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Abstract 
Access Controls (AC) are one of the main means of defense in IT 
systems, unfortunately, Big Data Systems are still lacking in this 
field, the current well-known  ACs are vulnerable and can be 
compromised because of policy misconfiguration and lack of 
contextuality. In this article we propose a Machine Learning 
approach to optimize ABAC (Attribute Based Access Control) 
with the aim to reduce the attacks that are overlooked by the 

hardcoded policies (i.e: users abusing their privileges). We use 
unsupervised learning outlier detection algorithms to detect 
anomalous user behaviors. The Framework was implemented in 
Python and its performance tested using the UNSW-NB15 Data 
Set. 
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1. Introduction: 

The quantitative explosion of digital data has forced 

researchers to find new ways of seeing and analyzing the 

world. This means discovering new orders of magnitude in 
the capture, retrieval, sharing, storage, analysis and 

presentation of data. Thus, the "Big Data" was born. It is a 

concept for storing an indescribable amount of information 

on a numerical basis.  

Invented by the giants of the web, Big Data is a solution 

designed to allow everyone to access giant databases in 

real time. It aims to offer a choice to classic database and 

analysis solutions (Business Intelligence platform in SQL 

server...). 

This concept brings together a family of tools that respond 

to a problem known as the 3V rule. These include a 

considerable Volume of data to be processed, a wide 
Variety of information (from various sources, unstructured, 

organized, open...) and a certain level of Velocity to be 

reached, i.e. the frequency with which this data is created, 

collected and shared. 

Numerous technological advances have driven this 

phenomenon forward. The most important are the 

emergence of NoSQL datastores [1] and distributed 

computing paradigms such as MapReduce [2], which 

collectively opened the way to managing and 

systematically analyzing large quantities of semi-

structured information (e.g. transactions, digital records 

and emails). 

Overall, the traditional data management schemes cannot 
provide support for storing and analyzing large and 

heterogeneous datasets, thus the need for specific Big Data 

Platforms. These new systems not only provide 

exceptional flexibility and efficacy of the analytical 

services, but also outperform traditional systems, even in 

terms of performance and scalability. 

However, BigData schemes do not have the same 

standards of information security characteristics [3]. While 

a range of data protection frameworks have been 

suggested for traditional schemes (see, for example [4, 5, 

6]) these frameworks cannot work for Big Data platforms. 

Unconstrained access to large data volume, the sensitive 
and private material of certain information resources, and 

the sophisticated analytical and predictive capacities of 

Big Data analytical systems could pose a severe 

threat.There is also another issue rising with the public 

availability of large data sets: Big Data analysis tools can 

be used to infer more personal identity user data. As it was 

shown in [7] and [8] where they used publicly available 

data sets to de-anonymize the supposedly Anonymized 

Netflix Data Set [9]. As a result, while the prospective 

advantages of Big Data analytics are unquestionable, the 

absence of conventional data protection instruments is 
constituting a friendly environment for prospective 

attackers. 

A very challenging study task is defining appropriate 

information security instruments tailored for Big Data 

systems. As said earlier security enforcement techniques 

proposed for traditional systems can not be used for Big 

Data. The task, therefore, is to protect privacy and 

confidentiality while not hindering data analytics and 

exchange of information. Additional elements, such as the 

multitude of data models and data analysis and processing 

tools used by Big Data systems, add to the difficulty of 

this objective. Indeed, Big Data applications, distinct from 
RDBMSs, are defined by distinct data models [1] , the 

most noticeable being key-value, wide columns and 

document-oriented applications. 

Before proceeding with the presentation of our 

contribution, we must first define a number of criteria that 

should be satisfied by any access control solution for Big 

Data systems.  
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2. Requirements for big data access controls: 

In this chapter, we provide an outline of the main criteria 

for establishing a Big Data access control system.  

A. Fine-grained access control: 

Fine grained access control (FGAC) has been commonly 

acknowledged as one of the basic components for efficient 

security of private and delicate information in terms of 

characteristics that should be supported by the access 

control system [4, 10]. 

