
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

88

Manuscript received Fabruary 5, 2020

Manuscript revised Fabruary 20, 2020

Efficient Multi-threaded Crawling Using In Memory Data

Structures

Mohammad A.R. Abdeen,

The Faculty of Computer and Information Systems

The Islamic University of Madinah, Madinah, Saudi Arabia

Summary
Crawling the internet is an important task for any search engine. A

crawler is a software program that sends HTTP requests to various

webservers available on the world datasphere and downloads their

contents. As the size of the internet has gone through a big bang in

the last decade, designing efficient parallel crawlers became a

necessity. One of the factors that degrades the crawler

performance is the disk access every time a file is written. As the

process of crawling the web requires the download of tens or

hundreds of millions of webpages, much time will be consumed in

disk writes due to the seek times. This work presents an efficient

multi-threaded crawler that incorporates an in-memory data

structure to reduce the overall disk write times. The results show

that the proposed technique can increase the throughput by about

50% at selected values of size of the in-memory data structure over

the normal multi-threaded crawler with no in-memory data

structure. In addition, the results show that this design can achieve

an average crawler speed of 22 pages/sec which supersedes

previously reported work.

Key words:
Web Crawlers, Distributed Applications, Multi-threading, In-

memory Data Structures, Performance Evaluation.

1. Introduction

The size of data in the cyber space has increased

dramatically in the last decade by unprecedented amounts.

According to an IDC report, the global datasphere is

expected to grow from 33 Zettabyte (ZB) in 2018 to mind

blowing 175 ZB by 2025 [1]. This is essentially due to the

widespread of personal digital devices such as smart phones,

iPads, and Laptops and the emergence of ubiquitous

computing. Web information mining is an important

research area as it addresses the various methods to dig out

important information from the massive amount of data

existing and increasing by the second.

Web search engines are being used by the majority of the

world population. They are now the destiny of just about

any person interested in finding information in any

knowledge area. Search engines consist of four main

components; the crawler, the indexer, the ranking

component and the query engine [2]. The crawler is the

component responsible for collecting and storing data from

the web datasphere, the indexer is the component that

creates an index of the collected data for easier and faster

future retrieval, the ranking module is responsible for

sorting the resulting webpages of the search based on a

predefined criteria, and the query engine is the user

interface provided to the user to facilitate finding the desired

information. A web crawler is the first line of the search

engine that interacts with the outside world and is the first

stage to process the massive amounts of data from the world

datasphere as it collects and stores them in local storage and

suitable data structures. The process of collecting the data

is called “crawling” and it is the front end of web data

collection.

2. Background

2.1 Web Crawlers

A web crawler, also called (ro)Bots, or Spider, is a software

program that accesses various available websites in the

visible web by sending HTTP requests and collects and

stores the response (in the form of a webpage contents) in

local disks, data structures or databases. Fig. 1 below shows

a simplified structure of a typical web crawler.

Fig. 1 A simplified web crawler architecture

Spider

Program

WWW

Initial

Seeds

Html pages
HTTP requests

Local Storage

New

URLs

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

89

As shown in the figure, a crawler uses initial webpages to

start the data collection process. The initial webpages are

called the “seed” pages. The crawler program uses those

initial pages to collect all available sublinks and expand the

list of URLs to be crawled, thereby expanding the data zone

to new webpages and new subject areas. There exist two

approaches to traverse the web graph and collect its data. In

addition, there exists sequential and parallel and multi-

threaded versions of the web crawlers.

Web crawlers have been developed with the emergence of

the world-wide-web. The first crawler patch date back to

early 90s. Early versions of crawlers include RBSE spider

[4], World Wide Web Warm [5], and WebCrawler [6].

WebCralwer is considered to be the first parallel available

crawler as it is able to download 15 links simultaneously. In

1998, Brin and Page introduced a new large-scale web

crawler, called Google. Other versions of web crawlers exit

and are listed in [8].

