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Abstract 
The efficiency of genetic algorithms (GAs) depends mainly on 

crossover operator. The choice of good crossover operators leads 

to effective GA. There are many existing crossover operators in 

the literature. In this paper, we propose a modified version of 

sequential constructive crossover (SCX), named greedy SCX 

(GSCX), for solving the benchmark travelling salesman problem. 

We then compare the efficiency of the proposed crossover 

operator with greedy crossover, SCX and bidirectional circular 

SCX operators for solving the TSP on some benchmark TSPLIB 

instances. The comparative study shows that our proposed GSCX 

operator is the best among these crossover operators for the 

problem. 
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1. Introduction 

We consider the benchmark travelling salesman problem 

(TSP) for our study that finds a least cost Hamiltonian cycle 

in a network. The problem can be formally stated as 

follows: A network with ‘n’ nodes, with 'node 1' as ‘depot’ 

and a travel cost (or distance, or travel time etc.,) matrix C= 

[cij] of order n associated with ordered pairs (i, j) of nodes 

is given.  The problem is to find a least cost Hamiltonian 

cycle.  There are two types of TSP - symmetric and 

asymmetric.  The TSP is symmetric if cij = cji, for all i, j, 

else, asymmetric.  If there are n nodes in a network, then for 

asymmetric TSP, there will be 
)!1( n

possible solutions 

out of which at least one of them provides the minimum cost, 

and for asymmetric TSP, there will be 2

)!1( n

possible 

solutions along with same valued opposite cyclic 

permutations. In both types, the number of possible 

solutions is very large; so, a complete search is very hard, if 

it is not impossible. The problem is proved to be NP-Hard 

[1] and it has many real-life applications [2].  

Several exact and heuristic/metaheuristic algorithms have 

been developed and reported in the literature for solving the 

TSP. Though exact algorithms obtain exact optimal solution 

to the problem, but the computational time increases 

exponentially as the problem size increases. On the other 

hand, heuristic algorithms do not guarantee the optimality 

of the solution, but they obtain near optimal solution in a 

very short time. So, the researchers give more importance 

to find good quality heuristic solutions in reasonable time, 

rather to find exact solution after lot of computational time. 

Some of most effective metaheuristic algorithms are ant 

colony optimization, genetic algorithm, simulated 

annealing, state transition algorithm, tabu search, artificial 

neural network, artificial bee colony, black hole, and 

particle swarm optimization. Out of these algorithms 

genetic algorithm is very popular and one of the best 

metaheuristic algorithms for solving the TSP. In simple GA, 

selection, crossover and mutation are three operators, and 

among them crossover is very important operator. So, 

several crossover operators have been developed for solving 

the TSP as well as other combinatorial optimization 

problems ([3], [4]). 

In this paper, we propose a modified version of sequential 

constructive crossover (SCX), named greedy SCX (GSCX) 

operator that produces better offspring than SCX. We then 

compare the efficiency of the proposed crossover operator 

with greedy crossover, SCX and bidirectional circular SCX 

operators for solving the TSP on some benchmark problem 

instances.  

This paper is organized as follows: The literature review is 

given in Section 2. Next Section 3 discusses existing and 

proposed crossover operators for developing variant genetic 

algorithms for the TSP, while Section 4 describes 

computational experiments for four crossover operators. 

Finally, Section 5 presents comments and concluding 

remarks. 

2. Literature Review 

Since the crossover operator plays a vital role in GA, so 

many crossover operators have been proposed for the TSP. 

Goldberg and Lingle [5] developed the partially mapped 

crossover (PMX) that used two crossover points. It defines 

an interchange mapping in the section between these points. 

PMX was the first crossover for the GA to solve the TSP. 

As reported, the authors found near-optimal solution to a 

well-known 33-node problem instance.  
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The ordered crossover (OX) is developed in [6] which 

builds offspring by choosing a subsequence of a tour from 

one parent and preserving the relative order of nodes from 

the other parent. However, it was applied to the job-shop 

scheduling problem. Syswerda [7] proposed order based 

crossover (OBX) that selects several positions randomly in 

one parent tour and the order of the nodes in the selected 

positions of this parent is imposed on the other parent. 

Position based operator (PBX) is also proposed in [7] that 

selects a set of positions randomly in the parent tours. But 

it imposes the position of the selected nodes on the 

corresponding nodes of the other parent.  

Grefenstette et al. [8] proposed alternating edges crossover 

(AEX) operator that assumes a chromosome as a directed 

cycle of arcs. The offspring is built by selecting alternative 

arcs from both parents, with some additional random 

selections in case of infeasibility. The authors also proposed 

the greedy crossover (GX) operator for the TSP. 

Oliver et al. [9] developed cycle crossover (CX) that builds 

an offspring where every node and its corresponding 

position originated from one of the parents.  

The edge recombination crossover (ERX) is proposed by 

Whitley et al. [10] which follows an edge map to builds an 

offspring by inheriting as many edges as possible from the 

parents, and the common edges of both parents have high 

priority. The generalized N-point crossover (GNX) [11] is 

developed based on the traditional N-point crossover 

operator.  

A crossover operator named sequential constructive 

crossover (SCX) is developed in [12] for solving the TSP 

and compared with ERX and GNX on symmetric and 

asymmetric TSPLIB instances. As reported, SCX is better 

than ERX and GNX. The SCX is then modified in [13] by 

considering that if no legitimate node is present in any of 

the parents after current node, search continues from the 

beginning of the parent chromosome and select the first 

legitimate node as the next node. 

Bidirectional circular sequential constructive crossover 

(BCSCX) is developed in [14] by modifying SCX, which 

searches for next neighbor in both left and right directions 

in both parents. Thus, four neighbor genes are considered. 

Also, during searching for the next neighbor gene, if it 

reaches to the end or to the beginning of the genes list in 

any of the parents, it will wrap around. 

3. Genetic Algorithms for the TSP  

Genetic algorithm (GA) is a search process, proposed by 

John Holland in 1970s, inspired by natural biological 

evolution process. It starts initially with a population of 

strings, called chromosomes, that encode solutions to a 

problem, and operates possibly three operators, namely 

selection, crossover and mutation, to produce new and 

possibly better populations in successive generations. 

