
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020 37

A Novel Approach to Explore Edhi Foundation Knowledge for

Ontology Construction

Muhammad Ahsan Raza
†
, M. Rahmah

††
, Fahad Qaswar

††
, Roslina Abd. Hamid

††
 and Sehrish Raza

†††

†Department of Information Technology, Bahauddin Zakariya University, Multan, Pakistan

††Faculty of Computing, Universiti Malaysia Pahang, Kuantan, Malaysia
†††Institute of Computer Science and Information Technology, The Women University, Multan, Pakistan

Summary
The worth of the Edhi Foundation (EF) system depends on how

well its structural knowledge can be extracted by EF users and

staff to perform daily activities. Ontology has emerged as a

semantic tool to represent the knowledge of a particular domain

and thus is a good choice for the semantic organization of EF

data. However, building an ontology that suits the needs of EF

users is a challenging task. This study presents a novel approach

that uses the UML class diagram (UCD) to construct an

ontology for the EF system. We propose UCD-to-ontology

transformation rules, that is, the ontology model that is used for

eliciting OWL ontology. We test our approach for the successful

interpretation of UCD features to OWL ontology elements and

find that the system performs well with an average precision of

97.80%.

Key words:
Knowledge Management, Ontology Engineering, Ontology

Validation, Semantic Web.

1. Introduction

In Pakistan, an increasing number of social welfare

organizations are working with the aim of serving

humanity and the betterment of their lives. The Edhi

Foundation (EF) founded in 1951 has become one of the

biggest and well-known nonprofit social welfare service

providers in Pakistan [1]. The EF provides many services,

such as shelter for deprived people, free hospitals and

medical facilities, drug and rehabilitation services,

national and international relief efforts, and ambulance

service. More than 300 service centers of the foundation

are operational across the country, including major cities,

small villages, and remote rural areas. The EF knowledge

system is evolving with the need to share information to

the public and the workers and agents to improve their

learning. The three major challenges to this knowledge

sharing are as follows:

1) crafting a shared mutual understanding among

the different users of the EF system (e.g., the

public, government agencies, and staff);

2) organizing, utilizing, and accessing knowledge

about human welfare services; and

3) facilitating the interaction between EF centers

and users across different welfare services.

To meet these challenges, we consider developing a

knowledge structure, namely, an ontology for describing

the vocabulary (i.e., concepts, properties and relationship

between concepts) of the EF domain. Furthermore, we

adopt the OWL language to build an EF ontology because

OWL is a W3C standard language that has a high level of

semantic expressivity [2]. The new EF OWL ontology

provides an unambiguous vocabulary to EF users, thus

supporting interoperability among different welfare

services, centers, and software agents. Furthermore, with

a common ontology, developing an efficient decision

support system with reasoning capabilities is possible.

Engineering an EF domain ontology requires accuracy

and efficiency. If the ontology refers to an ambiguous

relationship, then users do not acquire the necessary

knowledge. In addition, accurate ontology development is

a tedious and time-consuming task, especially for large

systems, such as EF where information evolves over time.

This study focuses on engineering an OWL ontology for

the EF domain while considering accuracy and efficiency.

We devise a unified modeling language (UML)-based

framework for ontology construction that follows four

simple steps. In this framework, UML class diagrams

(UCD) for the EF domain are created from EF data (i.e.,

documentation and user interviews) and used to build an

ontology. Furthermore, the method outlines the rules to

map UML diagrams into ontology vocabulary. The

present approach is motivated by the lack of a model to

engineer an ontology for the EF domain. Our

contributions are as follows:

1) A UML-based approach for developing an

ontology used in the EF knowledge system is

developed.

2) Important transformation rules that map UML

class level (UCL) diagram into ontology

vocabulary are outlined while fully maintaining

the domain semantics.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

38

The rest of this paper begins with Section 2, which reports

a review of related methodologies for ontology

engineering. Section 3 presents the steps of the proposed

framework to construct the EF ontology. In Section 4, the

mapping model for UCD to OWL ontology generation is

outlined. Section 5 discusses the results, and Section 6

presents the conclusion and future direction.