2.1.1 Depth first crawling

The world wide web is considered a massive graph with

webpages representing the nodes and the URLs included in

those pages as the outgoing links. One way to travers this

graph and collect the data of various webpages is the depth-

first search approach (DFS). With this approach an initial

webpage is picked from the available seed files. The

sublinks (a.k.a. the URLs) of this page are considered new

nodes and further traversal is started using one of those

sublinks. This process is repeated until the full graph is

exhausted. Since the size of world-wide-web is massive and

complete exhaustion take a significantly large amount of

time and might not be attainable, a threshold depth can be

set to simplify the search algorithm and to suit

experimentation purposes. This approach is adopted in this

work.

2.1.2 Breadth first crawling

In this algorithm (BFS) a web graph is traversed in a way

such that adjacent nodes are visited first and their data are

collected. As an example, if we start with a seed file, then

all URLs listed in this seed file are traversed first and their

data are collected. Thereafter, the sublinks of the first URL

in the list are traversed and their data are collected, and so

on.

2.1.3. Multi-threaded crawling

Multi-threading is a technique used to in software

application to enhance the throughput. It has been used in

numerous applications such as web browsers, web servers,

and computer games.

In [9] the authors proposed a multi-threaded crawler for a

large-scale text database-Wikipedia crawling. They

combined the depth first and the breadth first algorithms to

optimize the crawling process.

In [10] the authors presented the largest publicly available

dataset to date. To perform this task, they used 100

machines that run a Hadoop platform and distributed the

crawling task among them. With this architecture they

achieved a rate of about 7.55 pages/sec of download. This

result is below expectations as Hadoop is not efficient due

to the nature of patch processing it uses.

2.1.4 Disk drive speeds and In-memory structure

Disk drive speeds are typically measured in milliseconds

while memory write times are in nanoseconds. This means

that the memory writes are 100,000 folds better than the

disk drives. The crawler downloads tens or even hundreds

of millions of pages per crawl. For this reason, minimizing

the number of disk writes is expected to significantly

improve the crawler performance as the hard drive are

usually the performance bottleneck is distributed crawler

systems. In addition, the hard drive possesses a seek time

for every disk write. A typical disk seek time is 9

milliseconds. Therefore, reducing the number of writes

associated with every new downloaded file is expected to

significantly increase the crawler performance.

Previously, data processing in-memory was prohibitive

despite its high speed compared to other storage devices

such as hard drives. This was mainly due to the high cost of

RAM that prevented data to be loaded directly to memory

for processing. Recently, the price of RAM has significantly

dropped, and it became economically feasible to load and

process data directly from memory [13]. There have been

serval recent applications for the use of in-memory data

structure in caching and in performance improvement of

databases [14].

In this paper, we leverage on the RAM speed and its

availability in large size to build a performance efficient

parallel crawler and by reducing the number of disc access

times and perform patch write processing.

3. Design and Implementation

The crawling algorithm presented in this work is a multi-

threaded crawler. The algorithm is implemented on a dual-

processor HP ProLiant DL380 Gen 10 server with each

processor having 12 cores and with 64 GB of memory. The

crawler is implemented in Java language. It is to be noted

that this threading technique provides true parallelism as

opposed to the concurrency as each crawling instance is

assign a separate thread and a separate CPU core. The

novelty of this algorithm is that it employs in-memory data

structure to reduce the amount of time the disk is to be

accessed. Fig. 2 shows the proposed multi-threaded crawler

with in-memory data structure. In this work, we have used

a linked list as its size can expand as the number of files

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

90

increase. The symbols F1, F2, …, Fn denote the memory

blocks allocated to store the downloaded files (webpages).

The complete data structure is written to memory when the

number of files reach a specific threshold TF. The allocated

memory is returned to the heap by the automatic garbage

collection as soon as the memory is flushed to disk.

Fig. 2 The Multi-threaded Crawler with In-Memory Data structures

The following listing shows the algorithm of the multi-

threaded crawler that uses in-memory data structure. We

have used a linked list data structure as it can expand as

much as webpages we download. We setup our crawler to

stop traversal of the graph when the depth reaches a certain

threshold depending on the amount of information we

desire to accumulate. For the purpose of this study, this

threshold is set to 10,000 URLs.