Since information handled by Big Data analytics systems 
often refer and process user private features, it is essential 

that access control rules should be linked to the data at the 

finest granularity levels. The associated enforcement 

processes however, needs to be developed from scratch, as 

those suggested for conventional systems depend on data 

relating to a known schema, while data is heterogeneous 

and does not follow one exact schema in big data. 

B. Context Management: 

Another important factor to consider is supporting context-

based entry restrictions, as these enable for extremely 

tailored types of access control. They can be used, for 

example, to restrict entry to particular time intervals or 

geographical locations. In the event that contexts are used 
to generate access control decisions, access authorisations 

are given when requirements are met relating to 

environmental characteristics. 

C. Efficiency of Access Control: 

The features of the Big Data environment, such as the 

distributed design, the complexity of the queries and the 

reliance on efficiency, involve implementation policies for 

access control that do not change the usability of the 

analytical frameworks. Based on this, the number of 

checks to be performed during access control enforcement 

may match or be even greater than the number of data 

records, and up to hundreds of millions of such records 

may be included in the Big Data scenario. This needs 
efficient policy compliance mechanisms. Two primary 

methods have implemented FGAC in traditional relational 

DBMSs. The first is view-based, where users are only 

allowed to access a portion (view) of the target dataset that 

meets the restrictions on access control, while the second 

is based on the rewriting of queries: under such a method, 

the request is altered at runtime by injecting restrictions 

placed by the designated access control policies instead of 

pre-computing the authorized views. Therefore, it is 

essential to determine how appropriate these methods are 

for the Big Data case and how they may be tailored or 

expanded. 

3. Related work: 

There are several suggestions in the literature that tackle 

the problem of access control for Big Data and meet some 

of the criteria outlined in the last chapter [13]. We can 

classify these ideas into two primary classifications: 

A. Platform specific approaches:  

Access control frameworks in this group are intended for 

only one system (e.g., MongoDB, Hadoop) and may 

leverage the protected platform's indigenous access control 

attributes. The primary benefit of this approach is that it is 
possible to optimize the designed access control solution 

for the target system, but its usability and interoperability 

are very restricted. 

B. Platform independent approaches: 

The methods falling within this category suggest 

alternatives for access control that do not only target a 

particular platform. Platform independent approaches have 

the advantage of being more general than specific platform 

solutions, but they lack in terms of efficiency as they 

cannot compete with platform specific ones. The 

approaches in this category focus mainly on efforts 

attempting to define a unifying query language for NoSQL 

datastores like JSONiq [11] and SQL++ [12].  

4. Contribution 

In this paper, we suggest a platform independent access 

control framework. It’s basically an improved version of 

ABAC [40] to prevent the exploitation of misconfiguration. 

Our proposed solution makes it possible to optimize access 

control rules based on behavioral characteristics that are 

tracked at runtime. Our designed system, called DABAC 
(Dynamic Attribute Based Access Control), takes 

advantage of Machine Learning algorithms aimed at 

detecting unusual and anomalous user behaviours to 

accurately tune policies. This will both improve insider 

threat detection and access control [14,15]. 

In this chapter we will expand on details of all the 

components of our framework. 

A. ABAC: 

The Attribute-Based Access Control (ABAC), also known 

as policy-based access control, defines a paradigm access 

control in which access rights are granted to users through 

the use of policies that combine attributes together. 

Policies can use any type of attributes (user attributes, 
resource attributes, object, attribute environment, etc.). 

This model supports Boolean logic, in which rules contain 

" if, then " about who makes the request, the resource, and 
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the action. For example, if the requester is a manager, then 

allow read/write access to sensitive data. 

Unlike role-based access control (RBAC)[16], which 

employs predefined roles that have a set of specific 

privilege measures associated with them and to which 

subjects are assigned, the main difference with ABAC is 
the concept of policies that express a complex set of 

boolean rules that allow for the evaluation of many 

different attributes. 

 
Our approach aims to transform ABAC into a "next 

generation" authorization model, with dynamic, context-

sensitive, and risk-intelligent access control to resources 

enabling access control policies that include specific 

attributes of different information systems to be defined to 

resolve an authorization and achieve effective regulatory 

compliance, allowing flexibility in companies to 

implement them according to their existing infrastructures.  

