
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

92

Manuscript received March 5, 2020

Manuscript revised March 20, 2020

Toward Supporting the Classification of Software

Requirements with an Intelligent Semantic Approach

Hala Alrumaih 1, 2, Abdulrahman Mirza 1, Hessah Alsalamah 1, 3

1 Information Systems Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi

Arabia
2 Information Systems Department, College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud

Islamic University, Riyadh, Saudi Arabia
3 Computer Engineering Department, College of Engineering and Architecture, Al Yamamah University, Riyadh, Saudi

Arabia

Summary
With the growing awareness of the effects of requirements on

software development processes, requirements engineering is

increasingly becoming an important field of focus in software

engineering research. Many studies show that failures in

understanding and classifying requirements are the main reasons

for exceeding project costs and allocated time, which in turn

may cause the failure of a project. Successful software systems

development requires consistent and classified requirements.

The classification of requirements represents an early but

critical phase in the requirements analysis stage. While the

literature sheds light on distinctions between different types of

requirements, the detection of such differences in practice is not

always an easy task. This paper provides an overview of

requirements classification, presents some of the existing

research studies on requirements classification, and discusses

their limitations in terms of yielding suggestions for

improvement. Additionally, this work takes a different approach

to address requirements classification. It proposes a semantic

model to classify requirements automatically, using a hybrid

artificial intelligence approach. In addition, the paper discusses

evaluation methods for each part of the proposed model.

Key words:
Requirements engineering; Requirements classification;

Artificial intelligence; Machine learning; Ontology.

1. Introduction

This paper is an extended version of our SCS-NCC 2018

paper [1]. We are presenting in this work more detailed

discussions and recommendations than what appeared in

the previous version.

In software engineering, there is a growing and

continuous demand to produce software systems in shorter

cycles with higher productivity and quality [2]. This

demand mainly depends on how well a software system

fulfils the needs of its environment and users. Software

requirements address these needs through requirements

engineering processes. The successful development of

software systems requires complete, consistent and

classified requirements.

Accurate requirements classification is always a critical

factor in the success of any project. Prior research [3], [4],

[5] has highlighted the risks generated when working

with incorrect methods of classifying requirements. These

risks can even cause project failure due to projects

exceeding time or budget constraints; at the very least,

projects will incur extra effort to bring to completion.

Reports show that 71% of software failures are due to a

lack of clear representation and requirements

classification [6]. The CHAOS report from the Standish

Group [7] examined the causes of IT project failures in

the USA, and showed that success rates for IT projects

were only 16.2%, while the others ended in failure. The

second factor giving rise to project challenges is the use of

incomplete or imprecise requirements and specifications.

Hence, the quality of requirements specification has an

important effect on the outcome of the project due to the

use of poor or imprecise requirements classification.

Another survey has shown that there is a cost to IT

projects arising from poor requirements classification [8].

Successful requirements engineering (RE) involves

eliciting the needs of users, customers, and other

stakeholders; analysing the stakeholders’ requirements

and documenting these requirements as software

requirements specification; validating that the

documented requirements match the stakeholders’

requirements; and managing the evolution of

requirements [9]. RE has now emerged from an initial

stage in the software development process to a basic

activity and stage in many organizations that spans the

entire software development process [10].

The main component of requirements engineering is the

requirements themselves; these are properties that must be

exhibited to ensure that certain real-world problems can

be solved [11], [12]. Before software can be developed,

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

93

requirements must be specified and agreed to by the

stakeholders of a software product such as customers,

users, and suppliers.

Requirements analysis covers many important stages

before the production of a high-quality specification

document. Requirements classification is the first and the

most complicated stage in requirements analysis. This

importance arises from the diversity of requirements,

which can be varied both in terms of their purpose and the

types of properties they represent.

Software engineering scientists provide clear priorities

and classifications for the requirements of the system by

using several requirements classification techniques.

There are many effective classification techniques

dedicated to pioneers in the field of requirements

engineering such as Sommerville’s technique [11]. This

diversity is due to the rich nature of software requirements,

the reliance on methods for the definition of requirements,

and the architecture and design methods that are applied

in the developed software system.

The remainder of the paper is organized as follows.

Section 2 provides a brief overview of requirements

classification. Then, Section 3 reviews several works

related to ontologies in order to show how they can be

used to reduce the negative effects of certain factors on the

requirements engineering processes. Section 4 describes

recent research into artificial intelligence techniques; it

shows how these techniques have been applied to solve a

variety of requirements problems. Section 5 provides

some background on the limitations of the current

research and presents recommendations. Section 6

proposes a model based on these recommendations and

shows how this model may be evaluated. Finally, Section

7 concludes the paper.

2. Requirements Classification

In the initial stage of RE, classifying and categorizing the

requirements into various collections may enable many

further actions to be taken much more easily than using a

direct operation [13]. In the software engineering domain,

classification has been a commonly used keyword over

recent decades to classify requirements, faults, software

risks, software features, and software testing [14]. From

an RE point of view, classification can perform very

helpful roles using techniques such as developing the

level of understanding of user requirements [15], priority

parameters [16], and the evaluation of their quality.

Furthermore, requirements classification can be used to

decrease the difficulty of decision making by reducing a

large number of requirements into fewer collections [17].

