
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

99

Manuscript received Fabruary 5, 2020

Manuscript revised Fabruary 20, 2020

Solving the Traveling Salesman Problem using Greedy

Sequential Constructive Crossover in a Genetic Algorithm

Zakir Hussain Ahmed

Department of Mathematics and Statistics, College of Science Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia

Abstract
The efficiency of genetic algorithms (GAs) depends mainly on

crossover operator. The choice of good crossover operators leads

to effective GA. There are many existing crossover operators in

the literature. In this paper, we propose a modified version of

sequential constructive crossover (SCX), named greedy SCX

(GSCX), for solving the benchmark travelling salesman problem.

We then compare the efficiency of the proposed crossover

operator with greedy crossover, SCX and bidirectional circular

SCX operators for solving the TSP on some benchmark TSPLIB

instances. The comparative study shows that our proposed GSCX

operator is the best among these crossover operators for the

problem.

Key words:
Genetic algorithm; Greedy sequential constructive crossover;

Traveling salesman problem; NP-hard.

1. Introduction

We consider the benchmark travelling salesman problem

(TSP) for our study that finds a least cost Hamiltonian cycle

in a network. The problem can be formally stated as

follows: A network with ‘n’ nodes, with 'node 1' as ‘depot’

and a travel cost (or distance, or travel time etc.,) matrix C=

[cij] of order n associated with ordered pairs (i, j) of nodes

is given. The problem is to find a least cost Hamiltonian

cycle. There are two types of TSP - symmetric and

asymmetric. The TSP is symmetric if cij = cji, for all i, j,

else, asymmetric. If there are n nodes in a network, then for

asymmetric TSP, there will be
)!1(n

possible solutions

out of which at least one of them provides the minimum cost,

and for asymmetric TSP, there will be 2

)!1(n

possible

solutions along with same valued opposite cyclic

permutations. In both types, the number of possible

solutions is very large; so, a complete search is very hard, if

it is not impossible. The problem is proved to be NP-Hard

[1] and it has many real-life applications [2].

Several exact and heuristic/metaheuristic algorithms have

been developed and reported in the literature for solving the

TSP. Though exact algorithms obtain exact optimal solution

to the problem, but the computational time increases

exponentially as the problem size increases. On the other

hand, heuristic algorithms do not guarantee the optimality

of the solution, but they obtain near optimal solution in a

very short time. So, the researchers give more importance

to find good quality heuristic solutions in reasonable time,

rather to find exact solution after lot of computational time.

Some of most effective metaheuristic algorithms are ant

colony optimization, genetic algorithm, simulated

annealing, state transition algorithm, tabu search, artificial

neural network, artificial bee colony, black hole, and

particle swarm optimization. Out of these algorithms

genetic algorithm is very popular and one of the best

metaheuristic algorithms for solving the TSP. In simple GA,

selection, crossover and mutation are three operators, and

among them crossover is very important operator. So,

several crossover operators have been developed for solving

the TSP as well as other combinatorial optimization

problems ([3], [4]).

In this paper, we propose a modified version of sequential

constructive crossover (SCX), named greedy SCX (GSCX)

operator that produces better offspring than SCX. We then

compare the efficiency of the proposed crossover operator

with greedy crossover, SCX and bidirectional circular SCX

operators for solving the TSP on some benchmark problem

instances.

This paper is organized as follows: The literature review is

given in Section 2. Next Section 3 discusses existing and

proposed crossover operators for developing variant genetic

algorithms for the TSP, while Section 4 describes

computational experiments for four crossover operators.

Finally, Section 5 presents comments and concluding

remarks.

2. Literature Review

Since the crossover operator plays a vital role in GA, so

many crossover operators have been proposed for the TSP.

Goldberg and Lingle [5] developed the partially mapped

crossover (PMX) that used two crossover points. It defines

an interchange mapping in the section between these points.

PMX was the first crossover for the GA to solve the TSP.

As reported, the authors found near-optimal solution to a

well-known 33-node problem instance.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020 100

The ordered crossover (OX) is developed in [6] which

builds offspring by choosing a subsequence of a tour from

one parent and preserving the relative order of nodes from

the other parent. However, it was applied to the job-shop

scheduling problem. Syswerda [7] proposed order based

crossover (OBX) that selects several positions randomly in

one parent tour and the order of the nodes in the selected

positions of this parent is imposed on the other parent.

Position based operator (PBX) is also proposed in [7] that

selects a set of positions randomly in the parent tours. But

it imposes the position of the selected nodes on the

corresponding nodes of the other parent.

Grefenstette et al. [8] proposed alternating edges crossover

(AEX) operator that assumes a chromosome as a directed

cycle of arcs. The offspring is built by selecting alternative

arcs from both parents, with some additional random

selections in case of infeasibility. The authors also proposed

the greedy crossover (GX) operator for the TSP.

Oliver et al. [9] developed cycle crossover (CX) that builds

an offspring where every node and its corresponding

position originated from one of the parents.

The edge recombination crossover (ERX) is proposed by

Whitley et al. [10] which follows an edge map to builds an

offspring by inheriting as many edges as possible from the

parents, and the common edges of both parents have high

priority. The generalized N-point crossover (GNX) [11] is

developed based on the traditional N-point crossover

operator.

A crossover operator named sequential constructive

crossover (SCX) is developed in [12] for solving the TSP

and compared with ERX and GNX on symmetric and

asymmetric TSPLIB instances. As reported, SCX is better

than ERX and GNX. The SCX is then modified in [13] by

considering that if no legitimate node is present in any of

the parents after current node, search continues from the

beginning of the parent chromosome and select the first

legitimate node as the next node.

Bidirectional circular sequential constructive crossover

(BCSCX) is developed in [14] by modifying SCX, which

searches for next neighbor in both left and right directions

in both parents. Thus, four neighbor genes are considered.

Also, during searching for the next neighbor gene, if it

reaches to the end or to the beginning of the genes list in

any of the parents, it will wrap around.

3. Genetic Algorithms for the TSP

Genetic algorithm (GA) is a search process, proposed by

John Holland in 1970s, inspired by natural biological

evolution process. It starts initially with a population of

strings, called chromosomes, that encode solutions to a

problem, and operates possibly three operators, namely

selection, crossover and mutation, to produce new and

possibly better populations in successive generations.

Crossover along with selection operator is the main leading

procedure in genetic algorithms. Mutation expands search

space and defends from loss of any genetic substance due to

selection and crossover operators. Although GA is among

the best algorithms, but its performance depends on initial

population along with three operators and four parameters,

which are discussed here.