Crossover along with selection operator is the main leading 

procedure in genetic algorithms. Mutation expands search 

space and defends from loss of any genetic substance due to 

selection and crossover operators. Although GA is among 

the best algorithms, but its performance depends on initial 

population along with three operators and four parameters, 

which are discussed here. 

3.1. Chromosome Representation and Selection 

Operator 

There are many methods for representing solutions as 

chromosomes for the TSP. We consider path representation 

which makes a list of node labels so that no node is repeated 

in the same chromosome. For example, let {1, 2, 3, 4, 5, 6, 

7, 8, 9} be the node labels in a 9-node instance, then a tour 

{1→8→6→3→7 → 4→2→9→ 5 →1} may be represented 

as (1, 8, 6, 3, 7, 4, 2, 9, 5). The objective function is the sum 

of the costs of all edges in the tour.  

A fitness function can be defined using objective function, 

and we define the fitness function as 
)(

1
)(

xf
xF 

, 

where f(x) is the objective function. Usually GA starts with 

a set of chromosomes called an initial population of 

chromosomes. We have considered randomly generated 

initial population and then apply selection operator on the 

population. In selection operator, old chromosomes are 

copied into mating pool, usually with a probability related 

to their fitness value. In this operator no new chromosome 

is created. We have considered the stochastic remainder 

selection process [15] for our GAs. 

3.2. Existing Crossover Operators 

A comparative study among eight different crossover 

operators, namely, Two-Point Crossover, PMX, CX, 

Shuffle Crossover, ERX, Uniform Order-based Crossover, 

Sub-tour Exchange Crossover and SCX is presented in [16], 

and found that SCX outperformed other operators in 

achieving good quality solution for the TSP. The SCX is 

also effectively applied to other combinatorial optimization 

problems ([17]-[24]). So, we are going to consider and 

discuss GX, SCX and BCSCX operators. 

3.2.1. Greedy Crossover Operator 

The greedy crossover (GX) is proposed in [8] for the TSP 

that selects a starting node randomly. Then in each step, 

four neighbor nodes of currently selected node in both 

parents are considered, and the cheapest one (not present in 

the offspring) is selected. If the cheapest node or all four 

neighbour nodes are present in the offspring, then any node 

from the remaining is selected randomly. This operator 

creates only one offspring from two parents. Let us illustrate 

the GX through the 9-node example given as cost matrix in 
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Table 1. Let P1: (1, 2, 3, 4, 6, 9, 5, 7, 8) and P2: (1, 3, 5, 7, 

8, 9, 4, 2, 6) be a pair of selected parent chromosomes with 

costs 83 and 75 respectively. We consider these same 

chromosomes for illustrating all other crossover operators. 

We fix headquarters (first gene) as ‘node 1’, and so, we start 

the procedure from the ‘node 1’. 

Table 1: The cost matrix. 
No
de 

1 2 3 4 5 6 7 8 9 

1 99
9 7 15 9 10 6 8 9 10 

2 11 99
9 8 7 11 3 6 4 3 

3 15 5 99
9 16 12 5 8 13 4 

4 2 5 11 99
9 9 13 14 4 2 

5 8 6 3 5 99
9 6 7 10 9 

6 6 13 8 11 5 99
9 5 4 5 

7 5 15 3 7 12 6 99
9 8 9 

8 9 3 9 14 3 11 8 99
9 10 

9 11 16 3 9 10 7 9 10 99
9 

 

As we fixed first gene as ‘node 1’, the offspring is initiated 

as (1). The nodes 2 and 3 are neighbours of node 1 with their 

costs 7 and 15 respectively. The node 2 is cheaper, so, it is 

added to the incomplete offspring that becomes: (1, 2).  

Next, the nodes 3, 1, 6 and 4 are neighbours of node 2 with 

costs 8, 11, 3 and 7 respectively. The node 6 is the cheapest, 

so, it is added to the incomplete offspring that becomes: (1, 

2, 6).  

Next, the nodes 9, 4, 1 and 2 are neighbours of node 6 with 

costs 5, 11, 6 and 13 respectively. The node 9 is the cheapest 

so, it is added to the incomplete offspring that becomes: (1, 

2, 6, 9).  

Next, the nodes 5, 6, 4 and 8 are neighbours of node 9 with 

costs 10, 7, 9 and 10 respectively. The node 6 is the cheapest, 

but it exists in the offspring, so, node 3 is selected randomly 

and added to the incomplete offspring that becomes: (1, 2, 

6, 9, 3). 

Next, the nodes 4, 2, 5 and 1 are neighbours of node 3 with 

costs 16, 5, 12 and 15 respectively. The node 2 is the 

cheapest, but it exists in the offspring, so, node 4 is selected 

randomly and added to the incomplete offspring that 

becomes: (1, 2, 6, 9, 3, 4).  

Continuing in this way, we have the complete offspring: (1, 

2, 6, 9, 3, 4, 5, 7, 8) with cost 67. 

3.2.2. Sequential Constructive Crossover Operator 

The sequential constructive crossover (SCX) operator is 

proposed in [12] and then modified in [13] that builds an 

offspring using better arcs based on their cost present in the 

parents' structure. Moreover, it uses the better arcs that are 

not present in both parents' structure. It sequentially 

searches both parent chromosomes and considers the first 

legitimate node (i.e. unvisited node) that appeared after the 

present node and in case, if no legitimate node is found in 

either of the parent chromosomes, it sequentially searches 

from the starting of the chromosome and then compares 

their associated cost to decide the next node of the child 

chromosome. The algorithm for the SCX [13] is given 

below: 

Step 1: - Start from 'node 1’ (i.e., current node p =1). 

Step 2: - Sequentially search both parent chromosomes 

and consider the first ‘legitimate node' (the node 

that is not yet visited) appeared after 'node p’ in 

each parent. If no 'legitimate node' after 'node p’ is 

present in any of the parents, search sequentially 

from the starting of the parent and consider the first 

'legitimate node', and go to Step 3. 

Step 3: Suppose the 'node α' and the 'node β' are found 

in 1st and 2nd parent respectively, then for 

selecting the next node go to Step 4. 

Step 4: If cpα < cpβ, then select 'node α', otherwise, 

'node β' as the next node and concatenate it to the 

partially constructed offspring chromosome. If the 

offspring is a complete chromosome, then stop, 

otherwise, rename the present node as 'node p' and 

go to Step 2. 