The literature provides several major reasons for making

these classifications [18], [19], [20], [21]. Firstly, there is

a difference between functional requirements (FRs) and

non-functional requirements (NFRs), in that much more

challenging problems usually arise in designing and

testing NFRs. Creating a design to meet the NFRs often

takes more time and it involves complex problems, while

FRs appear to be more straightforward.

Secondly, it is useful to describe constraints separately. By

using the separate word ‘constraints’, we can explicitly

place a limit on the design space without conflating the

difference between the function space and design space.

3. Ontologies in Requirements Engineering

An ontology provides a common vocabulary used to

describe a domain in a form of objects and concepts that

exist together with their characteristics and relations.

Developing an ontology is useful in sharing and

describing different classifications. Ontologies specify a

generic and semantic solution, which provides a precise,

unambiguous, and reusable terminology in requirements

classification. The following subsection provides ways of

using ontologies in requirements engineering.

3.1 Insufficient Requirements Engineering Process

The formation of well-defined requirements that are

agreed on by stakeholders has become a key priority in

software development. The software system may not

satisfy the aims of users if the needs are expressed as

incomplete or incorrect requirements. Possible reasons

leading to an insufficient process of RE are as follows

[22].

1. Ambiguous requirements, where each

stakeholder interprets the same requirement in

different ways, producing repetition of work and

loss of time.

2. Insufficient specifications that result in the

absence of primary requirements, meaning that

the required software is not developed because

the developers base their work on incorrect

requirements.

3. Requirements that are incompletely defined,

leading to wrong estimations and judgments that

ignore the required specifications.

4. Dynamic and changing requirements, requiring

management to help in understanding the new

users’ aims and goals to define how they can be

satisfied.

Ontologies can be used to decrease the unfavourable

effects of the previous reasons on RE processes. The

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

94

potential benefits of applying ontologies in RE include

representations of the following aspects [22].

1. Requirements model: This enables a way of

structuring and classifying the requirements. A

requirements ontology can be used to reduce

ambiguous requirements and avoid incomplete

requirements descriptions during the analysis

stage.

2. Acquisition structures for domain knowledge:

This is an ontology for requirements

specification documents that describes the body

structure of these documents.

3. Knowledge of the application domain: An

application domain ontology helps in

understanding the domain by detecting dynamic

and changing requirements.

3.2 Applying Ontologies in Requirements Engineering

The use of ontologies in the demonstration of

requirements knowledge has been researched for many

years. Lin et al. [23] presented one of the initial

approaches in this area, proposing a generic and semantic

solution that provides a precise, unambiguous, and

reusable terminology. The developed ontology is used to

define the meaning of the terminology. This solution is

appropriate for any type of product to develop diverse

requirements such as completeness, consistency,

traceability, and communication. It also supports the

discovery of redundant or conflicting requirements. The

proposed ontology was implemented using the Prolog

language. Although being a very complete ontology, one

of its disadvantages is that only the engineers on the

project share the terminology involved; as a result,

customers are not interested in this aspect, and some

requirements might appear ambiguous.

Dobson and Sawyer [24] proposed a more specific method

for using ontologies to represent the knowledge domain of

NFRs. The proposed ontology is used to express the

dependencies between requirements. This method

involves various NFRs, such as confidentiality,

maintainability, integrity, availability, reliability, and

safety.

Diallo et al. [25] described a method to measure whether

or not a selected architecture dependably satisfies and

meets the stakeholder needs specified in requirement-level

scenarios. They mapped scenarios to elements of the

architecture using an ontology of requirement-level event

classes and domain entities. The scenarios represent both

FRs and NFRs or quality attributes of the system. In terms

of quality attributes, the scenarios either increase the

quality of actions or indicate how to check the quality.

Their approach specified a relationship between

requirements that can be understood directly by

stakeholders, and the architectures developed to satisfy

those requirements. The requirement-level ontology

facilitates the mapping process and acts as a focus for

maintaining the mapping, which helps in the

development the architecture and scenarios. The ontology

also provides a base for individually and jointly assessing

the scenarios and the architecture. The authors

emphasized the mapping through event classes and

explained their approach using two examples.

Gailly et al. [26] proposed an ontology-based RE

approach that detects domain knowledge and uses early

requirements modelling techniques by combining the use

of domain ontologies. These techniques are mainly aimed

at eliciting and representing the organizational and

intentional context of the system. This approach can be

used with diverse types of domain ontologies and software

RE techniques.

Another study in this field was presented by Kassab [27],

who proposed an ontology specifying the definition of the

general concepts related to NFRs. Through the proposed

ontology, he described different glossaries and taxonomies

for NFRs without reference to any particular domain.

Scholars and practitioners have used ontologies to model

knowledge in software engineering and to indicate the

artefacts that are designed or produced during the RE

process. Zhao et al. [28] classified the ontologies

developed for software engineering. They reviewed the

current efforts related to applying semantic web

techniques to different software engineering aspects. They

also presented the benefits of their applications. One of

their classifications was an ontology for requirements that

describes the desired software characteristics, called a

‘system behaviour ontology’, as specified by the customer.

