ≻oj then

hd(oi)<hd(oj).

Proving the anytime behaviour under this assumption is

straightforward. We adapt the notations and the proof of

Lemma 3 in [5]. Thus, it is sufficient to show that for any

o ̄ that comes after o during the search process it is the case

where o ̄ does not dominate o. Indeed, if o ̄ comes after o
then r(o ̄) ≥ r(o). If r(o ̄) > r(o) we are sure from the

semantics of the CP-net that N entails o ̄ ≻ o. Now assume

r(o ̄) == r(o), If o ̄ ≻ o then it must be the case where hd(o)̄

< hd(o) otherwise there is no way for o ̄ to dominate o.

However, in our algorithm we are sure if that is the case

then o ̄ must proceed o hence N |̸= o ̄ ≻ o.

The restriction over the hamming distance is infeasible for

general CP-nets in a sense that it can be the case where oi

≻ oj and r(oi) == r(oj) but hd(oi) ≥ hd(oj). For instance,

consider the CP-net in Figure 2, in this network a’b’ c ≻

a’bc where both flips and hd(a’b’c) > hd(a’bc) and the

induced graph over the network is total order. However, we

believe that there are other classes of CP-nets where the

condition is satisfied by the nature of the induced graph.

The example in Figure 1 represents one structure where the

anytime property is preserved while guiding the search

space through the heuristic function f . Figure 3 shows the

search space for a systematic anytime algorithm. Search-CP

behaves in a similar fashion except it prunes some

dominated branches. Figure 4 shows the set of solutions for
the CP-net as points in two dimensions space. Clearly, for

any two solutions xi and xj where i ≥ j while breaking the

ties according to hd(x), it is the case that either xj ≻ xi or xj

<> xi (i.e., they are incomparable).

Moreover, even for the general case, we argue that the

resulted outcomes are nearly optimals where the decision

maker is more llikely to accept them. Our algorithm is

similar to the proposed approach in [5]. However, in our

algorithm we go one step ahead and guide the space via the

heuristic. This will result in sooner examination of different
solutions in the search space that might be optimal. For

instance, assume the CP-net in Figure 1 and the constraint

C(X,Y) where the tuple (x,y) is not allowed. The two pareto

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

158

optimals are xy’z’ and x’yz. Assume X, Y, Z to be the

topological ordering, a typical algorithm will first try the

whole branch of X = x since x is unconditionally preferred

to x’. However, our algorithm will explore the branch X =

x’ as soon as some worsening flips happen in the branch X

= x. This allows the algorithm to quickly find another
optimal, if exists.

A frontier is maintained which holds nodes that are soon

will be expanded. The frontier is sorted based on the

minimum value of f (X) and break ties by the hamming

distance of X. Once the assignment is expanded to a new

variable, we assign the best value of the new variable in the

light of his parents’ values. Initially, we initialize an empty

root node where f (X) is a large integer and rank them based

on most constrained function. To simplify the problem even

futher, we use the procedure in [1] to shrink the search

space in advance using constraint propagation techniques.

The procedure to find k optimals is outlined in Algorithm 1.

4.3 Finding k-nearly Optimals

In this section we argue that even though our heuristic does

not guarantee finding k−pareto optimals for arbitrary

acyclic CP-nets, it generates good quality of outcomes with

respect to the preference structure. This stems from the fact

that the set of solutions with the minimum number of

worsening flips and closest to the original optimal have

satisfied many preference statements and might be a

potential pareto outcome.

Fig. 3 All possible solutions for Example 1

Algorithm 1: Finding k Pareto Solutions

Finding nearly optimals may have a large impact over the

considered problem. For instance, consider a recommender

system where the user explicitly states her preferences and

constraints. The user might be interested in quick but rather

nearly optimal answers instead of waiting for the exact set

of optimals. Moreover, it might be the case where nearly

optimal answers contain some interesting recommendations

for her. In this case, nearly optimal solutions is a good

candidate to apply in practice. Further extensions can be

applied here. For example, maintaining q Pareto outcomes
where q < k and the rest are nearly optimals that are not

dominated by the q outcomes.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

159

Fig. 4 f (x) when preserving the anytime property

5. Experimentation

In this section we evaluate three methods for finding k

optimals. The first method is similar to the method

proposed in [5] except that it is not a recursive and with no

variable ordering heuristic and constraint propagation

(called Depth First Search (DFS) henceforth). The second

method is our proposed k algorithm (that we call f(x)). The

third method is our proposed algorithm in addition to the

most constrained heuristic and Forward Checking (FC)
constraint propagation. All experiments were conducted

over the ACCPnet structure [1], which is the resulting CP-

net after removing inconsistent domain values following

AC propagation technique.

The computer specifications for the experiments are as

follow: the computer is Mac Book Pro with processor Intel

Core i5 with four gigabyte RAM. For all experiments,n,

which is the number of variables, is randomly selected

between 3 and 20. After fixing n, we generate a random

structure of CP-net where every attribute has at most two

parents.
The constrained network structure is randomly generated

where the number of variables ncap is equal to n/1.5 and

constraints density and tightness both set to 50%.