 

Let us illustrate the SCX through the same example given 

above. Select 'node 1' as the 1st gene. The legitimate nodes 

after node 1 in P1 and P2 are 2 and 3 respectively with 

c12=7 and c13=15. Since c12<c13, we accept node 2, and 

the partially constructed chromosome becomes (1, 2).  

The legitimate nodes after node in P1 and P2 are 3 and 6 

respectively with c23=8 and c26=3. Since c26<c23, we 

accept node 6, and the partially constructed chromosome 

becomes (1, 2, 6). 

The legitimate node after node 6 in P1 is 9 with c69=5, but 

none in P2. So, for P2, we sequentially search from the 

beginning of the chromosome and find the first legitimate 

node 3 with c63=8. Since c69<c63, we accept node 9, and 

the partially constructed chromosome becomes (1, 2, 6, 9). 

The legitimate nodes after node 9 in P1 and P2 are 5 and 4 

respectively with c95=10 and c94=9. Since c94<c95, we 

accept node 4, and the partially constructed chromosome 

becomes (1, 2, 6, 9, 4). 

The legitimate node after node 4 in P1 is 5 with c45=9, but 

none in P2. So, for P2, we sequentially search from the 

beginning of the chromosome and find the first legitimate 

node 3 with c43=11. Since c45<c43, we accept node 5, and 

the partially constructed chromosome becomes (1, 2, 6, 9, 

4, 5). 

Continuing this way, we obtain the complete offspring 

chromosome as: (1, 2, 6, 9, 4, 5, 7, 8, 3) with cost 72. 
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3.2.3. Bidirectional Circular Sequential Constructive 

Crossover Operator 

The bidirectional circular sequential constructive crossover 

(BCSCX) operator is proposed in [14] by modifying SCX 

that searches for next neighbors in both left and right 

directions in both parents. So, four neighbor genes are 

considered. Also, during searching for the next neighbor 

gene, if it reaches to the end or to the start of any parent, it 

will wrap around. 

We illustrate the operator through the same example 

mentioned above. Select 'node 1' as the 1st gene and search 

for the next node. The legitimate nodes after node 1 in both 

directions in P1 are 2 and 8 (after wrapping around) with 

costs 7 and 9 respectively, and in P2 are 3 and 6 (after 

wrapping around) with costs 15 and 6 respectively. We 

accept node 6 as it is the cheapest among four nodes, and so, 

the partially constructed chromosome becomes (1, 6).  

The legitimate nodes after node 6 in both directions in P1 

are 9 and 4 with costs 5 and 11 respectively, and in P2 are 

3 (after wrapping around) and 2 with costs 8 and 13 

respectively. We accept node 9 as it is the cheapest, and so, 

the partially constructed chromosome becomes (1, 6, 9).  

The legitimate nodes after node 9 in both directions in P1 

are 5 and 4 with costs 10 and 9 respectively, and in P2 are 

4 and 8 with costs 9 and 10 respectively. We accept node 4 

as it is the cheapest, and so, the partially constructed 

chromosome becomes (1, 6, 9, 4).  

The legitimate nodes after node 4 in both directions in P1 

are 5 and 3 with costs 9 and 11 respectively, and in P2 are 

2 and 8 with costs 5 and 4 respectively. We accept node 8 

as it is the cheapest, and so, the partially constructed 

chromosome becomes (1, 6, 9, 4, 8).  

Continuing this way, we obtain the complete offspring 

chromosome as: (1, 6, 9, 4, 8, 2, 7, 3, 5) with cost 56. 

3.3. Proposed Crossover Operator: Greedy Sequential 

Constructive Crossover 

We are going to modify SCX operator and name it greedy 

SCX that works like as SCX. In the step 2 of SCX, if no 

legitimate node is found in any parent, then search 

continued sequentially from the starting of the parent and 

consider the first legitimate node. Though as reported, the 

method is better, however, there is room for modifying this 

rule. In this present study, we introduce greedy method in 

this step. So, we define the algorithm for GSCX as follows.  

Step 1: - Start from 'node 1’ (i.e., current node p =1). 

Step 2: - Sequentially search both parent chromosomes 

and consider the first ‘legitimate node' (the node 

that is not yet visited) appeared after 'node p’ in 

each parent. If ‘legitimate node’ after 'node p’ is 

found in both parents, then go to Step 3, otherwise, 

consider the cheapest ‘legitimate node’ from the 

group of remaining legitimate nodes and 

concatenate it to the partially constructed offspring 

chromosome. If the offspring is a complete 

chromosome, then stop, otherwise, rename this 

present node as 'node p' and repeat this Step 2. 

Step 3: Suppose the 'node α' and the 'node β' are found 

in 1st and 2nd parent respectively, then for 

selecting the next node go to Step 4. 

Step 4: If cpα < cpβ, then select 'node α', otherwise, 

'node β' as the next node and concatenate it to the 

partially constructed offspring chromosome. If the 

offspring is a complete chromosome, then stop, 

otherwise, rename the present node as 'node p' and 

go to Step 2. 

 

We illustrate the GSCX operator through the same example 

given above. Select 'node 1' as the 1st gene. The legitimate 

nodes after node 1 in P1 and P2 are 2 and 3 respectively 

with c12=7 and c13=15. Since c12<c13, we accept node 2, 

and so, the partially constructed chromosome becomes (1, 

2).  

The legitimate nodes after node 2 in P1 and P2 are 3 and 6 

respectively with c23=8 and c26=3. Since c26<c23, we 

accept node 6, and so, the partially constructed chromosome 

becomes (1, 2, 6).  

The legitimate node after node 6 in P1 is 9, but none in P2. 

So, we search and find the cheapest legitimate node as 8, 

and we accept node 8, and so, the partially constructed 

chromosome becomes (1, 2, 6, 8). 

There is no legitimate node after node 8 in P1, so, we search 

and find the cheapest legitimate node as 5, and we accept 

node 5. So, the partially constructed chromosome becomes 

(1, 2, 6, 8, 5). 

The legitimate nodes after node 5 in both P1 and P2 are 

same node 7. So, we accept node 7, and the partially 

constructed chromosome becomes (1, 2, 6, 8, 5, 7). 