PEP (Policy Enforcement Point) : is the component 

responsible for authorization. It intercepts the user’s 

request for authorization then communicate with the PDP 

to obtain a decision and act upon it. 
PDP (Policy Decision Point) : runs the decision evaluation 

of the request against decision policies 

PAP (Policy Administration Point) : allows policy 

administration, management, and distribution 

PIP (Policy Information Point) : The system entity that 

acts as a source of attribute values (i.e. a resource, subject, 

environment) [17]. 

B. Problematic:  

To explain our approach and why it is needed, let us 

consider an ABAC framework that manages access to 

software projects within an enterprise where the 

permissions of users depend on their position and the 
projects to which they are assigned. 

Let us assume a policy of access control that allows users 

assigned to the position of junior developer to read type 

ResA resources. Nevertheless, such resources can only be 

accessed by junior developers working on Project I and 

from Department I. We are using Python in our 

implementation, so the policy will look like this: 
 

policy = dabac.Policy(   

1,   

actions=[Eq('read')],   

resources=["ResA"],   

subjects=[{'role': "Junior Developer", 

'department': "Department I", 

'project': "Project I"}],   

effect=dabac.ALLOW_ACCESS,   

description="""  

Allow to junior devs from department I 

working on project I to read ressources 

of type ResA   

"""   

) 

Intuitively, our sample policy’s purpose is to specify a 

condition of access based on attributes that describes what 

action a particular subject may take on a resource. 

Let's assume that Alice, a Department I junior developer, 

is trying to read a type ResA resource defined by the 

following access request: 
 
inq = dabac.Inquiry(action='read', 

resource="ResA", 

subject={'role': "Junior Developer", 

'department': "Department I", 

'project': "Project I"}) 

 

It is easy to observe that the attributes in the request fit the 

rule requirement, giving rise to an ALLOW_ACCESS. 

Imagine now that Alice is trying to retrieve a large number 

of confidential project documents without a valid reason. 

As exemplified by the previous request, policy 1 will 

allow him to do so without taking into account how many 

documents she has retrieved. Nevertheless, this 

circumstance may suggest that the junior developer abuses 

his right of access for personal interests and benefits (e.g. 

selling documents to the competition). 
Existing access control mechanisms are unable to avoid 

these insider attacks. The main problem is that access 

control is static in the sense that the implemented 

conditions for access do not change dynamically based on 

user behaviour. That’s why our approach takes other 

contextual and situational factors into account. For 

 

Fig. 1  XACML (one of the key implementations of ABAC) architecture 

and a sample authorization flow. 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020 

 

 

86 

example: Could a user in a given time period perform 

multiple read queries? Can he access large quantities of 

data? Failure to respond to these questions that result in 

neglect of anomalous conduct that represents the misuse of 

privileges granted to insider threats. 

In order to reduce the risks of users abusing their rights, 
we need to empower access control with proactive 

measures to change user behavior policies. In general, our 

aim is to dynamically optimize access control policies 

based on user activity that is controlled by narrowing 

privileges at runtime. 

To achieve this goal, we need to equip access control 

systems with means of continuously monitoring user 

activities and flagging any suspicious and anomalous 

behaviour. It involves adding a component to the PIP 

(Policy Information Point) that provides an additional 

attribute to the user’s query. 

So for the previous scenario, the query is compatible with 
the policy, but the Machine Learning algorithm would flag 

the query as an anomaly and then the PDP would deny 

access to the user because of that. 

C. Architecture: 

Our frameworks tries to improve the classic ABAC 

architecture by adding a monitoring and outlier detection 

component into the PIP (Policy Information Point)  

 

 
Fig. 2  DABAC Architecture 

The user Alice requests to read the resource #123 (step1), 

the PEP intercepts it and communicates it to the PDP 

(step2) in order for it to be processed. Then the PDP 

checks with both the PAP (step 3) to see if this request is 

compliant with any of the policies. And with the 

Monitoring System who is constantly feeding the Machine 

Learning algorithm with data. The PDP then receives 

feedback regarding the request (step 4). If the request is an 

anomaly or/and if no existing policies are matching the 

request then the PDP will issue a Deny for Alice and she 

won’t be able to read the resource #123. 