4. Experiments and Results

As this paper is part of a larger project to mine and classify

the contents of the Arabic web [3], the experimentation we

performed here is to crawl the Arabic web and store its

contents in various categories. We have used 10 categories.

These include, tourism, religion, sports, education, IT,

automobile, economics, health, culture, and recruitment.

For each category we prepared a carefully selected group of

webpages to serve as seeds for each category. For the multi-

threaded crawler version, we ran 20 threads, each thread on

one core (since we have a total of 24 cores). In this case,

each category of the 10 categories has two working cores

that collect the relevant information and is assigned two

different seed files for each category to guarantee mutual

exclusion.

We ran 10 experiments to measure the system throughput.

The throughput measure we used in this work is the average

total download size per minute. The measurements are

taken over an eight-hour period. The performance

measurements are done using the Microsoft Windows

performance monitoring tool that is available for MS-

Windows server installed on the machine being used in this

work. When the crawl process starts, collected files are

stored in a linked list data structure instead of directly

writing to the hard drive. This process continues until the

size of the linked list (and consequently the number of

downloaded files) reaches a given threshold n. We tested

the system was values of n (in thousands) = 10, 20, 30, 50,

75, 100, 150, 200, and 300. We also tested the system

without the use of the in-memory data structure, i.e.,

directly storing the downloaded files to the hard-drive. Fig.

3, Fig. 4, and Fig. 5 show sample results of one of the

performance parameters (Average Disc Writes/Sec) for

three cases; no in-memory data structure, with linked list of

sizes 10,000 and 100,000. The last two figures show that the

sick drive is being used in time separate intervals depending

on the size of the linked list. The percentage write times

were 26% for the “no in-memory” data structure case while

it was as low as 19% for the in-memory data structure usage

with linked list of length 100,000 nodes.

Fig. 3 Disc Writes/sec with no usage of in-memory data structure

1. Create a linked list MT_LL

2. Initialize Depth to zero

3. Initialize TF = n

4. Initialize Threshold to 10,000

5. For each item in the seed file list:

6. Read next webpage:

7. Extract HTML contents of the page

8. Create a Node in MT_LL

9. Store page content in new Node

10. Extract URLs of this page

11. Update Depth by the number of URLs

12. collected

13. If length of MT_LL = = TF

14. Then flush MT_LL to disk

15. If time = 8 hours

16. END

17. Else If number of URLs equals Threshold,

18. Go-to 4.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

91

Fig. 4 Disc Writes/Sec with in-memory data structure with linked-list

length of 10,000 nodes

Fig. 5 Disc Writes/Sec with in-memory data structure with linked-list

length of 100,000 Nodes

The system throughput represented by the total downloaded

data in Mega Bytes per minute (MB/min) is shown in Fig.

6. The graph shows a somewhat oscillating characteristic of

the throughput with a maximum value obtained around a

linked list of size 100,000 nodes. This can be due to the

alignment of hard disk sectors and the total data size to be

stored. A match between the two values servers to produce

a local optimal system throughput.

Fig. 6 A graph showing the number of nodes (n) in the linked list (x-

axis) and the throughput in MB/min (y-axis)

Another performance measure has been considered which

is the average number of files downloaded for various

values of linked-list size. A previous research [10], has

reported an average of 7.75 pages per second (pages/sec).

Table 1 below shows the achieved pages/sec for some

selected values of n (10, 20, 75, 100 and 150 thousands).

Table 1: The Average collected pages/sec against the linked-list size (n)

Linked-

list

size(n)

Total pages

collected
Average pages/sec

- 544,320 18.9

10,000 601,920 20.9

20,000 619,200 21.5

75,000 564,705 19.6

100,000 633,600 22

150,000 555,840 19.3

It can be shown from the table that there is an optimal value

of 22 pages/sec at n = 100,000 nodes. This value is

consistent with the result shown in Fig. 6 as the maximum

number of downloaded pages/sec is expected to relate to the

overall system throughput that occurred in a similar value

of n.

5. Conclusions

In this work, the author presented a distributed and multi-

threaded crawler design using the in-memory data structure.

This system is motivated by the fact that frequent disc

writes of downloaded individual files causes performance

degradation and a lower throughput due to the disk seek

times. Patch writing of data to disc after being stored in in-

memory data structures is a viable alternative especially due

to the availability of larger memory with affordable prices.