There is no legitimate node after node 7 in P1, so, we search 

and find the cheapest legitimate node as 3, and we accept 

node 3. So, the partially constructed chromosome becomes 

(1, 2, 6, 8, 5, 7, 3). 

Continuing this way, we obtain the complete offspring 

chromosome as: (1, 2, 6, 8, 5, 7, 3, 9, 4) with cost 42. 

Through the above manual experiment, we found that our 

proposed crossover operator GSCX is the best among the 

four crossover operators considered above. 

3.4. Mutation Operator 

In GAs, the mutation operator is applied after crossover 

operator. It usually selects randomly a gene (position) in the 

chromosome and changes the corresponding allele (value of 

the gene), and thus modifies the information. Since the less 

fit members of successive generations are discarded in 

previous operators and thereby some good characteristics of 

genetic materials might be lost forever, hence the mutation 

operator is required to recover them. By doing infrequent 
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random changes in chromosomes, GAs confirm that new 

portions of the search area are visited, which reproduction 

and crossover couldn’t ensure fully. So, mutation 

guarantees that no significant elements are early lost, thus it 

maintains variety in mating pool. Generally, one can expect 

that mutation can help the crossover operators to come out 

from local optima and find better quality solution. The 

traditional mutation operator does not work for the TSP. For 

our GAs, we have used the reciprocal exchange mutation 

that randomly selects two nodes and exchanges them. 

3.5. Genetic Parameters  

The GA search procedure is governed mainly by four 

parameters. The first one is population size that determines 

number of chromosomes in a population during the search. 

If the number is very less, the search has no possibility to 

effectively cover the whole search space. On the other hand, 

if it is large, the search process wastes computational time. 

The second one is crossover probability that specifies the 

probability of doing crossover on parent chromosomes. The 

third one is mutation probability that sets the probability of 

performing bit-wise mutation. The last one is the stopping 

condition that states the condition for stopping the search 

process. 

3.6. Variants of Our Genetic Algorithm 

We propose to execute, and test different variants of a 

simple GA as shown below. All variants follow the same 

GA structure except selection of a crossover operator from 

the following four crossover operators: GX, SCX, BCSCX 

and GSCX. 

VariantGA ( ) 

{   Initialize random population of size Ps; 

    Evaluate the population; 

    Generation = 0; 

    While stopping condition is not satisfied 

   {   Generation = Generation + 1; 

       Select good chromosomes by selection 

operator; 

        Select a crossover operator and do 

crossover with crossover probability Pc; 

        Do bit-wise mutation with mutation 

probability Pm; 

        Evaluate the population;   

    } 

} 

 

Within one selection, a single crossover operator is 

implemented.  Through this we are going to measure 

efficiency of the crossover operators, and to find their 

relative ranking. Each variant GA is non-hybrid, simple, 

which uses basic GA processes and operators, but does not 

incorporate any other heuristic algorithm.  

4. Computational Experiments 

Variant GAs using different crossovers have been encoded 

in Visual C++. In order to compare the efficiency of the 

different crossover operators, variant GAs are applied on 

twenty eight benchmark TSPLIB instances [25] and run on 

a Laptop with i3-3217U CPU@1.80 GHz and 4 GB RAM 

under MS Windows 7. Among the twenty eight problem 

instances, the instances ftv33, ftv35, ftv38, p43, ftv44, ftv47, 

ry48p, ft53, ftv55, ftv64, ft70, ftv70, kro124p, ftv170, 

rbg323, rbg358, rbg403 and rbg443 are asymmetric, and 

gr21, fri26, bayg29, dantzig42, eil51, berlin52, pr76, lin105, 

d198 and a280  are symmetric TSPs. For all variant GAs, 

the parameters are set as follows: population size is 50, 

crossover probability is 1.0 (i.e., 100%), mutation 

probability is 0.20 (i.e., 20%), and maximum of 1,000 

generations as the stopping condition. For each instance, the 

experiments have been repeated 50 times. Figures 1 present 

results for the instance ftv64 (considering only 50 

generations) by all GA variants. Each graph corresponds to 

a crossover operator, and it shows how the current solution 

improves depending on the number of generations. In the 

figure, the labels on the left margin denote the solution cost, 

while the labels on the right margin denote the percentage 

of excess to the best known solution (Excess (%)). Figure 1 

shows that SCX has some variations, but it is not the best. 

Though BCSCX and GSCX have less variations and are 

competing each other, still GSCX provides us best results. 

But GSCX has limited variation range and gets stuck in 

local minimums very quickly.
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Fig. 1  Performance of four crossover operators for the instance ftv64  

 

The results of experiments by the four GA variants are 

summarized in Tables 2(a & b) and 4. We have organized 

the tables as follows: a row corresponds to the summarized 

results for a problem instance using variant GAs, first 

column reports a problem instance and its best known 

solution (within brackets),  second column reports the size 

of the instance, third column reports title of the summarized 

results and remaining each column is for a GA variant 

considered by a certain selection of crossover operator. The 

result is described by its best cost, average cost, average 

percentage of excess to the best known solution, standard 

deviation (S.D.) of costs, and average convergence time (in 

second). The best result for a chosen instance over all 

variants is marked by bold face. The percentage of excess 

above the best known solution, reported in TSPLIB website, 

is given by the following formula. 

𝐸𝑥𝑐𝑒𝑠𝑠 (%) =
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 −𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 𝑥 100. 

The Tables 2(a & b) report results by the GA variants for 

the asymmetric TSPLIB instances.  

Table 2 (a): Summary of the results by the variant GAs for asymmetric 

TSPLIB instances 

Insta

nce 
n Results GX SCX 

BCS

CX 

GSC

X 

ftv33 

(128

6) 

3

4 

Best Sol 1510 1371 1405 1380 

Avg. 

Sol 

1679.

9 

1474.

48 

1478.

94 
1458.

48 

Avg. 

Exc (%) 
30.63 14.66 15.00 13.41 

S.D. 52.31 49.02 42.04 47.24 

Avg. 

Time 
0.07 0.04 0.00 0.05 

ftv35 

(147

3) 

3

6 

Best Sol 1667 1535 1586 1531 

Avg. 

Sol 

1850.

08 

1636.

56 

1657.

08 

1631.

32 

Avg. 