As an example of this kind of ontology, Caralt and Kim

[29] proposed an ontology to enclose use cases with

semantic information. In a complex software

development situation, the detection of an appropriate use

case from a big library produced previously or from

relevant projects is a difficult, expensive, and error-prone

task. The proposed ontology was obtained from

ResearchCyc, which is an ontology for the scientific

community that contains a taxonomy of more than 6,000

actions. The authors also proposed queries used to retrieve

use cases could be augmented with this ontology. The

developed ontology is used to capture, reuse, and query

use cases efficiently.

Wongthongtham et al. [30] developed an ontology model

to represent software engineering knowledge. RE was a

part of this ontology, and is referred to as software

requirements. The authors examined a software

engineering ontology and the different elements

composing it. The scenarios presented in this paper

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

95

highlight the various features of this software engineering

ontology. The developed ontology can help to identify the

information necessary to exchange semantic information

about the project. Software engineers can use this

ontology both to share software engineering knowledge

and to establish a communication framework.

Liu [31] investigated conflicts in the requirements

specifications of activity diagrams using an ontological

approach, and proposed a method consisting of a

modelling process and a group of rules for conflict

detection. In addition, Liu provided several scenarios

related to electronic commerce to demonstrate the validity

of the proposed rules. The suggested method has two

advantages and one main disadvantage. The feasible

analysis process is a feature of this method. In the analysis

of activity diagrams, the feasible analysis process offers a

well-defined and systematic road map for the necessary

data collection. Effectiveness is the second advantage of

this method; by using effective rules, this method attempts

to simplify conflict identification research, although the

essential weakness of this method is that it cannot be

applied in the initial stages of developing complete and

innovative new systems. When the requirements for

developing new systems are unclear, producing complete

and accurate prior knowledge is difficult.

The ontology for requirements proposed in [32] is based

on web ontology language (OWL) and is a main part of

the automated design approach. The function-oriented,

automated and integrated design has three stages: RE,

high-level abstract design, and a comprehensive detailed

design. The ontology provides a description of both

terminological (concept or class knowledge) and

assertion knowledge (factual or instance knowledge).

Terminological knowledge is used to represent current

requirements and causal dependencies that are used in

creating future requirements, while assertion knowledge

is represented as an instance with regard to terminological

knowledge. The developed ontology represents the precise

requirements of a developed automatic planned system,

using an automated design approach to provide a

semantic description and representation of knowledge. In

addition, the proposed ontology is useful for the entire

automation engineering process.

Shunxin and Leijun [33] discussed how the use of the

ontology notation in the RE domain helps increase the

level of understanding of semantic information. Their

paper introduced ontology-related concepts and theories.

It presented a general framework for developers for the

use of an ontology to help in the development of

requirements and ensure quality and speed. The authors

used several examples to explain how to use ontology

requests analysis, validation, and enhancement.

Farfeleder et al. [34] presented a prototypical

implementation of a semantic guidance system.

Requirements engineers use this system to determine

requirements using a semi-formal representation. A

requirements engineer can build on a list of suggestions to

define requirements; this list is provided by a semantic

guidance system that uses concepts, relations and axioms

of specific domain ontology. The developed system is

tested based on a specific domain ontology and a set of

requirements from the aerospace domain. The results of

assessment show that the proposed system successfully

supports requirements engineers in defining well-

structured requirements.

Minhas et al. [13] presented an automated technique for

software requirements classification using statistical and

ontology methods. This classification technique is built

using a controlled vocabulary to split the documented user

requirements into specified collections in order to make

further actions much easier than in direct operation. The

authors demonstrated the implementation of the

classification technique using three case studies. The

overall structure of this technique consists of three main

parts. The first component represents the source data in

the form of a repository containing keywords and their

relationships. The second component is the mapping stage,

which is based on finding words in the requirements

document that are related to keywords in the repository.

The last component is the presentation stage, which

delivers the classified requirements in more meaningful

ways. Improving the quality of the results to reflect real

groups of interests is the main aspect that improves the

effectiveness of this technique.

Daramola et al. [35] discussed how the concept of an

ontology supports the specification of security

requirements. Their approach utilizes a combination of

ontologies and boilerplates through a tool-based

framework. This approach helps requirements engineers

to identify security threats and ultimately formulate

quality security requirements; it also decreases the effort

required in the process of security requirements

specification and offers a good starting point in cases

when a sufficiently experienced requirements engineer

may not be available. This approach is viable for

supporting the specification of security requirements

based on an initial evaluation.

To improve semantic tool support for the RE domain,

Rashwan et al. [36] developed a new classification

algorithm to categorize automatically NFRs in software

specifications. They used ontology notation to convert

software requirements documents automatically into a

semantic representation. This approach is useful to handle

the cost of the software system and measure the quality of

written requirements.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

96

Avdeenko and Pustovalova [37] proposed a new approach

based on an ontology to match the theoretical framework

of RE. This technique reduces the number of different

terms used to describe the same concepts, and expands the

domain of existing tools, concepts, and models, due to

their sharing and combining. The approach is also used to

transform rapidly and cost effectively a standard

document from the software requirements specification

(SRS) into an alternate format. They do this by

automating the selection processes of the type of

requirements specifications, the parameters that are

sufficient to specify the project and the development team,

and thus the methods used in working with the

requirements. The proposed approach uses a mechanism

based on production rules that help produce a system of

requirements satisfying the correctness and completeness

properties of the developed system.