2. Literature Survey

Considerable effort has been exerted in developing

ontologies (also referred to as ontology engineering

approaches) to capture the domain knowledge into an

ontological semantic structure [5] [7]. These works could

be categorized as staged approaches and metamodel

mapping approaches.

2.1 Staged Approaches in Ontology Engineering

Researchers have proposed several ways to construct an

ontology from scratch [9] [18]. These methods differed in

data collection procedures, ontology application domains,

ontology structuring strategies (e.g., handling taxonomic

or nontaxonomic relations, properties, and constraints),

and ontology languages. In [6], the authors proposed a

staged approach for building an ontology in the domain of

software architecture. The approach was question-based,

that is, questions were acquired for various sources, such

as mail data, interview, or log files. The identified

questions were then analyzed to capture the structure and

semantics of architecture knowledge into ontology. The

authors in [10] claimed that ontology could be a valuable

resource for the accurate development of a chemical

engineering curriculum. The approach constructed a

chemical engineering ontology by identifying the

curriculum topic classification (i.e., topic and its

taxonomy extraction). After taxonomic relations, other

properties (attributes ad relationships) relevant to the

topic were defined. The method, which demonstrated

remarkable results, evaluated the generated ontology

using a semantic reasoner and a case study.

In another example, an ontology for data on daily life

activities was constructed using the OBO-Edit ontology

editor [17]. To construct an ontology, the procedure first

identified concepts and the hierarchy between the

concepts from data on daily life activities. The initial

ontology was then extended in the physiological context

that represents facets, such as activity time, involved

object in the activity, involved agent, and subactivity

properties.

2.2 Metamodel for Ontology Mapping Approaches

A different kind of research approach toward ontology

building was based on using a metamodel (e.g., relational

database, entity relationship diagram, software

engineering model). The metamodel reflected domain

knowledge that could be converted into an ontological

knowledge structure. Various researchers have exploited

metamodeling techniques in state-of-the-art ontological

engineering strategies [3] [4] [8].

The authors in [15] suggested a simple approach to

convert a relational database (RDB) model to an OWL

ontology. They proposed the mapping rules for RDB-to-

ontology transformation, which differs from previous

models in terms of subdata properties and subclass

conversion. The results showed that the approach

performed well in small and large databases. In recent

studies, [16] proposed an idea to generate an ontology

from extended entity relationship diagram (ERD) schema.

With mapping information for the translation of ERD

elements to OWL constructs, the model appeared to be

effective in different practical scenarios.

Many researchers have focused on using UML diagrams

(i.e., approaches related to this study) for ontology

generation [13] [19]. In [11], authors generated RDF

ontologies via UML modeling to support experts who are

less familiar with the ontology structure. The system

demo considered user input in the ontology construction

to include unmapped terms. However, no detail about

UML to RDF mapping rules or conversion processes was

discussed by authors. Another similar approach was

presented by [14], where an ontology was created from

UCL diagrams to support e-learning. The study proposed

UML-to-OWL ontology conversion but did not focus on

UML mapping constraints, such as multiplicity of

relationships, null value restrictions, and class

disjointness.

In the present study, we presented a refined ontological

engineering approach that combines the staged

development method (to enable ontology construction

from scratch) and the UML model (to obtain accurate

domain knowledge). We outlined a comprehensive set of

mapping rules to facilitate the transition of the UCD to an

OWL ontology while maintaining all semantic facets.

3. Framework for EF Ontology Construction

To develop an EF OWL ontology, this study proposes a

framework that utilizes software engineering modeling (as

depicted in Figure 1). Our approach consists of four

phases: feasibility study, conceptual model, ontology

model, and evaluation. Other activities, such as

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

39

knowledge acquisition of the EF domain (performed in

parallel in the first two phases), use of a software

engineering model (spans throughout phases 2 and 3),

and EF ontology validation (conducted in the last step),

facilitate the successful execution of the proposed

framework.

Fig. 1 Steps of EF ontology construction framework.