D. Outlier Detection: 

Anomaly detection or Outlier detection is the identification 

of unexpected events or occurrences in a data set, that 

differ in some way or another from the norm. This can be 

an easy task for two dimensional data, as a simple 

visualization of the two variables is enough to detect an 
outlier, as shown in figure 3, when plotting X and Y we 

see a cluster of points with two relatively distant points, 

those points are outliers  

 

Fig. 3  Univariate Outlier Detection 

Data visualization can often be a good starting point for 

identifying anomalies when dealing with one or two 

variables. However, this approach becomes increasingly 

difficult when it scales to high-dimensional data (which is 

our case here, as network traffic data have multiple 

variables). Luckily this is where Machine Learning 

algorithms come to help. We will introduce the most 

efficient algorithms used in anomaly detection. 
1) K – Nearest Neighbours (KNN): 

The KNN algorithm is one of the simplest machine 

learning algorithms[18, 19, 20, 21].  In a context of 

classification of a new observation 𝑥, the simple founding 

idea is to make the closest neighbours of this observation 

vote. The class of 𝑥  is determined as a function of the 

majority class among the 𝑘  nearest neighbors of the 

observation 𝑥. The KNN method is thus a neighborhood-

based, non-parametric method; this means that the 

algorithm allows to make a classification without making a 

hypothesis on the function 𝑦 = 𝑓(𝑥1, 𝑥2, …𝑥𝑝)  which 

links the dependent variable to the independent variables.  
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K-NN needs a function to calculate the distance between 

two observations. The closer two points are to each other, 

the more similar they are and vice versa.  

There are several distance calculation functions, including 

Euclidean distance, Manhattan distance, Minkowski 

distance, Jaccard distance, Hamming distance...etc. The 
distance function is chosen according to the types of data 

being manipulated. Thus for data of the same type, the 

Euclidean distance is a good candidate. As for the 

Manhattan distance, it is a good measure to use when the 

input variables are not of the same type as it is for our case 

here. The Manhattan distance: calculates the sum of the 

absolute values of the differences between the coordinates 

of two points:  

𝐷𝑚(𝑥, 𝑦) =  ∑ | 𝑥𝑖 − 𝑦𝑖  |
𝑘

𝑖=1
 

2) Isolation Forest: 
 

Isolation Forest [22] is an unsupervised machine learning 

algorithm calculates an anomaly score for each piece of 

data in the set, a measure of how atypical the data in 
question is. In order to calculate this score, the algorithm 

isolates the data in question recursively: it chooses a 

descriptor and a "cut-off point" at random, then evaluates 

whether this isolates the data in question; if so, the 

algorithm stops, otherwise it chooses another descriptor 

and another cut-off point at random, and so on until the 

data is isolated from the rest. 

Recursive data partitioning can be represented as a 

decision tree [24], and the number of breaks needed to 

isolate a piece of data simply corresponds to the path taken 

in the tree from the root to the leaf, representing the 

isolated data. The path length defines the anomaly score: 
data with a very short path, i.e. data that is easy to isolate, 

is also likely to be anomalies, since it is very far from the 

other data in the set. 

As with random forests [23], it is possible to do this 

independently by using several trees, in order to combine 

their results to improve performance. In this case, the 

anomaly score is the average of the path lengths on the 

different trees. This algorithm is particularly useful 

because it is very fast and does not require complicated 

parameterization. 

3) Histogram-Based Outlier Score (HBOS) : 
To Calculate the HBOS [25]. First, a univariate histogram 
is constructed for each single feature (dimension). If the 

feature consists of categorical data, a simple counting of 

the values of each category is performed and the relative 

frequency (height of the histogram) is calculated. Two 

different methods can be used for numerical features: (1) 