Bhatia et al. [38] provided an ontology-based framework

and an implementation approach for detecting ambiguity

in the specification of software requirements. This

research shows how the elimination of significant

ambiguities (pragmatic ambiguity, semantic ambiguity,

vagueness and generality, and language errors) improves

requirements, thus assisting in quality software

development.

Based on combining Advanced Persistent Threat (APT)

attack cases and system domain knowledge, Kim et al.

[39] proposed an ontology base and its design process for

recommending appropriate security requirements. The

proposed knowledge base is constructed by three parts;

APT ontology, general security knowledge ontology, and

domain-specific knowledge ontology. Each ontology can

help to understand the security concerns in their

knowledge. While integrating three ontologies can help in

deriving the appropriate security requirements along with

the security requirements recommendation process.

Table 1 presents a summary of this literature review. It

lists the types of requirements to which the ontology is

applied in each research study and the main objective of

using an ontology in each paper.

Table 1: A List of Recent Works Using the Ontology Notation in Requirements Engineering

Reference
Publication

Year

Functional /

Non-functional
Main objective of using an ontology

[23] 1996
FRs and

Constraints

Providing an unambiguous and precise terminology for the engineering design

domain that can be shared by all the engineers involved

[24] 2006 NFRs Representing dependencies between requirements

[25] 2007 FRs / NFRs Augmenting use cases with semantic information

[26] 2008
FRs and quality

attributes

Assessing whether a candidate architecture dependably meets the stakeholder

requirements using a mapping technique

[27] 2008 FRs / NFRs
Integrating the domain knowledge into early requirements models that mainly aim

to elicit and represent the organizational and intentional context of the system

[28] 2009 NFRs Describing different glossaries and taxonomies for NFRs

[29] 2009 FRs / NFRs Classifying the ontologies developed for the software engineering domain

[30] 2009 FRs / NFRs
Assisting in the definition of information in order to exchange semantic

information about the projects; used as a communication framework

[31] 2009 FRs / NFRs Analyzing conflicts in the requirements specifications of activity diagrams

[32] 2009 FRs / NFRs
Allowing a semantic explanation and representation of knowledge using the

automated design approach

[33] 2010 FRs / NFRs Understanding the semantic level of information in the RE domain

[34] 2011 FRs / NFRs Assisting requirements engineers in capturing requirements

[13] 2011 FRs / NFRs
Developing an automated classifier for classifying software requirements

efficiently

[35] 2012 NFRs
Aiding requirements engineers in identifying security threats and ultimately

formulating the quality security requirements

[36] 2013 NFRs
Developing a new classification algorithm to automatically categorize

requirements in software specifications documents

[37] 2016 FRs / NFRs
Matching the theoretical framework of RE to reduce the number of different terms

used to describe the same concepts

[38] 2016 FRs / NFRs Detecting ambiguities in software requirements specification

[39] 2019 NFRs
Deriving the appropriate security requirements along with the security

requirements recommendation process

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

97

4. Using Artificial Intelligence Techniques in

Requirements Engineering

Some encouraging outcomes resulted from the application

of artificial intelligence (AI) techniques in RE, including

knowledge-based approaches, automated reasoning,

expert systems, heuristic search strategies, and machine

learning. Machine learning methods have been involved

in the software development lifecycle. These AI

techniques also offer a viable alternative in terms of

automating many software engineering issues.

In addition to works [40], [41], [42], [43], [44], [45], [46],

[47], [48] were discussed in [1] that show how different

(AI) techniques can be used effectively in various stages

of requirements engineering processes, Li [49] also

proposed a hybrid approach to automatically recognize

security requirements. This approach used both linguistic

analysis and machine learning techniques.

In specific, the author systematically assessed the current

security requirements ontologies to start creating a revised

security requirements conceptual model. This model is

based on a set of linguistic rules that are normally used to

define security requirements. The evaluation results

showed that the proposed approach has a high chance to

train classifiers to classify requirements from diverse

application domains.

Singh [50] helped requirement engineers using an

approach to automate the selection of specific areas of

SRS that may need to be re-inspected because of existence

some faults. The author used some machine learning

techniques that can effectively isolate faults from non-

faults.

Table 2 presents a summary of this literature review

showing the type of AI technique used and the main

objective of using of this technique in each research study.

Table 2: A List of Recent Works Using AI Techniques in Requirements Engineering

Reference
Publication

year
AI technique Main objective of using AI technique

[40] 2000 Machine learning Implementing tools for software development and maintenance tasks

[41] 2003 Automated reasoning
Developing an intelligent assistant used in the elicitation and assessment of

requirements

[42] 2008 Machine learning Supporting knowledge management requirements in military command centers

[43] 2011 Naïve Bayes Automatically generating requirements for a domain ontology evolution

[44] 2011 Naïve Bayes Integrating knowledge engineering with requirements

[45] 2012 AI Techniques
Demonstrating the application of AI techniques in software engineering

practices

[46] 2016 Machine learning Analyzing SRSs and automatically extracting semantic information

[47] 2016 Decision tree
Classifying security-based explanations into four types of security

requirements

[48] 2016 Neural networks
Automatically classifying the content of a natural language requirements

specification as a “requirement” or “information”

[49] 2017 Machine learning Automatically recognize security requirements

[50] 2018 Machine learning
Automating the selection of specific areas of SRS that may be faulty and

would need to be re-inspected

5. Gap analysis and recommendations

The previous sections discuss in detail the existing works

related to requirements classification techniques and

exploring ways to use ontology and AI techniques in RE.