3.1. Chromosome Representation and Selection

Operator

There are many methods for representing solutions as

chromosomes for the TSP. We consider path representation

which makes a list of node labels so that no node is repeated

in the same chromosome. For example, let {1, 2, 3, 4, 5, 6,

7, 8, 9} be the node labels in a 9-node instance, then a tour

{1→8→6→3→7 → 4→2→9→ 5 →1} may be represented

as (1, 8, 6, 3, 7, 4, 2, 9, 5). The objective function is the sum

of the costs of all edges in the tour.

A fitness function can be defined using objective function,

and we define the fitness function as
)(

1
)(

xf
xF 

,

where f(x) is the objective function. Usually GA starts with

a set of chromosomes called an initial population of

chromosomes. We have considered randomly generated

initial population and then apply selection operator on the

population. In selection operator, old chromosomes are

copied into mating pool, usually with a probability related

to their fitness value. In this operator no new chromosome

is created. We have considered the stochastic remainder

selection process [15] for our GAs.

3.2. Existing Crossover Operators

A comparative study among eight different crossover

operators, namely, Two-Point Crossover, PMX, CX,

Shuffle Crossover, ERX, Uniform Order-based Crossover,

Sub-tour Exchange Crossover and SCX is presented in [16],

and found that SCX outperformed other operators in

achieving good quality solution for the TSP. The SCX is

also effectively applied to other combinatorial optimization

problems ([17]-[24]). So, we are going to consider and

discuss GX, SCX and BCSCX operators.

3.2.1. Greedy Crossover Operator

The greedy crossover (GX) is proposed in [8] for the TSP

that selects a starting node randomly. Then in each step,

four neighbor nodes of currently selected node in both

parents are considered, and the cheapest one (not present in

the offspring) is selected. If the cheapest node or all four

neighbour nodes are present in the offspring, then any node

from the remaining is selected randomly. This operator

creates only one offspring from two parents. Let us illustrate

the GX through the 9-node example given as cost matrix in

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

101

Table 1. Let P1: (1, 2, 3, 4, 6, 9, 5, 7, 8) and P2: (1, 3, 5, 7,

8, 9, 4, 2, 6) be a pair of selected parent chromosomes with

costs 83 and 75 respectively. We consider these same

chromosomes for illustrating all other crossover operators.

We fix headquarters (first gene) as ‘node 1’, and so, we start

the procedure from the ‘node 1’.

Table 1: The cost matrix.
No
de

1 2 3 4 5 6 7 8 9

1 99
9 7 15 9 10 6 8 9 10

2 11 99
9 8 7 11 3 6 4 3

3 15 5 99
9 16 12 5 8 13 4

4 2 5 11 99
9 9 13 14 4 2

5 8 6 3 5 99
9 6 7 10 9

6 6 13 8 11 5 99
9 5 4 5

7 5 15 3 7 12 6 99
9 8 9

8 9 3 9 14 3 11 8 99
9 10

9 11 16 3 9 10 7 9 10 99
9

As we fixed first gene as ‘node 1’, the offspring is initiated

as (1). The nodes 2 and 3 are neighbours of node 1 with their

costs 7 and 15 respectively. The node 2 is cheaper, so, it is

added to the incomplete offspring that becomes: (1, 2).

Next, the nodes 3, 1, 6 and 4 are neighbours of node 2 with

costs 8, 11, 3 and 7 respectively. The node 6 is the cheapest,

so, it is added to the incomplete offspring that becomes: (1,

2, 6).

Next, the nodes 9, 4, 1 and 2 are neighbours of node 6 with

costs 5, 11, 6 and 13 respectively. The node 9 is the cheapest

so, it is added to the incomplete offspring that becomes: (1,

2, 6, 9).

Next, the nodes 5, 6, 4 and 8 are neighbours of node 9 with

costs 10, 7, 9 and 10 respectively. The node 6 is the cheapest,

but it exists in the offspring, so, node 3 is selected randomly

and added to the incomplete offspring that becomes: (1, 2,

6, 9, 3).

Next, the nodes 4, 2, 5 and 1 are neighbours of node 3 with

costs 16, 5, 12 and 15 respectively. The node 2 is the

cheapest, but it exists in the offspring, so, node 4 is selected

randomly and added to the incomplete offspring that

becomes: (1, 2, 6, 9, 3, 4).

Continuing in this way, we have the complete offspring: (1,

2, 6, 9, 3, 4, 5, 7, 8) with cost 67.

3.2.2. Sequential Constructive Crossover Operator

The sequential constructive crossover (SCX) operator is

proposed in [12] and then modified in [13] that builds an

offspring using better arcs based on their cost present in the

parents' structure. Moreover, it uses the better arcs that are

not present in both parents' structure. It sequentially

searches both parent chromosomes and considers the first

legitimate node (i.e. unvisited node) that appeared after the

present node and in case, if no legitimate node is found in

either of the parent chromosomes, it sequentially searches

from the starting of the chromosome and then compares

their associated cost to decide the next node of the child

chromosome. The algorithm for the SCX [13] is given

below:

Step 1: - Start from 'node 1’ (i.e., current node p =1).

Step 2: - Sequentially search both parent chromosomes

and consider the first ‘legitimate node' (the node

that is not yet visited) appeared after 'node p’ in

each parent. If no 'legitimate node' after 'node p’ is

present in any of the parents, search sequentially

from the starting of the parent and consider the first

'legitimate node', and go to Step 3.

Step 3: Suppose the 'node α' and the 'node β' are found

in 1st and 2nd parent respectively, then for

selecting the next node go to Step 4.

Step 4: If cpα < cpβ, then select 'node α', otherwise,

'node β' as the next node and concatenate it to the

partially constructed offspring chromosome. If the

offspring is a complete chromosome, then stop,

otherwise, rename the present node as 'node p' and

go to Step 2.

Let us illustrate the SCX through the same example given

above. Select 'node 1' as the 1st gene. The legitimate nodes

after node 1 in P1 and P2 are 2 and 3 respectively with

c12=7 and c13=15. Since c12<c13, we accept node 2, and

the partially constructed chromosome becomes (1, 2).

The legitimate nodes after node in P1 and P2 are 3 and 6

respectively with c23=8 and c26=3. Since c26<c23, we

accept node 6, and the partially constructed chromosome

becomes (1, 2, 6).

The legitimate node after node 6 in P1 is 9 with c69=5, but

none in P2. So, for P2, we sequentially search from the

beginning of the chromosome and find the first legitimate

node 3 with c63=8. Since c69<c63, we accept node 9, and

the partially constructed chromosome becomes (1, 2, 6, 9).

The legitimate nodes after node 9 in P1 and P2 are 5 and 4

respectively with c95=10 and c94=9. Since c94<c95, we

accept node 4, and the partially constructed chromosome

becomes (1, 2, 6, 9, 4).