Exc (%) 
25.60 11.10 12.50 10.75 

S.D. 53.92 59.86 31.98 47.09 

Avg. 

Time 
0.11 0.13 0.07 0.05 

ftv38 

(153

0) 

3

9 

Best Sol 1746 1630 1619 1613 

Avg. 

Sol 

1911.

48 

1705.

68 

1712.

56 
1690.

50 

Avg. 

Exc (%) 
24.93 11.48 11.93 10.49 

S.D. 43.37 30.78 20.85 39.65 

Avg. 

Time 
0.13 0.10 0.07 0.05 

p43 

(562

0) 

4

3 

Best Sol 5788 5632 5654 5631 

Avg. 

Sol 

5851.

62 

5642.

86 

5680.

70 

5641.

20 

Avg. 

Exc (%) 
4.12 0.41 1.08 0.38 

S.D. 23.28 7.26 11.69 6.97 

Avg. 

Time 
0.34 0.15 0.15 0.17 

ftv44 Best Sol 1899 1748 1758 1706 

0
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(161

3) 

4

5 

Avg. 

Sol 

2093.

12 

1867.

96 

1869.

12 

1853.

28 
Avg. 

Exc (%) 
29.77 15.81 15.88 14.90 

S.D. 64.72 58.88 51.53 60.57 

Avg. 

Time 
0.18 0.22 0.06 0.12 

ftv47 

(177

6) 

4

8 

Best Sol 2350 1880 2002 1864 

Avg. 

Sol 

2607.

24 

2048.

06 

2140.

06 
2021.

72 

Avg. 

Exc (%) 
46.80 15.32 20.50 13.84 

S.D. 
103.4

1 
90.37 69.21 70.92 

Avg. 

Time 
0.3 0.34 0.26 0.26 

ry48

p 

(144

22) 

4

8 

Best Sol 
2079

2 

1542

5 

1576

4 

1546

9 

Avg. 

Sol 

2415

2.6 

1621

1.96 

1626

6.92 

1615

0.78 

Avg. 

Exc (%) 
67.47 12.41 12.79 11.99 

S.D. 
1790.

95 

331.8

0 

224.7

2 

278.6

5 

Avg. 

Time 
0.23 0.32 0.09 0.17 

ft53 

(690

5) 

5

3 

Best Sol 
1010

9 
7678 7848 7882 

Avg. 

Sol 

1114

4.14 

8494.

82 

8524.

50 

8614.

86 

Avg. 

Exc (%) 
61.39 23.02 23.45 24.76 

S.D. 
455.6

0 

246.9

3 

183.9

1 

277.1

3 

Avg. 

Time 
0.25 0.26 0.31 0.35 

ftv55 

(160

8) 

5

6 

Best Sol 2106 1717 1777 1723 

Avg. 

Sol 

2305.

6 

1871.

44 

1865.

32 

1841.

82 

Avg. 

Exc (%) 
43.38 16.38 16.00 14.54 

S.D. 80.58 85.30 65.52 50.89 

Avg. 

Time 
0.32 0.47 0.44 0.36 

ftv64 

(183

9) 

6

5 

Best Sol 2545 2022 2105 1990 

Avg. 

Sol 

2836.

6 

2224.

24 

2216.

32 

2140.

28 
Avg. 

Exc (%) 
54.25 20.95 20.52 16.38 

S.D. 
141.6

7 

104.3

1 
55.18 76.32 

Avg. 

Time 
0.54 0.64 0.33 0.29 

ft70 
7

0 
Best Sol 

4362

9 

4078

2 

4063

8 

4112

9 

(386

73) 

Avg. 

Sol 

4528

8.32 

4240

6.22 

4176

1.26 

4218

5.60 

Avg. 

Exc (%) 
17.11 9.65 7.99 9.08 

S.D. 
1002.

38 

579.6

9 

384.3

1 

571.4

6 

Avg. 

Time 
0.86 0.79 1.38 0.64 

Table 2(b): Summary of the results by the variant GAs for asymmetric 

TSPLIB instances 

Insta

nce 
n Results GX SCX 

BCS

CX 

GSC

X 

ftv70 

(195

0) 

7

1 

Best Sol 2467 2155 2176 2118 

Avg. 

Sol 

2734.

46 

2392.

74 

2309.

22 
2296.

32 

Avg. 

Exc (%) 
40.23 22.70 18.42 17.76 

S.D. 
107.3

3 

109.0

2 
55.30 69.83 

Avg. 

Time 
0.78 0.79 0.67 0.48 

kro1

24p 

(362

30) 

1

0

0 

Best Sol 
8182

4 

4133

1 

4166

8 

4125

1 

Avg. 

Sol 

8925

3.80 

4367

4.54 
4254

4.46 

4282

9.16 

Avg. 

Exc (%) 

146.3

5 
20.55 17.43 18.21 

S.D. 
2557.

47 

638.4

3 

566.0

1 
780.6 

Avg. 

Time 
0.57 1.25 0.13 0.42 

ftv17

0 

(275

5) 

1

7

1 

Best Sol 4667 3285 3257 3656 

Avg. 

Sol 

4817.

32 
3523.

74 

3608.

40 

3799.

50 

Avg. 

Exc (%) 
74.86 27.90 30.98 37.91 

S.D. 71.52 
113.5

5 
92.49 

130.1

5 

Avg. 

Time 
4.17 3.77 3.23 1.74 

rbg3

23 

(132

6) 

3

2

3 

Best Sol 2102 1658 1660 1597 

Avg. 

Sol 

2192.

08 

1718.

76 

1725.

52 

1677.

12 

Avg. 

Exc (%) 
65.32 29.62 30.13 26.48 

S.D. 31.70 22.19 20.63 34.19 

Avg. 

Time 
15.51 12.37 24.79 15.76 

rbg3

58 

(116

3) 

3

5

8 

Best Sol 2054 1524 1582 1522 

Avg. 

Sol 

2203.

12 

1699.

20 

1711.

30 
1591.

04 

Avg. 

Exc (%) 
89.43 46.10 47.15 36.80 

S.D. 52.02 29.22 23.23 36.93 
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Avg. 

Time 
17.28 16.71 30.14 18.16 

rbg4

03 

(246

5) 

4

0

3 

Best Sol 3760 3314 3229 3149 

Avg. 