Although there are many different research methods in

the RE field, the previous works contain many gaps, and

the topic is still active for researchers in the field.

5.1 Gap Analysis

Software engineers prioritize and classify requirements

using several requirements classification techniques. As

shown above, pioneers have developed many effective

classification techniques in the area of RE. However, most

of these techniques do not involve the semantic aspects of

requirements.

Although ontology as a means of defining information

and knowledge semantics has become a focus of study in

RE research, the looming challenge still involves methods

or processes to develop a custom-built ontology that is

used specifically in the requirements classification process.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

98

In previous works, ontologies were a vehicle to solve a

variety of other requirements problems. Additionally, few

ontologies exist for classifying specific requirements such

as NFRs or security requirements.

Furthermore, the literature shows that the techniques that

have been proposed for classifying requirements are either

manual or automated techniques containing several

limitations and gaps. In manual techniques, the

classification process suffers from several limitations such

as dealing with large numbers of requirements, excessive

time consumption, unavailability of experts, or wrong

judgements. In automated techniques, there is a need to

improve the effectiveness of the methods to increase the

quality of their results.

Used alone, AI techniques are not adequate for the

classification process. These techniques can build a

classifier automatically by learning the features of the

categories from a set of classified requirements and then

using results to classify requirements into predefined

categories. However, these techniques have certain

weaknesses. Most of these techniques do not consider

semantic interactions, thereby making it difficult to

improve the accuracy of these classification methods.

Better classification is achievable when the semantic

relations are considered using an ontology as an example.

Although the use of individual classifiers is not sufficient

to classify requirements with high performance, it is

possible that a combination of different classification

techniques can improve the classification accuracy. The

concept of a hybrid scheme that combines more than one

classification technique is proposed as an ideal approach

to improve the performance of individual classifiers.

5.2 Recommendations

With the release of semantics and the progress made in

related technologies, opportunities for using ontologies to

represent knowledge and information semantics are

becoming increasingly acceptable in several domains.

This justifies the choice to develop a specific ontology for

requirements classification that is useful in sharing and

describing different classifications. Hence, a need exists to

develop a custom-built ontology that contains a full

representation of the important existing requirements

classification techniques to handle the semantic aspects of

requirements. The custom-built ontology distinguishes

between different types of requirements such as business,

user and performance requirements, FRs and NFRs,

system, operational, software and hardware requirements,

and interface and maintenance requirements.

In addition, due to the previous limitations of the

techniques used to classify requirements, it is necessary to

automate the classification processes to improve the

quality of the results. This automation can save time and

effort, and can decrease the cost by reducing the number

of hours required from experts.

This research takes a different approach to dealing with

requirements classification. A hybrid approach using

artificial intelligence techniques such as machine learning

algorithms that utilize the custom-built ontology, is

instrumental in classifying requirements automatically.

The selected algorithms should be chosen from different

categories of the developed machine learning algorithms

for classification to increase the quality of the result. The

concept of a “hybrid” that combines more than one

artificial intelligence technique for classification suggests

a new approach to improving the performance of

individual classifiers. Several researchers [40], [41], [42],

[45] have shown that combining and joining multiple

classification techniques can improve classification

accuracy. This approach can minimize the ambiguities

that currently exist and can increase the efficiency of

software development.

6. The proposed Model And its Evaluation

This section proposes a model to classify requirements

automatically based on previous recommendations and

shows how this model may be evaluated.

6.1 The proposed Model

Fig. 1 shows the structure of the proposed model for

automatically classifying requirements. Based on the

previous recommendations, we divide the proposed model

into two parts:

 A custom-built ontology for requirements

classification that is useful in sharing and

describing the different classifications; and

 A hybrid approach that combines several

artificial intelligence techniques, such as

machine learning algorithms, in order to utilize

the custom-built ontology to automate the

requirements classification process.

As a primary step within the development of the custom-

built ontology, a set of requirements with known classes

are used as instances to provide examples of each class.

This set is taken from the software requirements

specifications documents for successfully completed

projects in certain small or medium-sized companies.

The model contains a custom-built ontology that includes

instances called training data; these data provide

examples of requirements from previous projects for each

class in the ontology. In addition, the hybrid approach

used in the model combines several artificial intelligence

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

99

techniques to utilize the developed ontology. When a

requirements engineer receives a list of unclassified

requirements, he or she can start using the model to

automate the classification process. A list of unclassified

requirements called test data is passed through several AI

techniques, which start to classify the requirements

automatically based on the training data from the

developed ontology. The main output of the hybrid

approach is the classified requirements. The requirements

engineer receives these classified requirements and can

insert them into the developed ontology as new instances

to supply the ontology with new training data. This is not

done unless the suggested model is validated and a high

level of performance is obtained from the hybrid approach.

Fig. 1: Proposed model for requirements classification

6.2 Evaluation Stage

Evaluation for the custom-built ontology uses a

benchmarking strategy, which involves comparing the

custom-built ontology with specification templates and

examples for the current software requirements. A

questionnaire will collect expert feedback to evaluate,

refine, and extend the ontology as necessary.