The legitimate node after node 4 in P1 is 5 with c45=9, but

none in P2. So, for P2, we sequentially search from the

beginning of the chromosome and find the first legitimate

node 3 with c43=11. Since c45<c43, we accept node 5, and

the partially constructed chromosome becomes (1, 2, 6, 9,

4, 5).

Continuing this way, we obtain the complete offspring

chromosome as: (1, 2, 6, 9, 4, 5, 7, 8, 3) with cost 72.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020 102

3.2.3. Bidirectional Circular Sequential Constructive

Crossover Operator

The bidirectional circular sequential constructive crossover

(BCSCX) operator is proposed in [14] by modifying SCX

that searches for next neighbors in both left and right

directions in both parents. So, four neighbor genes are

considered. Also, during searching for the next neighbor

gene, if it reaches to the end or to the start of any parent, it

will wrap around.

We illustrate the operator through the same example

mentioned above. Select 'node 1' as the 1st gene and search

for the next node. The legitimate nodes after node 1 in both

directions in P1 are 2 and 8 (after wrapping around) with

costs 7 and 9 respectively, and in P2 are 3 and 6 (after

wrapping around) with costs 15 and 6 respectively. We

accept node 6 as it is the cheapest among four nodes, and so,

the partially constructed chromosome becomes (1, 6).

The legitimate nodes after node 6 in both directions in P1

are 9 and 4 with costs 5 and 11 respectively, and in P2 are

3 (after wrapping around) and 2 with costs 8 and 13

respectively. We accept node 9 as it is the cheapest, and so,

the partially constructed chromosome becomes (1, 6, 9).

The legitimate nodes after node 9 in both directions in P1

are 5 and 4 with costs 10 and 9 respectively, and in P2 are

4 and 8 with costs 9 and 10 respectively. We accept node 4

as it is the cheapest, and so, the partially constructed

chromosome becomes (1, 6, 9, 4).

The legitimate nodes after node 4 in both directions in P1

are 5 and 3 with costs 9 and 11 respectively, and in P2 are

2 and 8 with costs 5 and 4 respectively. We accept node 8

as it is the cheapest, and so, the partially constructed

chromosome becomes (1, 6, 9, 4, 8).

Continuing this way, we obtain the complete offspring

chromosome as: (1, 6, 9, 4, 8, 2, 7, 3, 5) with cost 56.

3.3. Proposed Crossover Operator: Greedy Sequential

Constructive Crossover

We are going to modify SCX operator and name it greedy

SCX that works like as SCX. In the step 2 of SCX, if no

legitimate node is found in any parent, then search

continued sequentially from the starting of the parent and

consider the first legitimate node. Though as reported, the

method is better, however, there is room for modifying this

rule. In this present study, we introduce greedy method in

this step. So, we define the algorithm for GSCX as follows.

Step 1: - Start from 'node 1’ (i.e., current node p =1).

Step 2: - Sequentially search both parent chromosomes

and consider the first ‘legitimate node' (the node

that is not yet visited) appeared after 'node p’ in

each parent. If ‘legitimate node’ after 'node p’ is

found in both parents, then go to Step 3, otherwise,

consider the cheapest ‘legitimate node’ from the

group of remaining legitimate nodes and

concatenate it to the partially constructed offspring

chromosome. If the offspring is a complete

chromosome, then stop, otherwise, rename this

present node as 'node p' and repeat this Step 2.

Step 3: Suppose the 'node α' and the 'node β' are found

in 1st and 2nd parent respectively, then for

selecting the next node go to Step 4.

Step 4: If cpα < cpβ, then select 'node α', otherwise,

'node β' as the next node and concatenate it to the

partially constructed offspring chromosome. If the

offspring is a complete chromosome, then stop,

otherwise, rename the present node as 'node p' and

go to Step 2.

We illustrate the GSCX operator through the same example

given above. Select 'node 1' as the 1st gene. The legitimate

nodes after node 1 in P1 and P2 are 2 and 3 respectively

with c12=7 and c13=15. Since c12<c13, we accept node 2,

and so, the partially constructed chromosome becomes (1,

2).

The legitimate nodes after node 2 in P1 and P2 are 3 and 6

respectively with c23=8 and c26=3. Since c26<c23, we

accept node 6, and so, the partially constructed chromosome

becomes (1, 2, 6).

The legitimate node after node 6 in P1 is 9, but none in P2.

So, we search and find the cheapest legitimate node as 8,

and we accept node 8, and so, the partially constructed

chromosome becomes (1, 2, 6, 8).

There is no legitimate node after node 8 in P1, so, we search

and find the cheapest legitimate node as 5, and we accept

node 5. So, the partially constructed chromosome becomes

(1, 2, 6, 8, 5).

The legitimate nodes after node 5 in both P1 and P2 are

same node 7. So, we accept node 7, and the partially

constructed chromosome becomes (1, 2, 6, 8, 5, 7).

There is no legitimate node after node 7 in P1, so, we search

and find the cheapest legitimate node as 3, and we accept

node 3. So, the partially constructed chromosome becomes

(1, 2, 6, 8, 5, 7, 3).

Continuing this way, we obtain the complete offspring

chromosome as: (1, 2, 6, 8, 5, 7, 3, 9, 4) with cost 42.

Through the above manual experiment, we found that our

proposed crossover operator GSCX is the best among the

four crossover operators considered above.

3.4. Mutation Operator

In GAs, the mutation operator is applied after crossover

operator. It usually selects randomly a gene (position) in the

chromosome and changes the corresponding allele (value of

the gene), and thus modifies the information. Since the less

fit members of successive generations are discarded in

previous operators and thereby some good characteristics of

genetic materials might be lost forever, hence the mutation

operator is required to recover them. By doing infrequent

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

103

random changes in chromosomes, GAs confirm that new

portions of the search area are visited, which reproduction

and crossover couldn’t ensure fully. So, mutation

guarantees that no significant elements are early lost, thus it

maintains variety in mating pool. Generally, one can expect

that mutation can help the crossover operators to come out

from local optima and find better quality solution. The

traditional mutation operator does not work for the TSP. For

our GAs, we have used the reciprocal exchange mutation

that randomly selects two nodes and exchanges them.

3.5. Genetic Parameters

The GA search procedure is governed mainly by four

parameters. The first one is population size that determines

number of chromosomes in a population during the search.

If the number is very less, the search has no possibility to

effectively cover the whole search space. On the other hand,

if it is large, the search process wastes computational time.

The second one is crossover probability that specifies the

probability of doing crossover on parent chromosomes. The

third one is mutation probability that sets the probability of

performing bit-wise mutation. The last one is the stopping

condition that states the condition for stopping the search

process.

3.6. Variants of Our Genetic Algorithm

We propose to execute, and test different variants of a

simple GA as shown below. All variants follow the same

GA structure except selection of a crossover operator from

the following four crossover operators: GX, SCX, BCSCX

and GSCX.