Sol 

3828.

34 

3401.

18 

3479.

62 

3214.

22 

Avg. 

Exc (%) 
55.31 37.98 41.16 30.39 

S.D. 39.16 26.48 24.06 42.23 

Avg. 

Time 
21.43 19.98 33.89 28.96 

rbg4

43 

(272

0) 

4

4

3 

Best Sol 3705 3705 3710 3545 

Avg. 

Sol 

3742.

88 

3882.

52 

3872.

66 
3644.

00 

Avg. 

Exc (%) 
37.61 42.74 42.38 33.97 

S.D. 22.11 26.78 25.53 54.96 

Avg. 

Time 
37.87 26.82 42.64 35.31 

The crossover GX could not obtain lowest average cost for 

any asymmetric instance. The crossover SCX obtains 

lowest average costs with lowest S.D. for the instances ft53 

and ftv170, whereas BCSCX obtains lowest average costs 

with lowest S.D. for ft70 and kro124p respectively. The 

proposed crossover GSCX obtains lowest average costs 

with lower S.D. for remaining fourteen instances, namely, 

ftv33, ftv35, ftv38, p43, ftv44, ftv47, ry48p, ftv55, ftv64, 

ftv70, rbg323, rbg358, rbg403 and rbg443. So, the proposed 

crossover GSCX is found to be the best. The results are 

depicted in Figure 2, which also shows the effectiveness of 

our proposed crossover operator GSCX. The crossovers 

SCX and BCSCX are competing, and GX is the worst. 

In order to decide if GSCX-based GA average is 

significantly different from the averages obtained by other 

GA variants, we performed Student’s t-test. It is to be noted 

that we performed 50 runs for every problem instance 

considered here. We used the following t-test for the case of 

two big independent samples [26]: 

𝑡 =
𝑋̅1 − 𝑋̅2

√
𝑆𝐷1

2

𝑛1 − 1
+

𝑆𝐷2
2

𝑛2 − 1

 

𝑤ℎ𝑒𝑟𝑒, 

𝑋̅1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒, 
𝑆𝐷1 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒, 
𝑋̅2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒, 
𝑆𝐷2

− 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒, 
𝑛1 − 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 
𝑛2 − 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 
The 𝑋̅2  and 𝑆𝐷2  values are obtained by the GSCX-based 

GA, while 𝑋̅1  and 𝑆𝐷1  values are obtained by other GA 

variants. 

 

 

 

Fig. 2  Average Excess(%) by GA variants on asymmetric TSPLIB instances 

 

Table 3 reports the calculated values of the t-statistic. The t 

values can be positive or negative. The positive value shows 

that the GSCX finds better solution than the competitive GA 

variant. The negative value shows that the competitive GA 
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finds better solution. The confidence interval at 95% 

confidence level (t0.05 = 1.96) is used. When t-value is 

greater than 1.96, there is a significant difference between 

the two values, so, GSCX finds better solution if t-value is 

positive, and if t-value is negative then the competitive GA 

finds better solution. When t-value is less than 1.96, then 

there is no significant difference between the observed 

values. The information about the GA variants that obtained 

significantly better solutions is also reported in the table. 

For three instances there is no statistically significant 

difference between GSCX and BCSCX. On twelve 

instances GSCX is found better than BCSCX. There is no 

statistically significant difference between GSCX and SCX 

for seven instances. GSCX is found better than SCX on nine 

instances. Next, GSCX found better than GX on all eighteen 

instances. Hence, GSCX is found to be the best one. 

Table 3: The calculated t-values by variant GAs against GSCX on 

asymmetric TSPLIB instances and the information about significantly 

better variant GAs 

Inst

anc

e 

GX 
SC

X 

BC

SC

X 

 

Inst

anc

e 

GX 
SC

X 

BC

SC

X 

ftv3

3 

21.

990

0 

1.6

452 

2.2

648 
 

ftv6

4 

30.2

899 

4.54

72 

5.6

518 

Bett

er 

GS

CX 

----

- 

GS

CX 
 

Bett

er 

GS

CX 

GS

CX 

GS

CX 

ftv3

5 

21.

390

8 

0.4

816 

3.1

678 
 ft70 

18.8

234 

1.89

72 

-

4.3

132 

Bett

er 

GS

CX 

----

- 

GS

CX 
 

Bett

er 

GS

CX 
----- 

BC

SC

X 

ftv3

8 

26.

323

7 

2.1

169 

3.4

470 
 

Ftv7

0 

23.9

520 

5.21

32 

1.0

138 

Bett

er 

GS

CX 

GS

CX 

GS

CX 
 

Bett

er 

GS

CX 

GS

CX 
----- 

p43 

60.

612

3 

1.1

546 

20.

315

7 

 
kro1

24p 

121.

532

9 

5.86

82 

-

2.0

669 

Bett

er 

GS

CX 

----

- 

GS

CX 
 

Bett

er 

GS

CX 

GS

CX 

BC

SC

X 

ftv4

4 

18.

940

0 

1.2

165 

1.3

943 
 

ftv1

70 

47.9

760 

-

11.1

759 

-

8.3

781 

Bett

er 

GS

CX 

----

- 
-----  

Bett

er 

GS

CX 

SC

X 

BC

SC

X 

ftv4

7 

32.

686

5 

1.6

050 

8.3

595 
 

rbg3

23 

77.3

138 

7.15

12 

8.4

845 

Bett

er 

GS

CX 

----

- 

GS

CX 
 

Bett

er 

GS

CX 

GS

CX 

GS

CX 

ry4

8p 

30.

903

6 

0.9

884 

2.2

711 
 

rbg3

58 

67.1

605 

16.0

775 

19.

295

1 

Bett

er 

GS

CX 

----

- 

GS

CX 
 

Bett

er 

GS

CX 

GS

CX 

GS

CX 

ft53 

33.

201

0 

-

2.2

638 

-

1.9

017 

 
rbg4

03 

74.6

426 

26.2

556 

38.

223

9 

Bett

er 

GS

CX 
SC

X 
-----  

Bett

er 

GS

CX 

GS

CX 

GS

CX 

ftv5

5 

34.

064

1 

2.0

874 

1.9

828 
 

rbg4

43 

11.6

839 

27.3

097 

26.