The data used for experimentation are data from actual

situations to allow evaluation of the proposed hybrid

approach. These data will be taken from software

requirements specification documents of successfully

completed projects. In the first stage, requirements will be

taken from small-scale company projects to monitor

results and make changes, since it is easier to monitor

problems with a smaller quantity of data. Once the

proposed model shows good results, we will use standard

internationally recognized requirements datasets to

generate results and to monitor them. All of these

requirements are supplied with their current human

classifications allowing us to compare the classification

results from our model with the real classification. From

this, we will be able to determine the errors incurred and

the level of improvement the model achieved. The

performance of the hybrid approach is evaluated using

standard performance measures for machine learning

algorithms, such as precision, recall, and accuracy.

7. Conclusion

The proposed model in this paper aims to benefit

practitioners in industry and government as well as

academics in universities and technical institutions. The

model can enable industrial and governmental

practitioners to develop more lucid and concrete

requirements classification that minimize ambiguities. In

academic settings, the model is useful for student

instruction and for research.

Requirements classification is a critical factor in project

success since poor classification may cause losses in terms

of costs, time and effort. Using manual techniques to

classify requirements entails significant effort and time

from requirements engineers. By applying intelligent

methods to classify requirements, this process can reduce

the amount of time lost. Moreover, this new process can

increase the quality of requirements analysis and can

produce accurate system specification documents. For

academics, the proposed model can highlight the greater

need for clearer requirements specifications in software

engineering courses and provide a stronger basis for

future research in this area.

In general, the proposed model may be considered as a

separate tool for automatically classifying requirements.

In future research, additional activities from the RE

process will be added in order to increase the productivity

of this research.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

100

References
[1] H. Alrumaih, A. Mirza, and H. Alsalamah, “Toward

Automated Software Requirements Classification,” in

Proceeding of 21st Saudi Computer Society National

Computer Conference (SCS-NCC’2018), Saudi Arabia,

Riyadh.

[2] U. Dinger, R. Oberhauser, and C. Reichel, “A Semantic

Web Services Approach Towards Automated Software

Engineering,” in Web Services, 2006. ICWS’06.

International Conference on, 2006, pp. 935–938.

[3] I. Corporation, “Getting requirements right: avoiding the

top 10 traps.,” Software Group, Route 100, Somers, NY

10589, Requirements definition and management, Oct.

2009.

[4] P. M. Solutions, “Strategies for Project Recovery,” PM

Solutions Inc., Pennsylvania, USA, 2011.

[5] A. Hussain, E. O. Mkpojiogu, and F. M. Kamal, “The

Role of Requirements in the Success or Failure of

Software Projects,” International Review of Management

and Marketing, vol. 6, no. 7S, pp. 306–311, 2016.

[6] C. Lindquist, “Fixing the Software Requirements Mess,”

CIO, 15-Nov-2005. [Online]. Available:

https://www.cio.com/article/2448110/developer/fixing-

the-software-requirements-mess.html. [Accessed: 29-Sep-

2017].

[7] T. Clancy, “The Standish Group Report -CHAOS,”

Project Smart, pp. 1-16, 2014.

[8] B. J. E. Powell, “IT Pays a Price for Poor Requirements

Practices -,” ADTmag. [Online]. Available:

https://adtmag.com/articles/2008/02/07/it-pays-a-price-

for-poor-requirements-practices.aspx. [Accessed: 29-Sep-

2017].

[9] S. Asghar and M. Umar, “Requirement engineering

challenges in development of software applications and

selection of customer-off-the-shelf (COTS) components,”

International Journal of Software Engineering, vol. 1, no.

1, pp. 32–50, 2010.

[10] G. Aouad and Y. Arayici, Requirements engineering for

computer integrated environments in construction.

Chichester, West Sussex, U.K. ; Ames, Iowa: Wiley-

Blackwell, 2010.

[11] I. Sommerville, Software engineering, 9th ed. Boston:

Pearson, 2011.

[12] G. Kotonya and I. Sommerville, Requirements

Engineering: Processes and Techniques. John Wiley and

Sons, 1998.

[13] N. M. Minhas, S. Majeed, Z. Qayyum, and M. Aasem,

“Controlled vocabulary based software requirements

classification,” in Software Engineering (MySEC), 2011

5th Malaysian Conference in, 2011, pp. 31–36.

[14] Z. T. Bieniawski, Engineering rock mass classifications:

a complete manual for engineers and geologists in

mining. New York, civil, and petroleum engineering:

John Wiley & Sons, 1989.

[15] H. Stille and A. Palmström, “Classification as a tool in

rock engineering,” Tunnelling and Underground Space

Technology, vol. 18, no. 4, pp. 331–345, Aug. 2003, doi:

10.1016/S0886-7798(02)00106-2.

[16] M. Daneva and A. Herrmann, “Requirements

Prioritization Based on Benefit and Cost Prediction: A

Method Classification Framework,” in 34th Euromicro

Conference Software Engineering and Advanced

Applications, IEEE, 2008, pp. 240–247, doi:

10.1109/SEAA.2008.46.