VariantGA ()

{ Initialize random population of size Ps;

 Evaluate the population;

 Generation = 0;

 While stopping condition is not satisfied

 { Generation = Generation + 1;

 Select good chromosomes by selection

operator;

 Select a crossover operator and do

crossover with crossover probability Pc;

 Do bit-wise mutation with mutation

probability Pm;

 Evaluate the population;

 }

}

Within one selection, a single crossover operator is

implemented. Through this we are going to measure

efficiency of the crossover operators, and to find their

relative ranking. Each variant GA is non-hybrid, simple,

which uses basic GA processes and operators, but does not

incorporate any other heuristic algorithm.

4. Computational Experiments

Variant GAs using different crossovers have been encoded

in Visual C++. In order to compare the efficiency of the

different crossover operators, variant GAs are applied on

twenty eight benchmark TSPLIB instances [25] and run on

a Laptop with i3-3217U CPU@1.80 GHz and 4 GB RAM

under MS Windows 7. Among the twenty eight problem

instances, the instances ftv33, ftv35, ftv38, p43, ftv44, ftv47,

ry48p, ft53, ftv55, ftv64, ft70, ftv70, kro124p, ftv170,

rbg323, rbg358, rbg403 and rbg443 are asymmetric, and

gr21, fri26, bayg29, dantzig42, eil51, berlin52, pr76, lin105,

d198 and a280 are symmetric TSPs. For all variant GAs,

the parameters are set as follows: population size is 50,

crossover probability is 1.0 (i.e., 100%), mutation

probability is 0.20 (i.e., 20%), and maximum of 1,000

generations as the stopping condition. For each instance, the

experiments have been repeated 50 times. Figures 1 present

results for the instance ftv64 (considering only 50

generations) by all GA variants. Each graph corresponds to

a crossover operator, and it shows how the current solution

improves depending on the number of generations. In the

figure, the labels on the left margin denote the solution cost,

while the labels on the right margin denote the percentage

of excess to the best known solution (Excess (%)). Figure 1

shows that SCX has some variations, but it is not the best.

Though BCSCX and GSCX have less variations and are

competing each other, still GSCX provides us best results.

But GSCX has limited variation range and gets stuck in

local minimums very quickly.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020 104

Fig. 1 Performance of four crossover operators for the instance ftv64

The results of experiments by the four GA variants are

summarized in Tables 2(a & b) and 4. We have organized

the tables as follows: a row corresponds to the summarized

results for a problem instance using variant GAs, first

column reports a problem instance and its best known

solution (within brackets), second column reports the size

of the instance, third column reports title of the summarized

results and remaining each column is for a GA variant

considered by a certain selection of crossover operator. The

result is described by its best cost, average cost, average

percentage of excess to the best known solution, standard

deviation (S.D.) of costs, and average convergence time (in

second). The best result for a chosen instance over all

variants is marked by bold face. The percentage of excess

above the best known solution, reported in TSPLIB website,

is given by the following formula.

𝐸𝑥𝑐𝑒𝑠𝑠 (%) =
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 −𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 𝑥 100.

The Tables 2(a & b) report results by the GA variants for

the asymmetric TSPLIB instances.

Table 2 (a): Summary of the results by the variant GAs for asymmetric

TSPLIB instances

Insta

nce
n Results GX SCX

BCS

CX

GSC

X

ftv33

(128

6)

3

4

Best Sol 1510 1371 1405 1380

Avg.

Sol

1679.

9

1474.

48

1478.

94
1458.

48

Avg.

Exc (%)
30.63 14.66 15.00 13.41

S.D. 52.31 49.02 42.04 47.24

Avg.

Time
0.07 0.04 0.00 0.05

ftv35

(147

3)

3

6

Best Sol 1667 1535 1586 1531

Avg.

Sol

1850.

08

1636.

56

1657.

08

1631.

32

Avg.

Exc (%)
25.60 11.10 12.50 10.75

S.D. 53.92 59.86 31.98 47.09

Avg.

Time
0.11 0.13 0.07 0.05

ftv38

(153

0)

3

9

Best Sol 1746 1630 1619 1613

Avg.

Sol

1911.

48

1705.

68

1712.

56
1690.

50

Avg.

Exc (%)
24.93 11.48 11.93 10.49

S.D. 43.37 30.78 20.85 39.65

Avg.

Time
0.13 0.10 0.07 0.05

p43

(562

0)

4

3

Best Sol 5788 5632 5654 5631

Avg.

Sol

5851.

62

5642.

86

5680.

70

5641.

20

Avg.

Exc (%)
4.12 0.41 1.08 0.38

S.D. 23.28 7.26 11.69 6.97

Avg.

Time
0.34 0.15 0.15 0.17

ftv44 Best Sol 1899 1748 1758 1706

0

50

100

150

200

250

300

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

E
x

ce
ss

 (
%

)

S
o

lu
ti

o
n

 c
o

st

Generation

GX SCX BCSCX GSCX

GX SCX BCSCX GSCX

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

105

(161

3)

4

5

Avg.

Sol

2093.

12

1867.

96

1869.

12

1853.

28
Avg.

Exc (%)
29.77 15.81 15.88 14.90

S.D. 64.72 58.88 51.53 60.57

Avg.

Time
0.18 0.22 0.06 0.12

ftv47

(177

6)

4

8

Best Sol 2350 1880 2002 1864

Avg.

Sol

2607.

24

2048.

06

2140.

06
2021.

72

Avg.

Exc (%)
46.80 15.32 20.50 13.84

S.D.
103.4

1
90.37 69.21 70.92

Avg.

Time
0.3 0.34 0.26 0.26

ry48

p

(144

22)

4

8

Best Sol
2079

2

1542

5

1576

4

1546

9

Avg.

Sol

2415

2.6

1621

1.96

1626

6.92

1615

0.78

Avg.

Exc (%)
67.47 12.41 12.79 11.99

S.D.
1790.

95

331.8

0

224.7

2

278.6

5

Avg.

Time
0.23 0.32 0.09 0.17

ft53

(690

5)

5

3

Best Sol
1010

9
7678 7848 7882

Avg.

Sol

1114

4.14

8494.

82

8524.

50

8614.

86

Avg.

Exc (%)
61.39 23.02 23.45 24.76

S.D.
455.6

0

246.9

3

183.9

1

277.1

3

Avg.

Time
0.25 0.26 0.31 0.35

ftv55

(160

8)

5

6

Best Sol 2106 1717 1777 1723

Avg.

Sol

2305.

6

1871.

44

1865.

32

1841.

82

Avg.