412

8 

Bett

er 

GS

CX 

GS

CX 

GS

CX 
 

Bett

er 

GS

CX 

GS

CX 

GS

CX 

 

 
        

The Table 4 reports results by the GA variants for the 

symmetric TSPLIB instances. The crossover GX obtains 

lowest average cost with lowest S.D. for only one instance, 

dantzig42. The crossover SCX could not obtain lowest 

average cost for any symmetric instance, however, it 

obtains best solution at least once in 50 runs for the 

instances gr21 and fri26. The BCSCX obtains lowest 

average costs with lowest S.D. for four instances, fri26, 

eil51, lin105 and a280. The proposed crossover GSCX 

obtains lowest average costs with lower S.D. for remaining 

five instances, namely, gr21, bayg29, berlin52, pr76 and 

d198. So, the proposed crossover GSCX is found to be the 

best. The results are depicted in Figure 3, which also shows 

the effectiveness of our proposed crossover operator GSCX. 
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Fig. 3  Average Excess(%) by GA variants on symmetric TSPLIB instances 

 

Table 4: Summary of the results by the variant GAs for symmetric 

TSPLIB instances 

Insta

nce 
n Results GX SCX 

BCS

CX 

GSC

X 

gr21 
2

1 

Best 

Sol 
3614 2707 2707 2707 

(2707

) 
 

Avg. 

Sol 

3988

.84 

2885.

36 

2900.

82 

2845.

28 

  
Avg. 

Exc(%) 

47.3

5 
6.59 7.16 5.11 

  S.D. 
169.

99 

104.1

6 
86.26 86.33 

  
Avg. 

Time 
0.05 0.03 0.05 0.01 

fri26 
2

6 

Best 

Sol 
955 937 937 937 

(937)  
Avg. 

Sol 

1012

.08 

979.0

4 

953.4

4 

972.6

2 

  
Avg. 

Exc(%) 
8.01 4.49 1.75 3.80 

  S.D. 5.51 24.54 9.37 17.72 

  
Avg. 

Time 
0.12 0.04 0.02 0.02 

bayg

29 

2

9 

Best 

Sol 
2310 1634 1656 1634 

(1610

) 
 

Avg. 

Sol 

2531

.36 

1754.

78 

1747.

58 

1727.

94 

  
Avg. 

Exc(%) 

57.2

3 
8.99 8.55 7.33 

  S.D. 
93.2

8 
73.42 52.01 61.98 

  
Avg. 

Time 
0.11 0.06 0.02 0.02 

dantz

ig42 

4

2 

Best 

Sol 
699 723 725 723 

(699)  
Avg. 

Sol 

704.

18 

808.7

2 

810.0

8 

781.8

0 

  
Avg. 

Exc(%) 
0.74 15.70 15.89 11.85 

  S.D. 3.64 30.50 28.83 26.27 

  
Avg. 

Time 
0.04 0.06 0.01 0.08 

eil51 
5

1 

Best 

Sol 
725 441 444 436 

(426)  
Avg. 

Sol 

779.

66 

475.0

2 

460.6

6 

463.9

4 

  
Avg. 

Exc(%) 

83.0

2 
11.51 8.14 8.91 

  S.D. 
18.5

5 
16.51 6.76 12.01 

  
Avg. 

Time 
0.44 0.33 0.79 0.38 

berlin

52 

5

2 

Best 

Sol 

1267

7 
7908 7919 7926 

(7542

) 
 

Avg. 

Sol 

1359

8.98 

8517.

42 

8300.

94 

8156.

70 

  
Avg. 

Exc(%) 

80.3

1 
12.93 10.06 8.15 

  S.D. 
542.

4 

331.3

5 

205.6

6 

189.5

0 

  
Avg. 

Time 
0.34 0.40 0.11 0.22 

pr76 
7

6 

Best 

Sol 

1496

35 

12295

5 

11859

6 

11684

4 

(1081

59) 
 

Avg. 

Sol 

1537

01.9 

13617

8.38 

12539

2.00 

12529

3.76 
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Avg. 

Exc(%) 

42.1

1 
25.91 15.93 15.84 

  S.D. 
2130

.97 

6419.

40 

3220.

70 

4273.

80 

  
Avg. 

Time 
0.18 0.74 0.20 0.48 

lin10

5 

1

0

5 

Best 

Sol 

2692

9 
17254 15637 15921 

(1437

9) 
 

Avg. 

Sol 

2844

5.84 

17558

.94 

16441

.34 

17018

.08 

  
Avg. 

Exc(%) 

97.8

3 
22.12 14.34 18.35 

  S.D. 
395.

12 

1075.

52 

374.6

9 

557.2

5 

  
Avg. 

Time 
2.04 1.46 0.11 1.10 

d198 

1

9

8 

Best 

Sol 

2121

2 
19633 17441 17244 

(1578

0) 
 

Avg. 

Sol 

2187

2.64 

21184

.38 

17682

.28 
17388

.94 

  
Avg. 

Exc(%) 

38.6

1 
34.25 12.06 10.20 

  S.D. 
334.

17 

806.5

8 

131.5

2 

490.0

7 

  
Avg. 

Time 
7.3 1.72 5.46 2.82 

a280 

2

8

0 

Best 

Sol 
4905 3134 2820 2980 

2579  
Avg. 

Sol 

4059

.62 

3368.

60 

2979.

00 

3001.

00 

  
Avg. 

Exc(%) 

57.4

1 
30.62 15.51 16.36 

  S.D. 
72.4

6 

153.4

6 
57.45 99.19 

  
Avg. 

Time 
4.07 0.75 9.33 3.34 

 

For the symmetric instances also, to decide if GSCX based 

GA average is significantly different than the averages 

obtained by other GA variants, we perform Student’s t-test 

and the calculated t-values are reported in the Table 5.  

Table 5: The calculated t-values by variant GAs against GSCX on 

symmetric TSPLIB instances and the information about significantly 

better variant GAs 

Inst

anc

e 

GX 

S

C

X 

BC

SC

X 

 

Ins

tan

ce 

GX 
SC

X 

BC

SC

X 

gr2

1 

41.

986

3 

2.0

73

8 

3.1

857 
 

berl

in5

2 

66.