[17] M. Aasem, M. Ramzan, and A. Jaffar, “Analysis and

optimization of software requirements prioritization

techniques,” presented at the International Conference on

Information and Emerging Technologies, Karachi, 2010,

pp. 1–6.

[18] E. Hochmüller, Requirements classification as a first step

to grasp quality requirements. Proc. Third International

Workshop on Requirements Engineering: foundation of

Software Quality (REFSQ’97), 1997.

[19] M. Hertzum, “Small-scale classification schemes: A field

study of requirements engineering,” Computer Supported

Cooperative Work (CSCW), vol. 13, no. 1, pp. 35–61,

2004.

[20] M. Y. Kiang, “A comparative assessment of classification

methods,” Decision Support Systems, vol. 35, no. 4, pp.

441–454, Jul. 2003, doi: 10.1016/S0167-9236(02)00110-

0.

[21] K. Lauenroth, E. Kamsties, and O. Hehlert, “Do Words

Make a Difference? An Empirical Study on the Impact of

Taxonomies on the Classification of Requirements,”

presented at the Requirements Engineering Conference

(RE), 2017 IEEE 25th International, 2017, pp. 273–282,

doi: 10.1109/RE.2017.57.

[22] V. Castañeda, L. Ballejos, M. L. Caliusco, and M. R.

Galli, “The use of ontologies in requirements

engineering,” Global Journal of Research In Engineering,

vol. 10, no. 6, 2010.

[23] J. Lin, M. S. Fox, and T. Bilgic, “A requirement ontology

for engineering design,” Concurrent Engineering, vol. 4,

no. 3, pp. 279–291, 1996.

[24] G. Dobson and P. Sawyer, “Revisiting ontology-based

requirements engineering in the age of the semantic

web,” in Proceedings of the International Seminar on

Dependable Requirements Engineering of Computerised

Systems at NPPs, 2006, pp. 27–29.

[25] M. H. Diallo, L. Naslavsky, T. A. Alspaugh, H. Ziv, and

D. J. Richardson, “Toward architecture evaluation

through ontology-based requirements-level scenarios,” in

Architecting Dependable Systems V, Springer, 2008, pp.

225–247.

[26] F. Gailly, S. España, G. Poels, and O. Pastor,

“Integrating business domain ontologies with early

requirements modelling,” in International Conference on

Conceptual Modeling, 2008, pp. 282–291.

[27] M. Kassab, Non-Functional Requirements: Modeling and

Assessment. VDM Verlag Saarbrücken, Germany,

Germany, 2009.

[28] Y. Zhao, J. Dong, and T. Peng, “Ontology Classification

for Semantic-Web-Based Software Engineering,” IEEE

Transactions on Services Computing, vol. 2, no. 4, pp.

303–317, Oct. 2009, doi: 10.1109/TSC.2009.20.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

101

[29] J. C. Caralt and J. W. Kim, “Ontology driven

requirements query,” in System Sciences, 2007. HICSS

2007. 40th Annual Hawaii International Conference on,

2007, pp. 197c–197c.

[30] P. Wongthongtham, E. Chang, T. Dillon, and I.

Sommerville, “Development of a Software Engineering

Ontology for Multisite Software Development,” IEEE

Transactions on Knowledge and Data Engineering, vol.

21, no. 8, pp. 1205–1217, Aug. 2009, doi:

10.1109/TKDE.2008.209.

[31] C.-L. Liu, “Ontology-based requirements conflicts

analysis in activity diagrams,” in International

Conference on Computational Science and Its

Applications, 2009, pp. 1–12.

[32] S. Runde, H. Dibowski, A. Fay, and K. Kabitzsch, “A

semantic requirement ontology for the engineering of

building automation systems by means of OWL,” in

Emerging Technologies & Factory Automation, 2009.

ETFA 2009. IEEE Conference on, 2009, pp. 1–8.

[33] L. Shunxin and S. Leijun, “Requirements Engineering

Based on Domain Ontology,” presented at the 2010

International Conference of Information Science and

Management Engineering, IEEE, 2010, pp. 120–122, doi:

10.1109/ISME.2010.110.

[34] S. Farfeleder, T. Moser, A. Krall, T. Stålhane, I.

Omoronyia, and H. Zojer, “Ontology-driven guidance for

requirements elicitation,” in Extended Semantic Web

Conference, 2011, pp. 212–226.

[35] O. Daramola, G. Sindre, and T. Moser, “Ontology-based

support for security requirements specification process,”

in OTM Confederated International Conferences" On the

Move to Meaningful Internet Systems", 2012, pp. 194–

206.

[36] A. Rashwan, O. Ormandjieva, and R. Witte, “Ontology-

Based Classification of Non-functional Requirements in

Software Specifications: A New Corpus and SVM-Based

Classifier,” presented at the Computer Software and

Applications Conference (COMPSAC), 2013 IEEE 37th

Annual, 2013, pp. 381–386, doi:

10.1109/COMPSAC.2013.64.

[37] T. Avdeenko and N. Pustovalova, “The Ontology-Based

Approach to Support the Requirements Engineering

Process,” presented at the 13th International Scientific-

Technical Conference APEIE, 2016.

[38] M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontology

based framework for detecting ambiguities in software

requirements specification,” in Computing for

Sustainable Global Development (INDIACom), 2016 3rd

International Conference on, 2016, pp. 3572–3575.