Exc (%)
43.38 16.38 16.00 14.54

S.D. 80.58 85.30 65.52 50.89

Avg.

Time
0.32 0.47 0.44 0.36

ftv64

(183

9)

6

5

Best Sol 2545 2022 2105 1990

Avg.

Sol

2836.

6

2224.

24

2216.

32

2140.

28
Avg.

Exc (%)
54.25 20.95 20.52 16.38

S.D.
141.6

7

104.3

1
55.18 76.32

Avg.

Time
0.54 0.64 0.33 0.29

ft70
7

0
Best Sol

4362

9

4078

2

4063

8

4112

9

(386

73)

Avg.

Sol

4528

8.32

4240

6.22

4176

1.26

4218

5.60

Avg.

Exc (%)
17.11 9.65 7.99 9.08

S.D.
1002.

38

579.6

9

384.3

1

571.4

6

Avg.

Time
0.86 0.79 1.38 0.64

Table 2(b): Summary of the results by the variant GAs for asymmetric

TSPLIB instances

Insta

nce
n Results GX SCX

BCS

CX

GSC

X

ftv70

(195

0)

7

1

Best Sol 2467 2155 2176 2118

Avg.

Sol

2734.

46

2392.

74

2309.

22
2296.

32

Avg.

Exc (%)
40.23 22.70 18.42 17.76

S.D.
107.3

3

109.0

2
55.30 69.83

Avg.

Time
0.78 0.79 0.67 0.48

kro1

24p

(362

30)

1

0

0

Best Sol
8182

4

4133

1

4166

8

4125

1

Avg.

Sol

8925

3.80

4367

4.54
4254

4.46

4282

9.16

Avg.

Exc (%)

146.3

5
20.55 17.43 18.21

S.D.
2557.

47

638.4

3

566.0

1
780.6

Avg.

Time
0.57 1.25 0.13 0.42

ftv17

0

(275

5)

1

7

1

Best Sol 4667 3285 3257 3656

Avg.

Sol

4817.

32
3523.

74

3608.

40

3799.

50

Avg.

Exc (%)
74.86 27.90 30.98 37.91

S.D. 71.52
113.5

5
92.49

130.1

5

Avg.

Time
4.17 3.77 3.23 1.74

rbg3

23

(132

6)

3

2

3

Best Sol 2102 1658 1660 1597

Avg.

Sol

2192.

08

1718.

76

1725.

52

1677.

12

Avg.

Exc (%)
65.32 29.62 30.13 26.48

S.D. 31.70 22.19 20.63 34.19

Avg.

Time
15.51 12.37 24.79 15.76

rbg3

58

(116

3)

3

5

8

Best Sol 2054 1524 1582 1522

Avg.

Sol

2203.

12

1699.

20

1711.

30
1591.

04

Avg.

Exc (%)
89.43 46.10 47.15 36.80

S.D. 52.02 29.22 23.23 36.93

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020 106

Avg.

Time
17.28 16.71 30.14 18.16

rbg4

03

(246

5)

4

0

3

Best Sol 3760 3314 3229 3149

Avg.

Sol

3828.

34

3401.

18

3479.

62

3214.

22

Avg.

Exc (%)
55.31 37.98 41.16 30.39

S.D. 39.16 26.48 24.06 42.23

Avg.

Time
21.43 19.98 33.89 28.96

rbg4

43

(272

0)

4

4

3

Best Sol 3705 3705 3710 3545

Avg.

Sol

3742.

88

3882.

52

3872.

66
3644.

00

Avg.

Exc (%)
37.61 42.74 42.38 33.97

S.D. 22.11 26.78 25.53 54.96

Avg.

Time
37.87 26.82 42.64 35.31

The crossover GX could not obtain lowest average cost for

any asymmetric instance. The crossover SCX obtains

lowest average costs with lowest S.D. for the instances ft53

and ftv170, whereas BCSCX obtains lowest average costs

with lowest S.D. for ft70 and kro124p respectively. The

proposed crossover GSCX obtains lowest average costs

with lower S.D. for remaining fourteen instances, namely,

ftv33, ftv35, ftv38, p43, ftv44, ftv47, ry48p, ftv55, ftv64,

ftv70, rbg323, rbg358, rbg403 and rbg443. So, the proposed

crossover GSCX is found to be the best. The results are

depicted in Figure 2, which also shows the effectiveness of

our proposed crossover operator GSCX. The crossovers

SCX and BCSCX are competing, and GX is the worst.

In order to decide if GSCX-based GA average is

significantly different from the averages obtained by other

GA variants, we performed Student’s t-test. It is to be noted

that we performed 50 runs for every problem instance

considered here. We used the following t-test for the case of

two big independent samples [26]:

𝑡 =
𝑋̅1 − 𝑋̅2

√
𝑆𝐷1

2

𝑛1 − 1
+

𝑆𝐷2
2

𝑛2 − 1

𝑤ℎ𝑒𝑟𝑒,

𝑋̅1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒,
𝑆𝐷1 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒,
𝑋̅2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒,
𝑆𝐷2

− 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒,
𝑛1 − 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒,
𝑛2 − 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒,
The 𝑋̅2 and 𝑆𝐷2 values are obtained by the GSCX-based

GA, while 𝑋̅1 and 𝑆𝐷1 values are obtained by other GA

variants.

Fig. 2 Average Excess(%) by GA variants on asymmetric TSPLIB instances

Table 3 reports the calculated values of the t-statistic. The t

values can be positive or negative. The positive value shows

that the GSCX finds better solution than the competitive GA

variant. The negative value shows that the competitive GA

0

20

40

60

80

100

120

140

160

A
v

er
a

g
e

E
x

ce
ss

(%
)

Instances

GX SCX BCSCX GSCX

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

107

finds better solution. The confidence interval at 95%

confidence level (t0.05 = 1.96) is used. When t-value is

greater than 1.96, there is a significant difference between

the two values, so, GSCX finds better solution if t-value is

positive, and if t-value is negative then the competitive GA

finds better solution. When t-value is less than 1.96, then

there is no significant difference between the observed

values. The information about the GA variants that obtained

significantly better solutions is also reported in the table.

For three instances there is no statistically significant

difference between GSCX and BCSCX. On twelve

instances GSCX is found better than BCSCX. There is no

statistically significant difference between GSCX and SCX

for seven instances. GSCX is found better than SCX on nine

instances. Next, GSCX found better than GX on all eighteen

instances. Hence, GSCX is found to be the best one.

Table 3: The calculated t-values by variant GAs against GSCX on

asymmetric TSPLIB instances and the information about significantly

better variant GAs

Inst

anc

e

GX
SC

X

BC

SC

X

Inst

anc

e

GX
SC

X

BC

SC

X

ftv3

3

21.