We conduct three experimental tests. First, we report the

time needed (in milliseconds) to find the k optimal for all

the three methods. Second, we report the number of

generated nodes for each method. In the third experiment,

we report a comparison between the DFS actual k−pareto

outcomes and the proposed method. More precisely, we run

DFS first, if the result is the original optimal, we ignore it

and regenerate random structures again. Otherwise, we run

the other two algorithms over the same structure. For any n,
we compute time needed to find the optimals for five times

and then take the average. We abort any iteration that takes

more than 30 seconds. We also take the average number of

the visited nodes. Lastly, we compare the f(x) and DFS

results. For any n, we compare the DFS generated solutions

with the f(x) results. We calculate the change percentage as

follows. Each solution s has a weight equal to w(s) = 1/k.

For each solution, we compute the number of different

values diff and take their percentage (i.e. diff/n). We sum

these numbers and multiply them by w(s). For instance,
assume k = 3 and f(x) misses two solutions in a particular

iteration; one solution with 4 different values and another

with 6 out of n = 20. The percentage is ((4/20) · 100)/3 =

6.6%. Similarly, the second solution has 10%, Therefore,

this iteration has 16.6% change.

Figures 5 and 6 show the time and number of nodes

generated respectively where the x-axis is the number of

variables. DFS goes blindly in the search space looking for

an optimal. It examines the whole branch before

considering the other branches. Generally, this takes more

time than the heuristic method. On the other hand, f(x) finds

the optimals sooner in many instances. This is specially true
if the optimals are distributed along the search space. While

the performance of FC is not superior, it removes many

inconsistent nodes from the space and it is unclear yet

whether it is favourable to apply it in the long run with the

most constrained variable heuristic.

Fig. 5 Time needed for different methods when k = 3

Fig. 6 Number of Generated Nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.1, January 2020

160

Table 1: Percentage of missing some actual k−optimal values

5. Conclusion

This paper discusses the problem of finding k-Pareto

optimals for the constrained CP-net problem. The proposed
algorithm uses the number of worsening flips and the

hamming distance to the optimal as a heuristic. We adopted

the most constrained variable heuristic to rearrange

variables in the CP-net and used Forward Checking (FC)

during the search to remove some inconsistent values from

the search space. We identified a condition under which the

algorithm has an anytime property where the set of pareto

optimals found so far will never shrinks. We briefly

discussed the applicability of finding nearly optimal

solutions.

In the near future, we are planning to find an enhancement

over the proposed heuristic. Another important line of work
is to have theoretical justification for choosing the number

k. Different k values have a clear and direct impact on the

performance of the algorithm. So far, we have considered k

to be user-centric and ignored the underlying problem

structure. That is, the user inputs it and then the algorithm

looks for k Pareto solutions. An enhancement over this is to

relate k to the underlying structure and find an optimal

value for it. While the notion of optimality in this context is

debatable, we think a value that will most likely satisfy the

user. This relation might be established based on the

maximal anti-chain resulted from the induced graph.

References
[1] E. Alanazi and M. Mouhoub. Arc consistency for cp-nets

under constraints. In FLAIRS Conference, 2012.
[2] E. Alanazi and M. Mouhoub. Variable ordering and

constraint propagation for constrained cp-nets. Applied
Intelligence, 44(2):437–448, 2016.

[3] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based

con- straint satisfaction and optimization. JOURNAL OF
THE ACM, 44(2):201–236, 1997.

[4] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D.
Poole. Cp-nets: A tool for representing and reasoning with
conditional ceteris paribus preference statements. J. Artif.
Intell. Res. (JAIR), 21:135–191, 2004.

[5] C. Boutilier, R. I. Brafman,H..Hoos,and D. Poole.
Preference- based constrained optimization with cp-nets.

Computational Intelligence, 20:137–157, 2001.
[6] R. Dechter. Constraint processing. Elsevier Morgan

Kaufmann, 2003.
[7] C. Domshlak, E.Hullermeier,S. Kaci,andH. Prade.

Preferences in ai: An overview. Artif. Intell., 175(7-8):1037–
1052, 2011.

[8] C. Domshlak, F. Rossi, K. B. Venable, and T. Walsh.
Reasoning about soft constraints and conditional preferences:

complexity results and approximation techniques. CoRR,
abs/0905.3766, 2009.

[9] J. Goldsmith and U. Junker. Preference handling for artificial
intelligence. AI Magazine, 29(4):9–12, 2008.

[10] A. K. Mackworth. Consistency in networks of relations.

Artificial Intelligence, 8(1):99 – 118, 1977.
[11] S. Prestwich, F. Rossi, K. B. Venable, and T. Walsh. Con-

strained cpnets. In in Proceedings of CSCLP04, 2004.
[12] S. D. Prestwich, F. Rossi, K. B. Venable, and T. Walsh.

Constraint-based preferential optimization. In AAAI, pages
461–466, 2005.

[13] F. Rossi, K. B. Venable, and T. Walsh. Preferences in con-
straint satisfaction and optimization. AI Magazine, 29(4):58–

68, 2008.
[14] N. Wilson. Consistency and constrained optimisation for

conditional preferences. In ECAI, pages 888–894, 2004.
[15] N. Wilson and W. Trabelsi. P. rules for constrained

optimisation for conditional preferences. In CP, pages 804–
818, 2011.

Eisa Alanazi received his B.Sc.
degree in Information Systems from King
Saud University, in 2007, and the MSc and
PhD degree from the University of Regina,

Canada in 2011 and 2017 respectively. He is
currently an Assistant Professor at the
Department of Computer Science, College
of Computers and Information Systems in

Umm Al-Qura University in Saudi Arabia. His research interests
include preference learning and reasoning.