The results show that the proposed technique shows about

50% performance improvement for some selected values of

the size of the in-memory data structure over the multi-

threaded technique with no in-memory data structure. The

system also achieved a crawling rate of 22 pages/sec which

is superior to previously reported values.

6. Future Work

The authors are already extending the current system to

employ a graphic processing unit (GPU) with over 1500

cores to increase the throughput as well as experimenting

with significantly larger in-memory data structure to reach

one million nodes.

0

5

10

15

20

25

0 50 100 150 200
Size of the in-memory linked list (Nodes) Thousands

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

92

Acknowledgments

This research is supported by the First Tamayoz initiative

project number 23/40 by the research deanship of the

Islamic University of Madinah, Saudi Arabia. The author

would like to thank Mr. Ali Domlo for his help during the

development of this work.

References
[1] D. Reinsel, J. Gantz, J. Rydning, “he Digitization of the

World From Edge to Core”, IDC white paper, Available

From: https://www.seagate.com/files/www-content/our-

story/trends/files/idc-seagate-dataage-whitepaper.pdf

[Accessed: February 2020].

[2] S. Büttcher, C. L. A. Clarke, G. V. Cormack, Information

Retrieval: Implementing and Evaluating Search Engines,

MIT Press – July 23, 2010

[3] M. A.R. Abdeen et. al, “A Closer Look at Arabic Text

Classification”, The International Journal of Advances in

Computer Science Applications (IJACSA), Nov. 2019.

[4] D. Eichmann, The RBSE spider: Balancing effective search

against web load. In Proceedings of the 1st World Wide. Web

Conference, 1994

[5] O. A. McBryan, GENVL and WWWW: Tools for taming the

web. In Proceedings of the 1st World Wide Web Conference.

1994, pp. 79–90.

[6] B. Pinkerton, Finding what people want: Experiences with

the webcrawler. In Proceedings of the 2nd International

World Wide Web (Online & CDROM review: the

international journal of), Anonymous (Ed.), Vol. 18(6).

Learned Information, Medford, NJ, 1994.

[7] S. Brin and L. Page, The anatomy of a large-scale

hypertextual Web search engine. Computer Networks and

ISDN Systems 30, 1998, pp. 107–117.

[8] S. M. Mirtaheri et al. “A brief history of web crawlers.”

ArXiv abs/1405.0749, 2013.

[9] G. Sun, H. Xiang, S. Li, On Multi-Thread Crawler

Optimization for Scalable Text Searching. Journal on Big

Data, Vol. 1, 2019, p. 89–106.

[10] The ClueWeb09 Dataset. 2009. Homepage. Retrieved May

16, 2018 Available From http://lemurproject.org/clueweb09/

[Accessed Feb. 2020].

[11] L. Meegahapola, et. al. "Adaptive technique for web page

change detection using multi-threaded crawlers." In The

IEEE Seventh International Conference on Innovative

Computing Technology (INTECH), 2017, pp. 120-125

[12] P. Boldi, et. al. “BUbiNG: Massive Crawling for the Masses”.

ACM Trans. Web 12, 2, Article 12, June 2018.

[13] R. S. Maso, “In-Memory, Distributed Data Structures for the

masses”, July, 2018, Available From:

https://medium.com/sharenowtech/in-memory-distributed-

data-structures-for-the-masses-c6627664474a [Accessed Feb.

2020].

[14] A. Chatzistergiou, M. Cintra, S. Viglas, “REWIND:

Recovery Write-Ahead System for In-Memory Non-Volatile

Data-Structures”, PVLDB, 8, 2018, pp. 497-508

Mohammad A. R. Abdeen received the M.S. and Ph.D. degrees

in Electrical and Computer Engineering from the University of

Victoria, and the University of Ottawa, Canada respectively. He

assumed numerous academic and industrial positions in

international academic institutions and industrial organizations.

He is currently an Adjunct Professor at the University of Ottawa,

Canada and an Associate Professor at the Islamic University of

Madinah, Saudi Arabia.