990

0

1.6

452

2.2

648

ftv6

4

30.2

899

4.54

72

5.6

518

Bett

er

GS

CX

-

GS

CX

Bett

er

GS

CX

GS

CX

GS

CX

ftv3

5

21.

390

8

0.4

816

3.1

678
 ft70

18.8

234

1.89

72

-

4.3

132

Bett

er

GS

CX

-

GS

CX

Bett

er

GS

CX

BC

SC

X

ftv3

8

26.

323

7

2.1

169

3.4

470

Ftv7

0

23.9

520

5.21

32

1.0

138

Bett

er

GS

CX

GS

CX

GS

CX

Bett

er

GS

CX

GS

CX

p43

60.

612

3

1.1

546

20.

315

7

kro1

24p

121.

532

9

5.86

82

-

2.0

669

Bett

er

GS

CX

-

GS

CX

Bett

er

GS

CX

GS

CX

BC

SC

X

ftv4

4

18.

940

0

1.2

165

1.3

943

ftv1

70

47.9

760

-

11.1

759

-

8.3

781

Bett

er

GS

CX

-

Bett

er

GS

CX

SC

X

BC

SC

X

ftv4

7

32.

686

5

1.6

050

8.3

595

rbg3

23

77.3

138

7.15

12

8.4

845

Bett

er

GS

CX

-

GS

CX

Bett

er

GS

CX

GS

CX

GS

CX

ry4

8p

30.

903

6

0.9

884

2.2

711

rbg3

58

67.1

605

16.0

775

19.

295

1

Bett

er

GS

CX

-

GS

CX

Bett

er

GS

CX

GS

CX

GS

CX

ft53

33.

201

0

-

2.2

638

-

1.9

017

rbg4

03

74.6

426

26.2

556

38.

223

9

Bett

er

GS

CX
SC

X

Bett

er

GS

CX

GS

CX

GS

CX

ftv5

5

34.

064

1

2.0

874

1.9

828

rbg4

43

11.6

839

27.3

097

26.

412

8

Bett

er

GS

CX

GS

CX

GS

CX

Bett

er

GS

CX

GS

CX

GS

CX

The Table 4 reports results by the GA variants for the

symmetric TSPLIB instances. The crossover GX obtains

lowest average cost with lowest S.D. for only one instance,

dantzig42. The crossover SCX could not obtain lowest

average cost for any symmetric instance, however, it

obtains best solution at least once in 50 runs for the

instances gr21 and fri26. The BCSCX obtains lowest

average costs with lowest S.D. for four instances, fri26,

eil51, lin105 and a280. The proposed crossover GSCX

obtains lowest average costs with lower S.D. for remaining

five instances, namely, gr21, bayg29, berlin52, pr76 and

d198. So, the proposed crossover GSCX is found to be the

best. The results are depicted in Figure 3, which also shows

the effectiveness of our proposed crossover operator GSCX.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020 108

Fig. 3 Average Excess(%) by GA variants on symmetric TSPLIB instances

Table 4: Summary of the results by the variant GAs for symmetric

TSPLIB instances

Insta

nce
n Results GX SCX

BCS

CX

GSC

X

gr21
2

1

Best

Sol
3614 2707 2707 2707

(2707

)

Avg.

Sol

3988

.84

2885.

36

2900.

82

2845.

28

Avg.

Exc(%)

47.3

5
6.59 7.16 5.11

 S.D.
169.

99

104.1

6
86.26 86.33

Avg.

Time
0.05 0.03 0.05 0.01

fri26
2

6

Best

Sol
955 937 937 937

(937)
Avg.

Sol

1012

.08

979.0

4

953.4

4

972.6

2

Avg.

Exc(%)
8.01 4.49 1.75 3.80

 S.D. 5.51 24.54 9.37 17.72

Avg.

Time
0.12 0.04 0.02 0.02

bayg

29

2

9

Best

Sol
2310 1634 1656 1634

(1610

)

Avg.

Sol

2531

.36

1754.

78

1747.

58

1727.

94

Avg.

Exc(%)

57.2

3
8.99 8.55 7.33

 S.D.
93.2

8
73.42 52.01 61.98

Avg.

Time
0.11 0.06 0.02 0.02

dantz

ig42

4

2

Best

Sol
699 723 725 723

(699)
Avg.

Sol

704.

18

808.7

2

810.0

8

781.8

0

Avg.

Exc(%)
0.74 15.70 15.89 11.85

 S.D. 3.64 30.50 28.83 26.27

Avg.

Time
0.04 0.06 0.01 0.08

eil51
5

1

Best

Sol
725 441 444 436

(426)
Avg.

Sol

779.

66

475.0

2

460.6

6

463.9

4

Avg.

Exc(%)

83.0

2
11.51 8.14 8.91

 S.D.
18.5

5
16.51 6.76 12.01

Avg.

Time
0.44 0.33 0.79 0.38

berlin

52

5

2

Best

Sol

1267

7
7908 7919 7926

(7542

)

Avg.

Sol

1359

8.98

8517.

42

8300.

94

8156.

70

Avg.

Exc(%)

80.3

1
12.93 10.06 8.15

 S.D.
542.

4

331.3

5

205.6

6

189.5

0

Avg.

Time
0.34 0.40 0.11 0.22

pr76
7

6

Best

Sol

1496

35

12295

5

11859

6

11684

4

(1081

59)

Avg.

Sol

1537

01.9

13617

8.38

12539

2.00

12529

3.76

0

20

40

60

80

100

120

A
v

er
a

g
e

E
x

ce
ss

(%
)

Instances

GX SCX BCSCX GSCX

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

109

Avg.

Exc(%)

42.1

1
25.91 15.93 15.84

 S.D.
2130

.97

6419.

40

3220.

70

4273.

80

Avg.

Time
0.18 0.74 0.20 0.48

lin10

5

1

0

5

Best

Sol

2692

9
17254 15637 15921

(1437

9)

Avg.

Sol

2844

5.84

17558

.94

16441

.34

17018

.08

Avg.

Exc(%)

97.8

3
22.12 14.34 18.35

 S.D.
395.

12

1075.

52

374.6

9

557.2

5

Avg.

Time
2.04 1.46 0.11 1.10

d198

1

9

8

Best

Sol

2121

2
19633 17441 17244

(1578

0)

Avg.

Sol

2187

2.64

21184

.38

17682

.28
17388

.94

Avg.

Exc(%)

38.6

1
34.25 12.06 10.20

 S.D.
334.

17

806.5

8

131.5

2

490.0

7

Avg.

Time
7.3 1.72 5.46 2.82

a280

2

8

0

Best

Sol
4905 3134 2820 2980

2579
Avg.

Sol

4059

.62

3368.

60

2979.

00

3001.

00

Avg.