3.1 Feasibility Study

The EF knowledge system involves numerous centers that

handle various social welfare services; thus, the first step

of our approach is to identify existing EF problems and

needs. This information is acquired by investigating EF

documentation and interviewing users. A representative

sample of users for each EF service centers is interviewed

about their daily activities. For example, Edhi home

service staff members are asked about the supply of food

and clothing to poor persons, room management, and

health arrangements.

Based on the data about problems and needs, the

feasibility study determines the scope of the EF ontology,

that is, why ontology is being developed (i.e., purpose),

what should be added or excluded from the ontology (i.e.,

the conceptualization of domain), and the type of

information the ontology should provide (useful for

evaluation). This phase ends with a feasibility document

that contains requirement specifications and other features

needed to build the ontology.

3.2 Conceptual Model

In this phase, the EF concepts (words or phrases) are

identified from the data collected in the previous step.

Furthermore, the concepts are classified to represent the

ontology’s vocabulary, such as class and properties

(attribute and relationship). The conceptual model phase

is implemented in three steps as follows:

1) Concept Identification

The list of concepts that describe the subjects (i.e., nouns)

is identified and further clarified with the EF users. For

instance, Edhi_homes, Edhi_services, Ambulance,

Charitable_shop, and Children_services are recognized as

key concepts of the EF.

2) Properties and Hierarchy Definition

This step defines the attributes and properties

(relationships with other concepts) of the identified

concepts. The individual concept with defined properties

is now called a class. Moreover, the list of classes is

organized into a taxonomy (e.g., the ambulance class is

categorized as a subclass of Edhi_service class). The

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

40

authors in [6] have identified three approaches to define

the classification: (1) a top-down model that starts with

the definition of the most general class and then specifies

the subclasses; (2) a bottom-up model that is an inverse of

the first model, where the most specific class is described

first; (3) a hybrid model that combines the properties of

the top-down and bottom-up models. To build the EF

taxonomy, we focus on the hybrid classification model.

3) Domain Modeling

Modeling is necessary to identify the interaction and

behavior of identified classes. From existing models [5],

we select a UML model for two reasons: (1) UML is a

well-established model in the software engineering field.

In addition, UML diagrams are readily available and

require minimal guidance from software project experts.

Therefore, these diagrams can be created accurately and

efficiently for any domain of interest. (2) UML is similar

to an ontology structure in terms of scope (i.e., UML

components are relevant to OWL ontology vocabulary). In

particular, we focus on the class level diagram in UML to

model the EF domain taxonomy, concept behavior, and

interaction between concepts. For instance, Figure 2

depicts the hierarchical relationship of the

Edhi_Foundation class with its subclasses (e.g.,

Edhi_service and Edhi_centres) in UML.

Fig. 2 UML class hierarchy diagram

3.3 Ontology Model

One important part of the EF ontology engineering

approach is to map the already crafted UCD (i.e., the

output of domain modeling step) into the ontology

vocabulary. In the ontology model phase, we define the

rules for transforming each aspect of the UCD (i.e., class;

relationships, such as dependency and association; and

participation) to the corresponding component of the

ontology. These mapping rules are called collectively as

an ontology model, which is discussed in Section 4.

3.4 Evaluation

The EF ontology (generated after implementing the rules

of the ontology model) can be evaluated in two different

parameters: the accuracy of the ontology schema

(consistency parameter) and the effectiveness of the rules

in the ontology model (quality parameter).

1) Consistency Metric

Various semantic reasoners (such as Pallet, HerMiT) for

inferring the logical consequences within the ontology

vocabulary are available [12]. An automated reasoner

derives mismatches within the ontology taxonomy,

thereby indicating the clarity and consistency of the newly

generated ontology.

2) Quality Metric

To address the quality of the proposed ontology model

(i.e., mapping rules) in the transformation of UML to

ontology, we adopt a precision ratio, which is a widely

accepted measure (See Section 5).

4. Ontology Modeling

We develop an intuitive ontology model that describes the

rules to transform the UCD element to an OWL ontology

vocabulary because of the component similarity between

the UCD and the ontology (i.e., both use classes and

relationships). In this section, we first describe the UCD

model of the EF domain. Second, we discuss the proposed

ontology model (i.e., UCD to OWL transformation) to

create the EF OWL ontology.