Static bin-width histograms or (2) dynamic bin-width 

histograms. The first method is the standard histogram 

building technique using 𝑘 equal width bins over the range 

of values. The frequency (relative number) of samples 

falling into each bin is used to estimate the density (height 

of the bins). The dynamic bin-width is determined as 

follows: the values are sorted first and then the fixed 

number of successive 
𝑁

𝑘
 values is grouped into a single bin 

where 𝑁  is the total number of instances and 𝑘  is the 

number of bins. Since the area of a bin in a histogram 

reflects the number of observations, it is the same for all 

bins. Because the width of the bin is determined by the 

first and last value and the area is the same for all bins, the 

height of each bin can be calculated.  
The reason that both methods are offered in HBOS is due 

to the fact that the feature values have very different 

distributions in real world data. Particularly when value 

ranges have large gaps (intervals without data instances), 

the fixed bin width approach poorly estimates the density 

(a few bins may contain most data). Due to the fact that 

outliers are far away from normal data, anomaly detection 

tasks usually involve these gaps in the value ranges, we 

suggest using the dynamic width mode, particularly if the 

distributions are unknown or long tailed. Besides, you also 

need to set the number of bins 𝑘. A commonly used rule of 

thumb is to set 𝑘  to the square root of the number of 

instances 𝑁.  

Now a different histogram is created for each dimension 𝑑, 

where the height of each single bin represents a density 

approximation. Then the histograms are normalized in 

such a way that the maximum height is 1.0. It means that 

each feature has equal weight to the outlier score 

Ultimately, the HBOS is measured for each instance p 

using the corresponding height of the bins where the 
instance is located: 

 

𝐻𝐵𝑂𝑆(𝑝) =  ∑log (
1

ℎ𝑖𝑠𝑡𝑖(𝑝)
)

𝑑

𝑖=0

 

 

4) Cluster Based Local Outlier Factor (CBLOF): 
The anomaly detection algorithms based on the classical 

approaches use the full size of the dataset[26,27,28,29], 

thereby causing massive computational costs for large data 

sets like our case. We can reduce the computational cost 

by partitioning the large data set into meaningful clusters.  

Clustering is therefore integrated into Local Outlier Factor 

(LOF)[27] to identify top n outliers in our data set. The 

approach is called the Cluster Based Local Outlier Factor 

(CBLOF) which will overcome the clustering and LOF 

drawbacks[30]. Consider a data set 𝐷 containing the traffic 

of our Big Data System. The algorithm then partitions the 

dataset 𝐷  into 𝑘  disjoint sets 𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑘}  with 

𝐶𝑖⋂𝐶𝑗 =  ∅ and 𝐶𝑖 ⋃𝐶𝑗 = 𝐷. A local outlier factor called 

CBLOF is allocated to each data instance It is determined 

based on the size of the cluster (Small Cluster (SC) or 

Large Cluster (LC)) and the distance between the target 

point and its neighboring cluster. Lets suppose 𝐶1 > 𝐶2 >
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⋯ > 𝐶𝑘  then 𝑏  is the boundary of a cluster (Large or 

Small) such as : 

|𝐶1| + |𝐶2| + ⋯+ |𝐶𝑏| ≥ |𝐷| ∗ 𝛼 𝒐𝒓 
|𝐶𝑏|

|𝐶𝑏+1|
≥ 𝛽 

Where 𝛼 and 𝛽 are the numeric values. Accordingly, 𝐿𝐶 =
{𝐶𝑖  | 𝑖 ≤ 𝑏} and 𝑆𝐶 = {𝐶𝑗  | 𝑗 > 𝑏 }. 

So for every point 𝑝 of the data set the CBLOF is defined 

by the follwing equation : 

𝐶𝐵𝐿𝑂𝐹(𝑝) =

 

{
 
 

 
 |𝐶𝑖| ∗ min (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝐶𝑗))

𝑖𝑓 𝑝 ∈ 𝐶𝑖 , 𝐶𝑖 ∈ 𝑆𝐶, 𝐶𝑗 ∈ 𝐿𝐶 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑏

|𝐶𝑖| ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝐶𝑖)

𝑖𝑓 𝑝 ∈ 𝐶𝑖 , 𝐶𝑖 ∈ 𝐿𝐶
 

  

The algorithm gives a distance-based anomaly score to the 

nearest large cluster, multiplied by the cluster size to 
which the entity belongs. The definition is shown in Figure 

4. Point 𝑝 resides in the small cluster 𝐶2 and therefore the 

score would be equal to the distance to 𝐶1  which is the 

closest large cluster multiplied by 5 which is the size of 𝐶2. 
 