Exc(%)

57.4

1
30.62 15.51 16.36

 S.D.
72.4

6

153.4

6
57.45 99.19

Avg.

Time
4.07 0.75 9.33 3.34

For the symmetric instances also, to decide if GSCX based

GA average is significantly different than the averages

obtained by other GA variants, we perform Student’s t-test

and the calculated t-values are reported in the Table 5.

Table 5: The calculated t-values by variant GAs against GSCX on

symmetric TSPLIB instances and the information about significantly

better variant GAs

Inst

anc

e

GX

S

C

X

BC

SC

X

Ins

tan

ce

GX
SC

X

BC

SC

X

gr2

1

41.

986

3

2.0

73

8

3.1

857

berl

in5

2

66.

305

7

6.6

15

1

3.6

105

Bett

er

GS

CX

G

SC

X

GS

CX

Bet

ter

GS

CX

GS

CX

GS

CX

fri2

6

14.

885

0

1.4

84

7

-

6.6

980

pr7

6

41.

640

2

9.8

79

8

0.1

285

Bett

er

GS

CX

--

BC

SC

X

Bet

ter

GS

CX

GS

CX

-

bay

g29

50.

216

4

1.9

55

4

1.6

992

lin1

05

117

.10

21

3.1

25

6

-

6.0

121

Bett

er

GS

CX

--

-

Bet

ter

GS

CX

GS

CX

BC

SC

X

dant

zig4

2

-

20.

487

2

4.6

81

3

5.0

754

d19

8

52.

913

1

28.

15

04

4.0

468

Bett

er
GX

G

SC

X

GS

CX

Bet

ter

GS

CX

GS

CX

GS

CX

eil5

1

100

.00

87

3.7

98

9

-

1.6

660

a28

0

60.

326

3

14.

08

23

-

1.3

435

Bett

er

GS

CX

G

SC

X

-

Bet

ter

GS

CX

GS

CX

-

There is no statistically significant difference between

GSCX and BCSCX for four instances. On four instances,

gr21, dantzig42, berlin52 and d198, GSCX is better than

BCSCX, whereas BCSCX is better than GSCX on two

instances, fri26 and lin105. For two instances there is no

statistically significant difference between GSCX and SCX,

and GSCX is better than SCX for remaining eight instances.

On only one instance, dantzig42, GX is better than GSCX,

and on remaining nine instances GSCX is better than GX.

Based on the above study it very clear that the proposed

crossover operator GSCX is the best. To decide better

operator between BCSCX and SCX, we made statistical t-

test between them on all twenty eight instances (not

reported in any table) and found that there is no significant

difference between them for twelve instances. Out of

remaining sixteen instances, BCSCX is found better on ten

instances, whereas SCX is better on six instances. Hence

BCSCX is better than SCX, and GX is the worst.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020 110

Table 6: Comparative study between HX and our proposed GSCX
Results Instance HX GSCX Instance HX GSCX Instance HX GSCX

Best Sol

gr21

2707 2707

berlin52

10464 7926

a280

12255 2980

Avg. Sol 2807.92 2845.28 13006.74 8156.70 13011.00 3001.00

Avg. Exc(%) 3.73 5.11 72.46 8.15 404.50 16.36

Best Sol

fri26

937 937

ft53

11102 7882

rbg323

5275 1597

Avg. Sol 972.26 972.62 12530.46 8614.86 5372.22 1677.12

Avg. Exc(%) 3.76 3.80 81.47 24.76 305.14 26.48

Best Sol

ftv33

1447 1380

kro124p

113960 41251

rbg358

5880 1522

Avg. Sol 1618.12 1458.48 120524.24 42829.16 5999.44 1591.04

Avg. Exc(%) 25.83 13.41 232.66 18.21 415.86 36.80

Best Sol

ftv38

1740 1613

lin105

43612 15921

rbg403

6659 3149

Avg. Sol 2000.46 1690.50 48589.64 17018.08 6743.24 3214.22

Avg. Exc(%) 30.75 10.49 237.92 18.35 173.56 30.39

Best Sol 699 723 13215 3656 7218 3545

Avg. Sol dantzig42 821.98 781.80 ftv170 13878.00 3799.50 rbg443 7318.74 3644.00

Avg. Exc(%) 17.59 11.85 403.74 37.91 169.07 33.97

Recently, a comparative study among eleven crossover

operators for the TSP has been carried out and found that

heuristic crossover (HX) [27] is the best [28]. In HX, a

greedy heuristic is applied to create an offspring from two

parent chromosomes. So, GA using HX is implemented and

run on only fifteen selected instances under same GA

settings for comparing with our proposed GSCX. The Table

6 reports a comparative study between HX and GSCX. In

terms of best solution cost, except for the instance dantzig42,

GSCX is found better than HX, and in terms of worst and

average solution costs, except for the instances gr21 and

fri26, GSCX is found better than HX. From this study it is

very clear that our proposed crossover GSCX is far better

than HX.

5. Conclusion & Discussions

For solving the benchmark TSP using GAs, several

crossover operators have been developed by different

researchers. We have also proposed a new crossover

operator, GSCX, for solving the TSP. This proposed

crossover operator is a modification of the SCX for

improving the quality of offspring. We considered three

existing crossover operators, namely, GX, SCX and

BCSCX to compare with our proposed crossover GSCX.

We first applied these operators in manual experiment on

two parent chromosomes to produce an offspring, for each

crossover operator, and found that our crossover GSCX is

the best among the four crossover operators. We then

developed four variant GAs using four different crossover

operators and carried out comparative study of the GAs on

eighteen asymmetric and ten symmetric TSPLIB instances.

In terms of solution quality, our comparative study showed

that our proposed crossover operator GSCX is the best,

BCSCX is the second-best, SCX is the third best and GX is

the worst. This observation is verified by Student’s t-test at

95% confidence level. Further we carried out a comparative

study between HX and GSCX, found that GSCX is far

better than HX. Thus, GSCX might be used for other related

combinatorial optimization problems.

In this present study, the objective was to compare the

quality of the solutions obtained by the existing three and

proposed one crossover operators. We did not look to

improve the solution quality by the operators. So, we

considered the original version of the operators. Also, we

did not use any local search technique to design the most

competitive algorithm for the TSP. So, we have used simple

and pure GA process. Also, we set highest crossover

probability to show the exact characteristics of crossover

operators. Mutation was used with lowest probability just

not to get stuck in local minima quickly. However, good

local search procedure can be incorporated to hybridize the

algorithm to solve problem instances more accurately,

which is under our investigation.

Conflicts of Interest

The author declares that there is no conflict of interest

regarding the publication of this paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020

111

Acknowledgment

The author thanks the honourable anonymous reviewers for

their constructive comments and suggestions which helped

the author to improve this paper.