[39] M. Kim, S. Dey, and S.-W. Lee, “Ontology-Driven

Security Requirements Recommendation for APT

Attack,” in 2019 IEEE 27th International Requirements

Engineering Conference Workshops (REW), Jeju Island,

Korea (South), 2019, pp. 150–156, doi:

10.1109/REW.2019.00032.

[40] D. Zhang, “APPLYING MACHINE LEARNING

ALGORITHMS IN SOFTWARE DEVELOPMENT,” in

The Proceedings of 2000 Monterey Workshop on

Modeling Software System Structures, 2000.

[41] W. Scott and S. C. Cook, “An Architecture for an

Intelligent Requirements Elicitation and Assessment

Assistant,” in INCOSE International Symposium, 2003,

vol. 13, pp. 470–479.

[42] D. S. Lange, “Text Classification and Machine Learning

Support for Requirements Analysis Using Blogs,” in

Monterey Workshop, Springer, Berlin, Heidelberg, 2008,

pp. 182–195.

[43] J. Dong, M. Yang, and G. Wang, A Generation Method

for Requirement of Domain Ontology Evolution Based on

Machine Learning in P2P Network. Springer Berlin

Heidelberg, 2011.

[44] J. Del Sagrado, I. M. Del Á guila, and F. J. Orellana,

“Architecture for the use of synergies between knowledge

engineering and requirements engineering,” in

Conference of the Spanish Association for Artificial

Intelligence, 2011, pp. 213–222.

[45] H. H. Ammar, W. Abdelmoez, and M. S. Hamdi,

“Software engineering using artificial intelligence

techniques: Current state and open problems,” in

Proceedings of the First Taibah University International

Conference on Computing and Information Technology

(ICCIT 2012), Al-Madinah Al-Munawwarah, Saudi

Arabia, 2012, p. 52.

[46] Y. Wang, “Automatic semantic analysis of software

requirements through machine learning and ontology

approach,” Journal of Shanghai Jiaotong University

(Science), vol. 21, no. 6, pp. 692–701, Dec. 2016, doi:

10.1007/s12204-016-1783-3.

[47] R. Jindal, R. Malhotra, and A. Jain, “Automated

classification of security requirements,” presented at the

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), 2016, pp.

2027–2033.

[48] J. Winkler and A. Vogelsang, “Automatic Classification

of Requirements Based on Convolutional Neural

Networks,” in Requirements Engineering Conference

Workshops (REW), IEEE International, 2016, pp. 39–45.

[49] T. Li, “Identifying Security Requirements Based on

Linguistic Analysis and Machine Learning,” in 2017 24th

Asia-Pacific Software Engineering Conference (APSEC),

Nanjing, 2017, pp. 388–397, doi:

10.1109/APSEC.2017.45.

[50] M. Singh, “Automated Validation of Requirement

Reviews: A Machine Learning Approach,” in 2018 IEEE

26th International Requirements Engineering Conference

(RE), Banff, AB, 2018, pp. 460–465, doi:

10.1109/RE.2018.00062.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.3, March 2020

102

Hala Alrumaih is a lecturer in information systems

department at Al Imam Mohammad Ibn Saud Islamic University

and a PhD candidate in information systems at King Saud

University. She received her MSc degree in information systems

(2010) from King Saud University. Her research interests

include requirements engineering and machine learning. She is

a member of the IT2017 executive Committee and task group

committees to develop the IT2017 report that is appropriately

forward looking for graduates in the mid-2020s. She is a

member of CC2020 task force. Computing Curricula 2020

(CC2020) is a joint project launched by professional computing

societies to examine the current state of curricular guidelines for

academic programs granting degrees in computing and to

provide a vision for the future of computing.

Abdulrahman Mirza is a Professor of Information

Systems at King Saud University (KSU). He is currently a

consultant at the Deputyship of Planning and Information,

Ministry of Education, and the acting Director of the National

Center for Research on Educational Policies. Some of his

previous leadership positions include Vice Dean of Academic

Affairs at the College of Computer & Information Sciences,

KSU. General Supervisor of the General Directorate of Teachers

Affairs at the Ministry of Education. He also served as a Senior

Advisor to the Minister of Education, and to the Minister of

Higher Education. He had also held other positions such

as the Director of Quality & Accreditation at the Saudi

Electronic University, the Deputy Director of the Center of

Excellence in Information Assurance, Chairman of the

Information Systems Department, and the CIO at the King

Abdullah Foundation for Developmental Housing. He completed

his PhD in Computer Science at Illinois Institute of Technology.

Research interests include software engineering, e-commerce,

and information security.

Hessah Alsalamah is an Assistant Professor of

Information Systems at the College of Computer and

Information Sciences, King Saud University (KSU). She is

currently the dean of College of Engineering and Architecture at

Al Yamamah University. Dr. Hessah's specialty is in Business

Process Management and Workflow Technology. This includes

process discovery, modelling, analysis, re-engineering, and

automation. She also focuses on her research on the emerging

requirements of collaborative environments involving human

aspects, such as communication, collaboration, and coordination

as well as technical aspects, such as heterogeneity, and

distribution. Recently, Hessah has been looking at information

security and privacy requirements in collaborative environments

such as eHealth and eGovernment.