4.1 EF Conceptualization

The proposed framework uses UCD to represent the EF

domain data. For UCD formalization, we only focus on

the core features of UCD that are necessary to express the

ontological knowledge. Table 1 outlines the UCD features

and associated EF conceptual data (i.e., total number

classes, corresponding attributes, relationships, and

constraints). Edhi services and centers are recognized as

two major classes of the EF. The Edhi services class is

divided into 20 subclasses, such as ambulance, Edhi

education, and hospital classes. The Edhi centers class

consists of five subclasses, e.g., Sindh province class and

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

41

KPK province class. These identified subclasses are

further extended into 63 child classes. Furthermore, the

classes contain attributes and are linked with others using

relationships.

4.2 Ontology Model: Introducing Transformation

Rules

The ontology model proposes rules for transforming the

EF UCD syntax to an EF OWL ontology. Table 2 lists

these transformation rules, whereby each UML element

(also represented in symbolic form) is mapped to the

OWL vocabulary (given as OWL syntax) by applying a

mapping rule. For instance, the UCD class is mapped to

the OWL class, the class attribute is translated to an OWL

datatype property, and the UCD relationship is interpreted

as an OWL object property. In addition, the UCD

cardinality restriction (for attribute and relationship) is

also mapped to the OWL restriction by setting min-

cardinality or max-cardinality construct.

Table 1: EF Conceptual Data in Terms of UCD Elements

UCD

features

Examples Total

number

1. Classes Edhi foundation, Edhi

services, Edhi centers,

Provinces, Ambulance,

Children services, Edhi homes,

Orphanages, Edhi maurge,

Edhi rikshaw ROZGAR,

Educational services

90

2. Attributes Edhi foundation (regno,

regName);

Edhi services (serviceID, Title,

dateOffered, purpose);

Edhi center (centerID, Cname,

Phone)

215

3. Types of

relationships

ISA, Existence dependency,

composition, aggregation,

association

5

4. Types of

constraints

Unique, Disjoint, cardinality 3

5. Implementation and Result Discussion

Our approach used the EF system UCD and the proposed

ontology model to generate an OWL ontology for the EF

knowledge system. We developed a prototype using the

Protégé ontology editor as a proof of concept. Protégé

facilitates UCD-to-OWL ontology translation via

effortless and quick (using graphic user interface)

implementation of ontology model rules and reduces the

cost of ontology development because it is a free open-

source platform. Other plug-ins, such as the OntoViz tool

and the Pallet semantic reasoning engine, were

respectively used for the visualization and evaluation of

the newly created EF ontology. Our system prototype took

the UCD file of the EF system as input, parsed it

according to the rules of the ontology model, and

constructed the OWL ontology. Figure 3 from the

OntoViz plug-in illustrates the structure of the resulting

EF ontology.

To validate the structure of the final EF ontology, we

relied on the semantic reasoner test and the quality

checking of UCD-to-ontology conversion on the basis of

the ontology model’s rules (as mentioned in Section III-

D). The semantic reasoner was a good choice to assess the

accuracy (including class duplication, class and subclass

taxonomy, ontology consistency) of the new ontology

according to the defined conceptualization. To this end,

we used the Pallet logic reasoner (a Protégé plug-in) and

found a consistency of 100% among the components of

the resultant EF OWL ontology.

To estimate the successful implementation of the ontology

model rules via system prototype, we relied on the

opinions of experts to assess whether UML elements are

precisely mapped to corresponding OWL ontology

components. Two groups of experts (each comprising 12

computer science research students and faculty members)

were given three types of files: (1) UCD file, (2) ontology

model, and (3) newly generated OWL ontology file. Each

group evaluated the OWL file in terms of class mapping,

taxonomy mapping, property (data type and object)

mapping, and constraint (cardinality and disjoint

restriction) mapping while considering the EF UCD

document. In addition, we shuffled the perceived

evaluation of each group with other group to achieve

accurate results.

On the basis of the assessment data of the experts, we

manually calculated the precision measure using Eq. 1.

The precision metric was adopted to indicate the

effectiveness of our method for the accurate conversion of

UCD elements to OWL ontology vocabulary.