References
[1] S. Arora, Polynomial time approximation schemes for

Euclidean traveling salesman and other geometric problems,

Journal of ACM 45 (5) (1998) 753–782.

[2] C.P. Ravikumar, Solving large-scale travelling salesperson

problems on parallel machines, Microprocessors and

Microsystems 16(3) (1992) 149-158.

[3] D.E. Goldberg, Genetic algorithms in search, optimization,

and machine learning, Addison-Wesley, New York, 1989.

[4] Z.H. Ahmed, Algorithms for the quadratic assignment

problem, LAP LAMBERT Academic Publishing, Mauritius,

2019, 104 pages.

[5] D.E. Goldberg, R. Lingle, alleles, loci and the travelling

salesman problem, In J.J. Grefenstette (ed.) Proceedings of

the 1st International Conference on Genetic Algorithms and

Their Applications. Lawrence Erlbaum Associates, Hilladale,

NJ, 1985.

[6] L. Davis, Job-shop scheduling with genetic algorithms,

Proceedings of an International Conference on Genetic

Algorithms and Their Applications, pp. 136-140, 1985.

[7] G. Syswerda, Schedule optimization using genetic algorithms,

In Davis, L. (ed.) Handbook of Genetic Algorithms, New

York: Van Nostrand Reinhold, 332–349, 1991.

[8] J. Grefenstette, R. Gopal, B. Rosmaita, D. Gucht, Genetic

algorithms for the traveling salesman problem, In

Proceedings of the First International Conference on Genetic

Algorithms and Their Applications, (J. J. Grefenstette, Ed.),

Lawrence Erlbaum Associates, Mahwah NJ, 160–168, 1985.

[9] I.M. Oliver, D. J. Smith, J.R.C. Holland, A Study of

permutation crossover operators on the travelling salesman

problem, In J.J. Grefenstette (ed.). Genetic Algorithms and

Their Applications: Proceedings of the 2nd International

Conference on Genetic Algorithms. Lawrence Erlbaum

Associates, Hilladale, NJ, 1987.

[10] D. Whitley, T. Starkweather, D. Shaner, The traveling

salesman and sequence scheduling: quality solutions using

genetic edge recombination, In L. Davis (Ed.) Handbook of

Genetic Algorithms. Van Nostrand Reinhold, New York,

350-372, 1991.

[11] N.J. Radcliffe, P.D. Surry, Formae and variance of fitness, In

D. Whitley and M. Vose (Eds.) Foundations of Genetic

Algorithms 3, Morgan Kaufmann, San Mateo, CA, 51-72,

1995.

[12] Z.H. Ahmed, Genetic algorithm for the traveling salesman

problem using sequential constructive crossover operator,

International Journal of Biometrics & Bioinformatics 3

(2010) 96-105.

[13] Z.H. Ahmed, Improved genetic algorithms for the traveling

salesman problem, International Journal of Process

Management and Benchmarking 4(1) (2014) 109-124.

[14] S. Kang, S.-S. Kim, J.-H. Won, Y.-M. Kang, Bidirectional

constructive crossover for evolutionary approach to

travelling salesman problem, 2015 5th IEEE International

Conference on IT Convergence and Security (ICITCS)

(2015) 1-4.

[15] K. Deb, Optimization for engineering design: algorithms and

examples, Prentice Hall of India Pvt. Ltd., New Delhi, India,

1995.

[16] I. H. Khan, Assessing different crossover operators for

travelling salesman problem, International Journal of

Intelligent Systems and Applications (IJISA) 7(11) (2015)

19-25.

[17] Z.H. Ahmed, A hybrid genetic algorithm for the bottleneck

traveling salesman problem, ACM Transactions on

Embedded Computing Systems 12 (2013) Art. No. 9.

[18] Z.H. Ahmed, An experimental study of a hybrid genetic

algorithm for the maximum travelling salesman problem,

Mathematical Sciences 7 (2013) 1-7.

[19] Z.H. Ahmed, The ordered clustered travelling salesman

problem: A hybrid genetic algorithm, The Scientific World

Journal, Art ID 258207 (2014) 13 pages.

[20] Z.H. Ahmed, A simple genetic algorithm using sequential

constructive crossover for the quadratic assignment problem,

Journal of Scientific and Industrial Research 73 (2014) 763-

766.

[21] Z.H. Ahmed, Experimental analysis of crossover and

mutation operators for the quadratic assignment problem,

Annals of Operations Research 247 (2016) 833-851.

[22] Z.H. Ahmed, The minimum latency problem: a hybrid

genetic algorithm, IJCSNS International Journal of Computer

Science and Network Security 18(11) (2018) 153-158.

[23] Z.H. Ahmed, Performance analysis of hybrid genetic

algorithms for the generalized assignment problem, IJCSNS

International Journal of Computer Science and Network

Security 19(9) (2019) 216-222.

[24] M.A. Al-Omeer, Z.H. Ahmed, Comparative study of

crossover operators for the MTSP, 2019 International

Conference on Computer and Information Sciences (ICCIS),

Sakaka, Saudi Arabia, 3-4 April 2019, 1-6.

[25] G. Reinelt, TSPLIB, http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/

[26] M. Nikolić, D. Teodorović, Empirical study of the bee colony

optimization (BCO) algorithm, Expert Systems with

Applications 40 (2013) 4609–4620.

[27] J. J. Grefenstette, Incorporating problem specific knowledge

into genetic algorithms. In L. Davis (Ed.), Genetic algorithms

and simulated annealing, London, UK: Pitman / Pearson,

(1987) 42–60.

[28] T. Weise, Y. Jiang, Q. Qi, W. Liu, A branch-and-bound-

based crossover operator for the traveling salesman problem.

International Journal of Cognitive Informatics and Natural

Intelligence (IJCINI) 13(3) (2019), 1-18.

Zakir Hussain Ahmed is a Full Professor in

the Department of Mathematics and

Statistics at Al Imam Mohammad Ibn Saud

Islamic University, Riyadh, Kingdom of

Saudi Arabia. Till the end of 2019, he was in

the Department of Computer Science at the

same University. He obtained MSc in

Mathematics (Gold Medalist), Diploma in

Computer Application, MTech in

Information Technology and PhD in Mathematical Sciences

(Artificial Intelligence/Combinatorial Optimization) from Tezpur

University (Central), Assam, India. Before joining the current

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.2, Fabruary 2020 112

position, he served in Tezpur University, Sikkim Manipal Institute

of Technology, Asansol Engineering College and Jaypee Institute

of Engineering and Technology, India. His research interests

include artificial intelligence, combinatorial optimization, digital

image processing and pattern recognition. He has several

publications in the fields of artificial intelligence, combinatorial

optimization and image processing.