305

7 

6.6

15

1 

3.6

105 

Bett

er 

GS

CX 

G

SC

X 

GS

CX 
 

Bet

ter 

GS

CX 

GS

CX 

GS

CX 

fri2

6 

14.

885

0 

1.4

84

7 

-

6.6

980 

 
pr7

6 

41.

640

2 

9.8

79

8 

0.1

285 

Bett

er 

GS

CX 

---

-- 

BC

SC

X 

 
Bet

ter 

GS

CX 

GS

CX 

----

- 

bay

g29 

50.

216

4 

1.9

55

4 

1.6

992 
 

lin1

05 

117

.10

21 

3.1

25

6 

-

6.0

121 

Bett

er 

GS

CX 

---

-- 

----

- 
 

Bet

ter 

GS

CX 

GS

CX 

BC

SC

X 

dant

zig4

2 

-

20.

487

2 

4.6

81

3 

5.0

754 
 

d19

8 

52.

913

1 

28.

15

04 

4.0

468 

Bett

er 
GX 

G

SC

X 

GS

CX 
 

Bet

ter 

GS

CX 

GS

CX 

GS

CX 

eil5

1 

100

.00

87 

3.7

98

9 

-

1.6

660 

 
a28

0 

60.

326

3 

14.

08

23 

-

1.3

435 

Bett

er 

GS

CX 

G

SC

X 

----

- 
 

Bet

ter 

GS

CX 

GS

CX 

----

- 

 

There is no statistically significant difference between 

GSCX and BCSCX for four instances. On four instances, 

gr21, dantzig42, berlin52 and d198, GSCX is better than 

BCSCX, whereas BCSCX is better than GSCX on two 

instances, fri26 and lin105. For two instances there is no 

statistically significant difference between GSCX and SCX, 

and GSCX is better than SCX for remaining eight instances. 

On only one instance, dantzig42, GX is better than GSCX, 

and on remaining nine instances GSCX is better than GX. 

Based on the above study it very clear that the proposed 

crossover operator GSCX is the best. To decide better 

operator between BCSCX and SCX, we made statistical t-

test between them on all twenty eight instances (not 

reported in any table) and found that there is no significant 

difference between them for twelve instances. Out of 

remaining sixteen instances, BCSCX is found better on ten 

instances, whereas SCX is better on six instances. Hence 

BCSCX is better than SCX, and GX is the worst.  
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Table 6: Comparative study between HX and our proposed GSCX 
Results Instance HX GSCX  Instance HX GSCX  Instance HX GSCX 

Best Sol 

gr21 

2707 2707  

berlin52 

10464 7926  

a280 

12255 2980 

Avg. Sol 2807.92 2845.28  13006.74 8156.70  13011.00 3001.00 

Avg. Exc(%) 3.73 5.11  72.46 8.15  404.50 16.36 

Best Sol 

fri26 

937 937  

ft53 

11102 7882  

rbg323 

5275 1597 

Avg. Sol 972.26 972.62  12530.46 8614.86  5372.22 1677.12 

Avg. Exc(%) 3.76 3.80  81.47 24.76  305.14 26.48 

Best Sol 

ftv33 

1447 1380  

kro124p 

113960 41251  

rbg358 

5880 1522 

Avg. Sol 1618.12 1458.48  120524.24 42829.16  5999.44 1591.04 

Avg. Exc(%) 25.83 13.41  232.66 18.21  415.86 36.80 

Best Sol 

ftv38 

1740 1613  

lin105 

43612 15921  

rbg403 

6659 3149 

Avg. Sol 2000.46 1690.50  48589.64 17018.08  6743.24 3214.22 

Avg. Exc(%) 30.75 10.49  237.92 18.35  173.56 30.39 

Best Sol  699 723   13215 3656   7218 3545 

Avg. Sol dantzig42 821.98 781.80  ftv170 13878.00 3799.50  rbg443 7318.74 3644.00 

Avg. Exc(%)  17.59 11.85   403.74 37.91   169.07 33.97 

Recently, a comparative study among eleven crossover 

operators for the TSP has been carried out and found that 

heuristic crossover (HX) [27] is the best [28]. In HX, a 

greedy heuristic is applied to create an offspring from two 

parent chromosomes. So, GA using HX is implemented and 

run on only fifteen selected instances under same GA 

settings for comparing with our proposed GSCX. The Table 

6 reports a comparative study between HX and GSCX. In 

terms of best solution cost, except for the instance dantzig42, 

GSCX is found better than HX, and in terms of worst and 

average solution costs, except for the instances gr21 and 

fri26, GSCX is found better than HX. From this study it is 

very clear that our proposed crossover GSCX is far better 

than HX. 

5. Conclusion & Discussions 

For solving the benchmark TSP using GAs, several 

crossover operators have been developed by different 

researchers. We have also proposed a new crossover 

operator, GSCX, for solving the TSP. This proposed 

crossover operator is a modification of the SCX for 

improving the quality of offspring. We considered three 

existing crossover operators, namely, GX, SCX and 

BCSCX to compare with our proposed crossover GSCX. 

We first applied these operators in manual experiment on 

two parent chromosomes to produce an offspring, for each 

crossover operator, and found that our crossover GSCX is 

the best among the four crossover operators. We then 

developed four variant GAs using four different crossover 

operators and carried out comparative study of the GAs on 

eighteen asymmetric and ten symmetric TSPLIB instances. 

In terms of solution quality, our comparative study showed 

that our proposed crossover operator GSCX is the best, 

BCSCX is the second-best, SCX is the third best and GX is 

the worst. This observation is verified by Student’s t-test at 

95% confidence level. Further we carried out a comparative 

study between HX and GSCX, found that GSCX is far 

better than HX. Thus, GSCX might be used for other related 

combinatorial optimization problems. 

In this present study, the objective was to compare the 

quality of the solutions obtained by the existing three and 

proposed one crossover operators. We did not look to 

improve the solution quality by the operators. So, we 

considered the original version of the operators. Also, we 

did not use any local search technique to design the most 

competitive algorithm for the TSP. So, we have used simple 

and pure GA process. Also, we set highest crossover 

probability to show the exact characteristics of crossover 

operators. Mutation was used with lowest probability just 

not to get stuck in local minima quickly. However, good 

local search procedure can be incorporated to hybridize the 

algorithm to solve problem instances more accurately, 

which is under our investigation. 
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