V ofnumber Total

ation transformV ofnumber Valid
 =Precision , (1)

where V represents UCD features, such as class, attribute,

relationship, or cardinality.

The precision measure was tested for five OWL facets in

EF ontology (i.e., class, subclass of relationship, data type

property, object property, and restrictions on properties).

Figure 4 presents the precision statistics of these OWL

facets in the form of a column chart. Overall, the

proposed method attained 97.20% value for average

precision during the EF ontology building process.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

42

Table 2: Ontology Model Representing UML to Ontology Mapping

UML element UML symbol Mapping rules OWL ontology example

Class:

Represent set structure

(e.g., UML Edhi services class)

- Map UML class to class entity in

ontology

<owl:Class rdf:about=“#Edhi_Services” >

<rdfs:comment> this class contain all instances of

Edhi services </rdfs:comment>

</owl:Class>

Attribute:

Represent property of

class

+AttributeName : Typename

[constraint]

(e.g., city is attribute of UML

Edhi Center class)

- Map UML attribute to Data-type

Property in ontology, where domain of

property is set to class and range of

property is set to XML data type.

<owl:DatatypeProperty rdf:ID =“city”>

<owl:domain rdf:resource =“#Edhi_Center”/>

 <rdfs:range rdf:resource =

“http://www.w3.org/2000/01/rdf-schema#string”/>

</owl:DatatypeProperty>

Attribute Constraints:

Represent restrictions on

property of class

Null [*] -Min-cardinality is set to zero for Data

type property.

 (e.g., center_comment attribute of

class may contain null value)

<owl:minCardinality rdf:datatype = “&xsd; Integer”>

0

</owl:minCardinality>

Not Null [1..5] - Min-cardinality is set to one for Data

type property.

- Max-cardinality is set to two for Data

type property.

<owl:minCardinality rdf:datatype = “&xsd;Integer”>

1 </owl:minCardinality>

<owl:maxCardinality rdf:datatype = “&xsd; Integer”>

5 </owl:minCardinality>

Unique [1] - Map to Functional and inverse

Functional Data-type Properties.

 (e.g., center_id attribute of

Edhi_Cetners class must have unique

value)

<owl:FunctionalProperty rdf:about =“#center_id” />

<owl:InverseFunctionalProperty rdf:about =“#

center_id”/>

Generalization:

Represent hierarchical

relationship between

classes

 Generalization

(e.g., UML Edhi services class is

child class of UML Ehdi

foundation class)

- Map Edhi services class as

SubclassOf construct to Edhi

foundation class in ontology.

<owl:Class rdf:about =“#Edhi_Services “>

<rdfs: comment> Edhi Services is the sub-class of

Edhi Foundation. Which shows

inheritance</rdfs:comment>

<rdfs:subClassOf rdf:resource =“#

Edhi_Foundation”>

</owl:Class>

Dependency

relationship:

A class existence

depends on other class.

 Dependency

(e.g., UML Ambulance class

existence is dependent on Edhi

services class)

- Map to object property (e.g., Include)

by setting domain and range to a class

in ontology.

- Include FunctionalProperty because

Ambulance class must have a unique

individual against Edhi service class.

<owl:ObjectProperty rdf:ID =“ Include “>
 <rdf:type rdf:resource =“&owl;FunctionalProperty”
/>
<rdfs:domain rdf:resource =“# Edhi_Services “ />
 <rdfs:range rdf:resource =“# Ambulance” />
 </owl:ObjectProperty>

Association

Relationship

A class is seen in two

roles with associated

other class.

 Association

(e.g., UML Edhi centers class

has two roles with UML Edhi

services class)

- Map to two Object Properties in

ontology, where one object property is

inverse of other object property.

<owl:ObjectProperty rdf:ID =“Offers”>

<rdfs:domain rdf:resource =“# Edhi_Centers “/>

<rdfs:range rdf:resource =“# Edhi_Services “/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID =“OfferedBy”>

<owl:inverseOf rdf:resource =“#Offers”/>

</owl:ObjectProperty>

Aggregation relationship

It is a sort of association

relationship,

representing Is_Part

relationship

 Aggregation

(e.g., UML Sakhar center class

is a part of UML Sindh center

class)

- Map to object property (e.g.,

Center_Part) by setting domain and

range to a class in ontology.