 

Fig. 4  for the point p, the distance to the cluster C1 is used to compute 

the CBLOF Score. In this case C1 and C3 are identified as large clusters 

and C2 is considered a small Cluster, the blue points represent the center 
of Clusters 

5. Model evaluation and implementation: 

To evaluate our model, we use Apache Spark [33]  along 

with MLlib [32], we will be using the UNSW-NB15 [31] 

Dataset. This section presents details about the dataset and 

also a comparison between all the outlier detection 

methods that we talked about in the previous section. We 

will also present the final implementation of the 

framework. 

A. Apache Spark: 

Apache Spark is a fast data processing engine dedicated to 

Big Data. It allows the processing of large volumes of data 

in a distributed manner (cluster computing). Very popular 

for a few years now, this framework is about to replace 
Hadoop. Its main advantages are its speed, ease of use, and 

versatility.  

It is an open source parallel data processing engine that 

allows for large-scale analysis through clustered machines. 

Coded in Scala, Spark can handle data from data 

repositories such as Hadoop Distributed File System, 

NoSQL databases, or relational data stores such as Apache 

Hive. This engine also supports In-memory processing, 

which increases the performance of Big Data analytical 

applications. It can also be used for conventional disk-
based processing, if the datasets are too large for system 

memory. 

Its main advantage is its speed, since it can launch 

programs 100 times faster than Hadoop MapReduce in-

memory, and 10 times faster on disk. Its advanced DAG 

(Directed Acyclic Graph) execution engine supports 

acyclic data flow and in-memory computing. It is also easy 

to use, and allows you to develop applications in Java, 

Scala, Python and R. Its programming model is simpler 

than Hadoop's. Thanks to more than 80 high-level 

operators, the software makes it easy to develop parallel 

applications. 
Another advantage of Apache Spark is its generality. It 

acts at the same time as SQL query engine, data processing 

software (Spark Streaming), and graph processing system 

(GraphX). Apache Spark also includes a large number of 

libraries of MLlib algorithms for Machine Learning. These 

libraries can be easily combined within the same 

application. 

The engine can run on Hadoop 2 clusters based on the 

YARN resource manager, or on Mesos. It is also possible 

to run it standalone or in the cloud with Amazon's Elastic 

Compute Cloud service. It provides access to various data 
sources such as HDFS, Cassandra, Hbase and S3. 

The other strong point of this engine is its massive 

community. Apache Spark is used by a large number of 

companies for processing large datasets. This community 

can be reached through a list of email addresses, or 

through events and summits. As an open-source platform, 

Apache Spark is developed by a large number of 

developers from over 200 companies. Since 2009, more 

than 1000 developers have contributed to the project. This 

makes many Spark tutorials available. 

In our case Spark high speed data processing will allow 

our framework to process the traffic data collected and 
detect outliers using MLlib and PyOD [34] 

B. Dataset Description: 

To test our model, we opted to use the UNSW-NB15 

Dataset. The raw network packets of the UNSW-NB 15 

dataset were generated by the IXIA PerfectStorm tool in 

the Cyber Range Lab of the Australian Centre for Cyber 

Security (ACCS) it produces a hybrid of real modern 

normal network activities and synthetic contemporary 

attack behaviours. This dataset has nine types of attacks, 

namely: Fuzzers, Analysis, Backdoors, DoS, Exploits, 

Generic, Reconnaissance, Shellcode and Worms. The total 
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number of records is two million and 540,044 and there 

are 49 features in total including the class label.  

We will only use a partition of the dataset. We will 

configure it as two sets: a training set containing 150,000 

records and a test set containing 75,000 records, making 

also sure that both sets have the same distribution.  
UNSW-NB15 is a dataset used to train IDS, but we are 

using it to train our Access Control framework. We are 

only interested in the traffic aspect of the dataset, so before 

training our model we will first remove the feature:  

𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑎𝑡. Our framework uses Unsupervised learning 

algorithms and the anomalies we aim to detect are unusual 

behavior that may or may not be included in the 9 types of 

attacks listed in the dataset.  