<owl:ObjectProperty rdf:ID =“Center_Part”>

<rdfs:domain rdf:resource =“#Sakhar_Center”/>

<rdfs:range rdf:resource =“#Sindh_Center “/>

</owl:ObjectProperty>

Composition

relationship:

It is inverse of

aggregation,

representing Is_Whole

relationship

 Composition

(e.g., UML Sindh center class

represent a whole of UML

Sakhar center class)

- Map object property as inverse of

aggregation property.

<owl:ObjectProperty rdf:ID =“Whole_Center”>

<owl:inverseOf rdf:resource =“#Center_Part”/>

</owl:ObjectProperty>

Multiplicity of

Relationships

[low….high] :

 [0 …. 10]

 (e.g., 0 to 10 multiplicity exist

for Offer association relationship

- Map to minimum and maximum

cardinalities of object property in

ontology.

<owl:minCardinality rdf:datatype = “&xsd; Integer”>

0

</owl:minCardinality>

<owl:maxCardinality rdf:datatype = “&xsd; Integer”>

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

43

Represent cardinality

restriction of

relationships

between UML Edhi services

class and UML Ambulance class

10

</owl:minCardinality>

Disjoint Constraint:

Represent that two

classes member are

distinct.

 { disjoint }

(e.g., Edhi services class and

Ehdi centers class are disjoint)

- Map to disjointWith constructor in

ontology

<owl:Class rdf:about =“#Edhi_Services “>

<owl:disjointWith rdf:resource =

“#Edhi_Centers”/>

</owl:Class>

Fig. 3 Snapshot of EF ontology from OntoViz

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.8, August 2014

44

Fig. 4 Precision values for five OWL facets

6. Conclusion and Future Work

The use of ontology for the EF system can improve

knowledge representation and acquisition. For an

ontology-oriented EF system, EF ontology must be

constructed in consideration of the domain semantics and

different needs of individual EF users. However, manual

ontology creation for the EF knowledge system is

challenging because EF is a large organization that has a

diverse number of users. This study aims to describe a

manual ontology engineering approach in the context of

large and complex systems, such as EF organization. Our

approach uses the UCD document that is created from EF

documentation and user input. EF semantic vocabulary is

then identified from the UCD document and modeled in

OWL ontology.

We devise an ontology model that outlines the rules for

transforming the UCD elements into OWL constructs. For

instance, the UCS class is translated to an OWL class, the

UCD class hierarchy becomes OWL sub-class

relationships, and the UCD class attributes are converted

to OWL properties of the appropriate class. UML

cardinality mapping is also defined to construct a precise

ontology for the EF system. We find that the use of UCD

in ontology construction is beneficial: (1) UML is a well-

established modeling language, (2) building a UCD

document is quick because experts are readily available,

and (3) the class level diagram of UML shares a semantic

similarity with OWL ontology language in terms of

components.

Our approach caters for the consistency test of the

resultant EF ontology. We use a Pallet semantic reasoning

engine that shows no traces of violation (such as class

duplication, problem in class hierarchy assertion, or

misinterpretation of properties) in new OWL ontology

vocabulary. Moreover, we evaluate the proposed ontology

model rules that influence the successful implementation

of our system prototype. Experts assess the EF ontology

generated by the prototype and confirm that it correctly

represents all the semantics of the EF UCD. These

findings show that our approach is suitable for EF

knowledge gathering and its accurate explicit

representation in the form of EF ontology. In the future,

we plan to improve our approach for handling the UCD

ternary association in ontology construction using the

reification phenomena.

References
[1] M. Saba, A. Noor, and S. Malik, “An Analysis into the

Spatial Distribution of Trauma Incidents and Ambulance

Functionalities in Karachi,” Journal of Space Technology,

vol. 7, no. 1, 2017.

[2] M. Fahad, "ER2OWL: Generating OWL Ontology from ER

Diagram," Intelligent Information Processing IV. pp. 28-37.