C. Results: 

In this section we evaluate the performance of the four 

outlier detection algorithms: K-NN, Isolation Forest, 

HBOS and CBLOF using the UNSW-NB15 training and 
test sets created in the previous section. We will be using 

PyOD as it is a library with all the main anomaly detection 

algorithms that we need. The machine used for this 

experiment is a p3.2xlarge EC2 instance [35]. 

Table 1: Performance of different outlier detection algorithms on unsw-

nb15 data set 

Algorithm 
Training 

AUC 

Testing 

AUC 

Training 

Time 

Prediction 

Time 

K - NN 94.2% 95.9% 16.82 0.23 

Isolation 

Forest 
97.3% 97.3% 5.19 0.14 

HBOS 89.6% 88.4% 1.04 0.03 

CBLOF 90.2% 91.3% 1.22 0.09 

 

We used GridSearchCV [36] cross-validation to find the 

optimal hyper-parameters for all four algorithms. As for 

the metrics used to determine performance, we used AUC 

(Area Under the ROC Curve) [37] it provides an aggregate 

measure of performance for all possible classification 

thresholds. The AUC can be interpreted as a measure of 

the probability that the model will rank a random positive 

example above a random negative example. A model with 

100% error in predictions has an AUC of 0.0. If all its 
predictions are correct, its AUC is 1.0. The AUC is scale 

invariant. It measures how well predictions are ranked, 

rather than their absolute values. In addition to that it is 

independent of classification thresholds. It measures the 

quality of model accuracy regardless of the classification 

threshold selected. We also took in consideration the 

training and prediction time as they are very crucial in our 

case, the framework must be as accurate and as fast as 

possible in order to be responsive towards any anomaly as 

soon as it occurs.  

Table 1 shows the evident superiority of Isolation Forests 

as it achieves 97.3% AUC on both training and test sets, 

that means that the algorithm generalizes well, the training 

and prediction time are also good. K-NN have a decent 

AUC too, but it takes long to train the model. HBOS and 

CLBOF didn’t do well on the dataset although they are 
very fast on training and predicting. The low AUC on both 

algorithms can be due to the high dimensionality of the 

dataset, both algorithms are distance based and the data 

gets more sparse the higher its dimensions are as shown in 

[38].   

D. Implementation: 

To implement our framework, we used the Python 

language, the ABAC component was based on VAKT [39], 

an attribute based access control toolkit coded in Python, 

we modified it and added our Machine Learning 

component then tuned it’s decision process to include the 

feedback from the said component. We named our 

framework DABAC ( Dynamic Attribute Based Access 
Control ), the code can be found at : 

https://github.com/HamzaES/DABAC.  

 

6. Conclusion and Future work: 

In this paper, we presented an access control framework 

for Big Data systems: DABAC (Dynamic Attribute Based 

Access Control), it is based on ABAC and adds a Machine 
Learning 

Anomaly detection component that continuously processes 

traffic data and flag any suspicious user behavior. We used 

the UNSW-NB15 data set, Apache Spark and a p3.2xlarge 

Amazon EC2 instance to create a Big Data environment 

and evaluated the performance of different outlier 

detection algorithms in order to determine the most 

suitable one that satisfies our performance metrics (AUC, 

training time and prediction time). Isolation Forest was 

clearly the best performing algorithm, thus we used it in 

our Python implementation. It is also worthy to note that 
our Framework respects the three requirements for a Big 

Data Access Control (Chapter II), Our Solution is fine 

grained since it’s based on ABAC which is itself a fine 

grained access control. The solution is also context aware, 

given the fact that it constantly monitors the network 

traffic and flags any suspicious activity based on its 

context, if the user’s behavior is out of the usual context it 

will be deemed anomalous. And finally, the framework is 

efficient, the outlier detection takes around 143 𝑚𝑠  to 

decide whether the user’s activity is anomalous or not, and 

sends the feedback to the ABAC component which will 

take it into consideration to issue a 𝑃𝐸𝑅𝑀𝐼𝑇 or 𝐷𝐸𝑁𝑌   

In future work, we will aim to push the integration of the 

Machine Learning module into ABAC further, we ideally 
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want to be able to change the policies themselves using 

Machine Learning, this will give birth to a more dynamic 

and effective access control for Big Data. 
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