[3] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan, “Automatic

extraction of OWL ontologies from UML class diagrams: a

semantics-preserving approach,” World Wide Web, vol. 15,

no. 5, pp. 517-545, September 01, 2012.

[4] M. A. Raza, M. Rahmah, S. Raza, A. Noraziah, and R. A.

Hamid, “A Methodology for Engineering Domain Ontology

using Entity Relationship Model,” International Journal of

Advanced Computer Science and Applications(IJACSA),

vol. 10, no. 8, 2019.

[5] R. Iqbal, M. A. A. Murad, A. Mustapha, and N. M. Sharef,

“An analysis of ontology engineering methodologies: a

literature review,” Research Journal of Applied Sciences,

Engineering and Technology, vol. 6 (16) pp. 2993-3000,

2013.

[6] K. A. de Graaf, P. Liang, A. Tang, W. R. van Hage, and H.

van Vliet, “An exploratory study on ontology engineering

for software architecture documentation,” Computers in

Industry, vol. 65, no. 7, pp. 1053-1064, 2014/09/01/, 2014.

[7] M. S. Rahman, and G. Rabby, “Design and Development of

a University Human Resource Ontology Model for

Semantic Web,” International Journal of Computer Science

and Network Security, vol. 17, no. 1, pp. 187-192, 2017.

[8] M. A. Raza, and B. Raza, “Comparative Analysis of

Ontology Extraction Techniques from Relational

Database,” SCIENCE INTERNATIONAL, vol. 4, pp. 3589-

3595, 2016.

[9] Y. Zeng, J. Zhuang, and Z. Su, "Construction of Domain

Ontology for Engineering Equipment Maintenance

Support," Knowledge Graph and Semantic Computing:

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

45

Semantic, Knowledge, and Linked Big Data. 2016, pp. 33-

38.

[10] M. Bussemaker, N. Trokanas, and F. Cecelja, “An

ontological approach to chemical engineering curriculum

development,” Computers & Chemical Engineering, vol.

106, pp. 927-941, 2017/11/02/, 2017.

[11] D. De Paepe, G. Thijs, R. Buyle, R. Verborgh, and E.

Mannens, "Automated UML-Based Ontology Generation in

OSLO2," The Semantic Web: ESWC 2017 Satellite Events.

pp. 93-97.

[12] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, and

A. Steigmiller, “The OWL Reasoner Evaluation (ORE)

2015 Competition Report,” Journal of automated reasoning,

vol. 59, no. 4, pp. 455-482, 2017.

[13] N. Hong-Seok, O. H. Choi, and L. Jung-Eun, "A Method

for Building Domain Ontologies based on the

Transformation of UML Models." pp. 332-338.

[14] B. Bouihi, and M. Bahaj, “Moodle's Ontology Development

from UML for Social Learning Network Analysis,” in

Proceedings of the International Conference on Learning

and Optimization Algorithms: Theory and Applications,

Rabat, Morocco, 2018, pp. 1-6.

[15] T. Naz, M. Shuja, S. K. Shahzad, and M. Atif, “Fully

automatic OWL generator from RDB schema,”

International Journal of Advanced and Applied Sciences

vol. 5(4), pp. 79-86, 2018.

[16] Z. Telnarova, "Transformation of Extended Entity

Relationship Model into Ontology," Intelligent Information

and Database Systems. pp. 256-264.

[17] P. R. Woznowski, E. L. Tonkin, and P. A. Flach,

“Activities of Daily Living Ontology for Ubiquitous

Systems: Development and Evaluation,” Sensors, vol. 18(7),

2361, 2018.

[18] Y. E. ALLIOU, and O. E. BEQQALI, “O’Neurolog –

Building an Ontology for Neurology in Mobile

Environment,” International Journal of Computer Science

and Network Security, vol. 12, no. 7, pp. 91-100, 2012.

[19] J. Bakkas, and M. Bahaj, “Automatic Conversion Method

of Class Diagrams to Ontologies Maintaining Their

Semantic Features,” International Journal of Soft

Computing & Engineering vol. 2, no. 6, 2013

